51
|
Hiraoka M, Watanabe K, Umezu K, Maki H. Spontaneous loss of heterozygosity in diploid Saccharomyces cerevisiae cells. Genetics 2000; 156:1531-48. [PMID: 11102355 PMCID: PMC1461370 DOI: 10.1093/genetics/156.4.1531] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To obtain a broad perspective of the events leading to spontaneous loss of heterozygosity (LOH), we have characterized the genetic alterations that functionally inactivated the URA3 marker hemizygously or heterozygously situated either on chromosome III or chromosome V in diploid Saccharomyces cerevisiae cells. Analysis of chromosome structure in a large number of LOH clones by pulsed-field gel electrophoresis and PCR showed that chromosome loss, allelic recombination, and chromosome aberration were the major classes of genetic alterations leading to LOH. The frequencies of chromosome loss and chromosome aberration were significantly affected when the marker was located in different chromosomes, suggesting that chromosome-specific elements may affect the processes that led to these alterations. Aberrant-sized chromosomes were detected readily in approximately 8% of LOH events when the URA3 marker was placed in chromosome III. Molecular mechanisms underlying the chromosome aberrations were further investigated by studying the fate of two other genetic markers on chromosome III. Chromosome aberration caused by intrachromosomal rearrangements was predominantly due to a deletion between the MAT and HMR loci that occurred at a frequency of 3.1 x 10(-6). Another type of chromosome aberration, which occurred at a frequency slightly higher than that of the intrachromosomal deletion, appeared to be caused by interchromosomal rearrangement, including unequal crossing over between homologous chromatids and translocation with another chromosome.
Collapse
Affiliation(s)
- M Hiraoka
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
52
|
Mullen JR, Kaliraman V, Brill SJ. Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae. Genetics 2000; 154:1101-14. [PMID: 10757756 PMCID: PMC1460973 DOI: 10.1093/genetics/154.3.1101] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SGS1 in yeast encodes a DNA helicase with homology to the human BLM and WRN proteins. This group of proteins is characterized by a highly conserved DNA helicase domain homologous to Escherichia coli RecQ and a large N-terminal domain of unknown function. To determine the role of these domains in SGS1 function, we constructed a series of truncation and helicase-defective (-hd) alleles and examined their ability to complement several sgs1 phenotypes. Certain SGS1 alleles showed distinct phenotypes: sgs1-hd failed to complement the MMS hypersensitivity and hyper-recombination phenotypes, but partially complemented the slow-growth suppression of top3 sgs1 strains and the top1 sgs1 growth defect. Unexpectedly, an allele that encodes the amino terminus alone showed essentially complete complementation of the hyper-recombination and top1 sgs1 defects. In contrast, an allele encoding the helicase domain alone was unable to complement any sgs1 phenotype. Small truncations of the N terminus resulted in hyper-recombination and slow-growth phenotypes in excess of the null allele. These hypermorphic phenotypes could be relieved by deleting more of the N terminus, or in some cases, by a point mutation in the helicase domain. Intragenic complementation experiments demonstrate that both the amino terminus and the DNA helicase are required for full SGS1 function. We conclude that the amino terminus of Sgs1 has an essential role in SGS1 function, distinct from that of the DNA helicase, with which it genetically interacts.
Collapse
Affiliation(s)
- J R Mullen
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | |
Collapse
|
53
|
Ivessa AS, Zhou JQ, Zakian VA. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 2000; 100:479-89. [PMID: 10693764 DOI: 10.1016/s0092-8674(00)80683-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Replication of Saccharomyces ribosomal DNA (rDNA) proceeds bidirectionally from origins in a subset of the approximately 150 tandem repeats, but the leftward-moving fork stops when it encounters the replication fork barrier (RFB). The Pif1p helicase and the highly related Rrm3p were rDNA associated in vivo. Both proteins affected rDNA replication but had opposing effects on fork progression. Pif1p helped maintain the RFB. Rrm3p appears to be the replicative helicase for rDNA as it acted catalytically to promote fork progression throughout the rDNA. Loss of Rrm3p increased rDNA breakage and accumulation of rDNA circles, whereas breakage and circles were less common in pif1 cells. These data support a model in which replication fork pausing causes breakage and recombination in the rDNA.
