51
|
RMI1 promotes DNA replication fork progression and recovery from replication fork stress. Mol Cell Biol 2012; 32:3054-64. [PMID: 22645306 DOI: 10.1128/mcb.00255-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RMI1 is a member of an evolutionarily conserved complex composed of BLM and topoisomerase IIIα (TopoIIIα). This complex exhibits strand passage activity in vitro, which is likely important for DNA repair and DNA replication in vivo. The inactivation of RMI1 causes genome instability, including elevated levels of sister chromatid exchange and accelerated tumorigenesis. Using molecular combing to analyze DNA replication at the single-molecule level, we show that RMI1 is required to promote normal replication fork progression. The fork progression defect in RMI1-depleted cells is alleviated in cells lacking BLM, indicating that RMI1 functions downstream of BLM in promoting replication elongation. RMI1 localizes to subnuclear foci with BLM and TopoIIIα in response to replication stress. The proper localization of the complex requires a BLM-TopoIIIα-RMI1 interaction and is essential for RMI1 to promote recovery from replication stress. These findings reveal direct roles of RMI1 in DNA replication and the replication stress response, which could explain the molecular basis for its involvement in suppressing sister chromatid exchange and tumorigenesis.
Collapse
|
52
|
George CM, Alani E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit Rev Biochem Mol Biol 2012; 47:297-313. [PMID: 22494239 PMCID: PMC3337352 DOI: 10.3109/10409238.2012.675644] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.
Collapse
Affiliation(s)
- Carolyn M George
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | |
Collapse
|
53
|
Patro BS, Frøhlich R, Bohr VA, Stevnsner T. WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes. J Cell Sci 2011; 124:3967-79. [PMID: 22159421 DOI: 10.1242/jcs.081372] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Checkpoints are cellular surveillance and signaling pathways that coordinate the response to DNA damage and replicative stress. Consequently, failure of cellular checkpoints increases susceptibility to DNA damage and can lead to profound genome instability. This study examines the role of a human RECQ helicase, WRN, in checkpoint activation in response to DNA damage. Mutations in WRN lead to genomic instability and the premature aging condition Werner syndrome. Here, the role of WRN in a DNA-damage-induced checkpoint was analyzed in U-2 OS (WRN wild type) and isogenic cells stably expressing WRN-targeted shRNA (WRN knockdown). The results of our studies suggest that WRN has a crucial role in inducing an S-phase checkpoint in cells exposed to the topoisomerase I inhibitor campthothecin (CPT), but not in cells exposed to hydroxyurea. Intriguingly, WRN decreases the rate of replication fork elongation, increases the accumulation of ssDNA and stimulates phosphorylation of CHK1, which releases CHK1 from chromatin in CPT-treated cells. Importantly, knockdown of WRN expression abolished or delayed all these processes in response to CPT. Together, our results strongly suggest an essential regulatory role for WRN in controlling the ATR-CHK1-mediated S-phase checkpoint in CPT-treated cells.
Collapse
Affiliation(s)
- Birija Sankar Patro
- Department of Molecular Biology, University of Aarhus, C. F. Mollers Alle 3, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
54
|
Doerfler L, Harris L, Viebranz E, Schmidt KH. Differential genetic interactions between Sgs1, DNA-damage checkpoint components and DNA repair factors in the maintenance of chromosome stability. Genome Integr 2011; 2:8. [PMID: 22040455 PMCID: PMC3231943 DOI: 10.1186/2041-9414-2-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022] Open
Abstract
Background Genome instability is associated with human cancers and chromosome breakage syndromes, including Bloom's syndrome, caused by inactivation of BLM helicase. Numerous mutations that lead to genome instability are known, yet how they interact genetically is poorly understood. Results We show that spontaneous translocations that arise by nonallelic homologous recombination in DNA-damage-checkpoint-defective yeast lacking the BLM-related Sgs1 helicase (sgs1Δ mec3Δ) are inhibited if cells lack Mec1/ATR kinase. Tel1/ATM, in contrast, acts as a suppressor independently of Mec3 and Sgs1. Translocations are also inhibited in cells lacking Dun1 kinase, but not in cells defective in a parallel checkpoint branch defined by Chk1 kinase. While we had previously shown that RAD51 deletion did not inhibit translocation formation, RAD59 deletion led to inhibition comparable to the rad52Δ mutation. A candidate screen of other DNA metabolic factors identified Exo1 as a strong suppressor of chromosomal rearrangements in the sgs1Δ mutant, becoming even more important for chromosomal stability upon MEC3 deletion. We determined that the C-terminal third of Exo1, harboring mismatch repair protein binding sites and phosphorylation sites, is dispensable for Exo1's roles in chromosomal rearrangement suppression, mutation avoidance and resistance to DNA-damaging agents. Conclusions Our findings suggest that translocations between related genes can form by Rad59-dependent, Rad51-independent homologous recombination, which is independently suppressed by Sgs1, Tel1, Mec3 and Exo1 but promoted by Dun1 and the telomerase-inhibitor Mec1. We propose a model for the functional interaction between mitotic recombination and the DNA-damage checkpoint in the suppression of chromosomal rearrangements in sgs1Δ cells.