Collapse
Affiliation(s)
- A S Ivessa
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
54
|
Abstract
The Saccharomyces cerevisiae genome contains nine open reading frames (ORFs)--YLR214w (FRE1), YKL220c (FRE2), YOR381w, YNR060w, YOR384w, YLL051c, YOL152w, YGL160w and YLR047c--which, based on amino acid sequence similarity, fall in the category of iron/copper reductase-related genes. FRE1 and FRE2 are the first identified and studied genes of this family. They both encode for plasma membrane ferric/cupric reductases and their expression is regulated by iron and copper availability, mediated by the transcription factors Aft1p and Mac1p, respectively. We have studied the expression of the seven ORFs of unknown function by monitoring mRNA accumulation under different growth conditions, namely, their response to iron and copper availability in the medium, as well as the involvement of transcription factors Aft1p and Mac1p in their expression. A compilation of these results, together with sequence comparison data, permits a first classification of these genes under three major groups: genes mainly regulated by iron availability, genes mainly regulated by copper availability and genes not regulated by either metal.
Collapse
MESH Headings
- Copper/metabolism
- DNA, Fungal
- FMN Reductase
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Iron/metabolism
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Nuclear Proteins/metabolism
- Nucleic Acid Hybridization
- Open Reading Frames/genetics
- Promoter Regions, Genetic
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae Proteins
- Sequence Analysis, DNA
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- E Georgatsou
- Foundation for Research and Technology-HELLAS, Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | |
Collapse
|
55
|
Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 1999; 3:447-55. [PMID: 10230397 DOI: 10.1016/s1097-2765(00)80472-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A cause of aging in yeast is the accumulation of circular species of ribosomal DNA (rDNA) arising from the 100-200 tandemly repeated copies in the genome. We show here that mutation of the FOB1 gene slows the generation of these circles and thus extends life span. Fob1p is known to create a unidirectional block to replication forks in the rDNA. We show that Fob1p is a nucleolar protein, suggesting a direct involvement in the replication fork block. We propose that this block can trigger aging by causing chromosomal breaks, the repair of which results in the generation of rDNA circles. These findings may provide a novel link between metabolic rate and aging in yeast and, perhaps, higher organisms.
Collapse
Affiliation(s)
- P A Defossez
- Department of Biology Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Generalized transcriptional repression of large chromosomal regions in Saccharomyces cerevisiae occurs at the silent mating loci and at telomeres and is mediated by the silent information regulator (SIR) genes. We have identified a novel form of transcriptional silencing in S. cerevisiae in the ribosomal DNA (rDNA) tandem array. Ty1 retrotransposons marked with a weakened URA3 gene (Ty1-mURA3) efficiently integrated into rDNA. The mURA3 marker in rDNA was transcriptionally silenced in a SIR2-dependent manner. MET15 and LEU2 were also partially silenced, indicating that rDNA silencing may be quite general. Deletion of SIR4 enhanced mURA3 and MET15 silencing, but deletion of SIR1 or SIR3 did not affect silencing, indicating that the mechanism of silencing differs from that at telomeres and silent mating loci. Deletion of SIR2 resulted in increased psoralen cross-linking of the rDNA in vivo, suggesting that a specific chromatin structure in rDNA down-regulates polymerase II promoters.
Collapse
Affiliation(s)
- J S Smith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
57
|
Watt PM, Hickson ID, Borts RH, Louis EJ. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 1996; 144:935-45. [PMID: 8913739 PMCID: PMC1207633 DOI: 10.1093/genetics/144.3.935] [Citation(s) in RCA: 321] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Saccharomyces cerevisiae SGS1 gene is homologous to Escherichia coli RecQ and the human BLM and WRN proteins that are defective in the cancer-prone disorder Bloom's syndrome and the premature aging disorder Werner's syndrome, respectively. While recQ mutants are deficient in conjugational recombination and DNA repair, Bloom's syndrome cell lines show hyperrecombination. Bloom's and Werner's syndrome cell lines both exhibit chromosomal instability, sgs1 delta strains show mitotic hyperrecombination, as do Bloom's cells. This was manifested as an increase in the frequency of interchromosomal homologous recombination, intrachromosomal excision recombination, and ectopic recombination. Hyperrecombination was partially independent of both RAD52 and RAD1. Meiotic recombination was not increased in sgs1 delta mutants, although meiosis I chromosome missegregation has been shown to be elevated sgs1 delta suppresses the slow growth of a top3 delta strain lacking topoisomerase III. Although there was an increase in subtelomeric Y' instability in sgs1 delta strains due to hyperrecombination, no evidence was found for an increase in the instability of terminal telomeric sequences in a top3 delta or a sgs1 delta strain. This contrasts with the telomere maintenance defects of Werner's patients. We conclude that the SGS1 gene product is involved in the maintenance of genome stability in S. cerevisiae.
Collapse
Affiliation(s)
- P M Watt
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | | | | | |
Collapse
|
58
|
Piruat JI, Aguilera A. Mutations in the yeast SRB2 general transcription factor suppress hpr1-induced recombination and show defects in DNA repair. Genetics 1996; 143:1533-42. [PMID: 8844143 PMCID: PMC1207418 DOI: 10.1093/genetics/143.4.1533] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have obtained genetic and molecular evidence that the hrs2-1 mutation, isolated as a suppressor of the hyperrecombination phenotype of hpr1 delta, is in the SRB2 gene, which encodes a component of the RNA polII holoenzyme. A newly constructed srb2 delta allele restores the wild-type levels of deletions in hpr1 delta cells, indicating that the lack of a functional SRB2 transcription factor suppresses recombination between direct repeats. These results suggest a direct connection between transcription and recombination between DNA repeats. On the other hand, the hrs2-1 mutation (renamed srb2-101), in which Gly150 has been changed to Asp, makes cells sensitive to long MMS treatments, a phenotype observed for the srb2 delta null allele only in a hpr1 delta background. This indicates that mutations in the basal transcription factor SRB2 impair DNA repair of MMS-induced damage, which adds a new connection between transcription and DNA repair. We discuss the possibility that hpr1-induced deletions occurred as a consequence of a SRB2-dependent stalled or blocked transcription complex.
Collapse
Affiliation(s)
- J I Piruat
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | |
Collapse
|
59
|
Abstract
Intrachromosomal recombination between direct repeats can occur either as gene conversion events, which maintain exactly the number of repeat units, or as deletions, which reduce the number of repeat units. Gene conversions are classical recombination events that utilize the standard chromosome recombination machinery. Spontaneous deletions between direct repeats are generally recA-independent in E. coli and RAD52-independent in S. cerevisiae. This independence from the major recombination genes does not mean that deletions form through a nonrecombinational process. Deletions have been suggested to result from sister chromatid exchange at the replication fork in a recA-independent process. The same type of exchange is proposed to be RAD52-independent in Saccharomyces cerevisiae. RAD52-dependent events encompass all events that involve the initial steps of a recombination reaction, which include strand invasion to form a heteroduplex intermediate.
Collapse
Affiliation(s)
- H L Klein
- Department of Biochemistry, New York University Medical Center, NY 10016
| |
Collapse
|
60
|
Klein HL. Examination of mitotic recombination by means of hyper-recombination mutants in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 51:271-303. [PMID: 7659776 DOI: 10.1016/s0079-6603(08)60881-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H L Klein
- Department of Biochemistry, New York University Medical Center, New York 10016, USA
| |
Collapse
|
61
|
Saget O, Randsholt NB. Transposon-induced rearrangements in the duplicated locus ph of Drosophila melanogaster can create new chimeric genes functionally identical to the wild type. Gene 1994; 149:227-35. [PMID: 7958995 DOI: 10.1016/0378-1119(94)90154-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Variation in the number of gene copies can play a major role in changing the coding capacities of eukaryotic genomes. Different mechanisms, such as unequal recombination or transposon-induced chromosome rearrangements, are believed to be responsible for these events. We have used the direct tandem duplication at the complex locus polyhomeotic (ph) of Drosophila melanogaster as a model system to study functional redundancy associated with chromosomal rearrangements, such as duplications or deletions. The locus covers 28.6 kb and comprises two independent units, ph proximal and ph distal, which are not only similar on the molecular level, but appear to be functionally redundant [Dura et al., Cell 51 (1987) 829-839; Deatrick et al., Gene 105 (1991) 185-195]. We present a molecular and phenotypic analysis of two hypomorphic ph mutants, ph2 and ph4, induced during hybrid dysgenesis. Each corresponds to an internal deletion in the ph locus that overlaps both transcription units. We show that the deletions are likely due to a P/M hybrid dysgenesis-induced rearrangement between proximal and distal ph, that created a single new chimerical ph gene. At least one of the breakpoints must be located in a 1247-bp region that is rich in single sequence, and 100% identical between proximal and distal ph. Junction points between units are in the protein-coding regions, but could not be exactly localized on the genomic sequence of either mutant, because of the precise molecular mechanism that caused the deletions. Protein products of the hybrid genes contain the same functional domains as either wild-type (wt) product.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- O Saget
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
62
|
Kotani H, Sekiguchi JM, Dutta S, Kmiec EB. Genetic recombination of nucleosomal templates is mediated by transcription. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:410-9. [PMID: 8078467 DOI: 10.1007/bf00286693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An in vitro system has been developed to examine the influence of transcription on genetic rearrangement. Using a homologous pairing assay, the transfer of one strand of a nucleosomal template onto a recipient DNA molecule was monitored as a function of RNA polymerase activity. Transcriptionally inactive nucleosomal DNA was refractory to homologous pairing. Homologous pairing was catalyzed, however, by the eukaryotic recombinase, rec1, when the nucleosomal template was being transcribed. The reaction was found to be dependent on the presence of rec1, RNA polymerase, NTPs and RNA synthesis. Heteroduplex formation between a short DNA duplex fragment assembled into a nucleosome and a single-stranded circle relied also on the presence of sequence homology between the duplex and the circle. The results of this study lend support to the notion that transcriptionally active regions within a chromosome are more apt to serve as sites of genetic recombination.
Collapse
Affiliation(s)
- H Kotani
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | |
Collapse
|
63
|
Murti JR, Bumbulis M, Schimenti JC. Gene conversion between unlinked sequences in the germline of mice. Genetics 1994; 137:837-43. [PMID: 8088528 PMCID: PMC1206043 DOI: 10.1093/genetics/137.3.837] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gene conversion between homologous sequences on non-homologous chromosomes (ectopic gene conversion) is remarkably frequent in fungi. It is thought to be a consequence of genome-wide homology scanning required to form synapses between homologous chromosomes. This activity provides a mechanism for concerted evolution of dispersed genes. Technical obstacles associated with mammalian systems have hitherto precluded investigations into ectopic gene conversion in the mammals. Here, we describe a binary transgenic mouse system to detect ectopic gene conversion in mice. Conversion events are visualized by histochemical staining of spermatids, and corroborated by polymerase chain reaction amplification of transgenes in spermatozoa. The results show that conversion between unliked, hemizygous lacZ transgenes is frequent in the male germline, ranging from 0.1 to 0.7% of spermatids. Genomic location may affect the susceptibility to recombination, since the frequency varied between lines. The results suggest that homologous genes can undergo concerted evolution despite being genomically dispersed. However, mechanisms may exist to modulate this activity, enabling the divergence of duplicated genes.
Collapse
Affiliation(s)
- J R Murti
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | |
Collapse
|