Collapse
Affiliation(s)
- Lillian Doerfler
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Lorena Harris
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Emilie Viebranz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
55
|
Identification of Trypanosoma brucei RMI1/BLAP75 homologue and its roles in antigenic variation. PLoS One 2011; 6:e25313. [PMID: 21980422 PMCID: PMC3182221 DOI: 10.1371/journal.pone.0025313] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/31/2011] [Indexed: 11/30/2022] Open
Abstract
At any time, each cell of the protozoan parasite Trypanosoma brucei expresses a single species of its major antigenic protein, the variant surface glycoprotein (VSG), from a repertoire of >2,000 VSG genes and pseudogenes. The potential to express different VSGs by transcription and recombination allows the parasite to escape the antibody-mediated host immune response, a mechanism known as antigenic variation. The active VSG is transcribed from a sub-telomeric polycistronic unit called the expression site (ES), whose promoter is 40–60 kb upstream of the VSG. While the mechanisms that initiate recombination remain unclear, the resolution phase of these reactions results in the recombinational replacement of the expressed VSG with a donor from one of three distinct chromosomal locations; sub-telomeric loci on the 11 essential chromosomes, on minichromosomes, or at telomere-distal loci. Depending on the type of recombinational replacement (single or double crossover, duplicative gene conversion, etc), several DNA-repair pathways have been thought to play a role. Here we show that VSG recombination relies on at least two distinct DNA-repair pathways, one of which requires RMI1-TOPO3α to suppress recombination and one that is dependent on RAD51 and RMI1. These genetic interactions suggest that both RAD51-dependent and RAD51-independent recombination pathways operate in antigenic switching and that trypanosomes differentially utilize recombination factors for VSG switching, depending on currently unknown parameters within the ES.
Collapse
|
56
|
Ii M, Ii T, Mironova LI, Brill SJ. Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mutat Res 2011; 714:33-43. [PMID: 21741981 PMCID: PMC3162113 DOI: 10.1016/j.mrfmmm.2011.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022]
Abstract
The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.
Collapse
Affiliation(s)
- Miki Ii
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| | | | | | | |
Collapse
|
57
|
Cal-Bakowska M, Litwin I, Bocer T, Wysocki R, Dziadkowiec D. The Swi2-Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Res 2011; 39:8765-77. [PMID: 21764775 PMCID: PMC3203583 DOI: 10.1093/nar/gkr587] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Saccharomyces cerevisiae Uls1 belongs to the Swi2–Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here, we examine a physiological role of Uls1 and report for the first time its involvement in response to replication stress. We found that deletion of ULS1 in cells lacking RAD52 caused a synthetic growth defect accompanied by prolonged S phase and aberrant cell morphology. uls1Δ also progressed slower through S phase upon MMS treatment and took longer to resolve replication intermediates during recovery. This suggests an important function for Uls1 during replication stress. Consistently, cells lacking Uls1 and endonuclease Mus81 were more sensitive to HU, MMS and CPT than single mus81Δ. Interestingly, deletion of ULS1 attenuated replication stress-related defects in sgs1Δ, such as sensitivity to HU and MMS while increasing the level of PCNA ubiquitination and Rad53 phosphorylation. Importantly, Uls1 interactions with Mus81 and Sgs1 were dependent on its helicase domain. We propose that Uls1 directs a subset of DNA structures arising during replication into the Sgs1-dependent pathway facilitating S phase progression. Thus, in the absence of Uls1 other modes of replication fork processing and repair are employed.
Collapse
Affiliation(s)
- Magdalena Cal-Bakowska
- Institute of Plant Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | | | | | | | | |
Collapse
|
58
|
Smith JS, Chen Q, Yatsunyk LA, Nicoludis JM, Garcia MS, Kranaster R, Balasubramanian S, Monchaud D, Teulade-Fichou MP, Abramowitz L, Schultz DC, Johnson FB. Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat Struct Mol Biol 2011. [PMID: 21399640 DOI: 10.1038/nsmb.2033.rudimentary] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3' overhang inhibits 5'→3' resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo.
Collapse
Affiliation(s)
- Jasmine S Smith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Smith JS, Chen Q, Yatsunyk LA, Nicoludis JM, Garcia MS, Kranaster R, Balasubramanian S, Monchaud D, Teulade-Fichou MP, Abramowitz L, Schultz DC, Johnson FB. Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat Struct Mol Biol 2011; 18:478-85. [PMID: 21399640 PMCID: PMC3119813 DOI: 10.1038/nsmb.2033] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 12/29/2010] [Indexed: 11/08/2022]
Abstract
Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3' overhang inhibits 5'→3' resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo.
Collapse
Affiliation(s)
- Jasmine S Smith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage. Proc Natl Acad Sci U S A 2011; 108:4944-9. [PMID: 21383164 DOI: 10.1073/pnas.1014240108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase.
Collapse
|
61
|
Knoll A, Puchta H. The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1565-79. [PMID: 21081662 DOI: 10.1093/jxb/erq357] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms. As homologous recombination occurs in somatic and meiotic cells, the same proteins may participate in both processes, albeit not necessarily with identical functions. DNA helicases involved in genome stability and meiotic recombination are the focus of this review. The role of these enzymes and their characterized interaction partners in plants will be summarized. Although most factors are conserved in eukaryotes, plant-specific features are becoming apparent. In the RecQ helicase family, Arabidopsis thaliana RECQ4A has been shown before to be the functional homologue of the well-researched baker's yeast Sgs1 and human BLM proteins. It was surprising to find that its interaction partners AtRMI1 and AtTOP3α are absolutely essential for meiotic recombination in plants, where they are central factors of a formerly underappreciated dissolution step of recombination intermediates. In the expanding group of anti-recombinases, future analysis of plant helicases is especially promising. While no FBH1 homologue is present, the Arabidopsis genome contains homologues of both SRS2 and RTEL1. Yeast and mammals, on the other hand. only possess homologues of either one or the other of these helicases. Plants also contain several other classes of helicases that are known from other organisms to be involved in the preservation of genome stability: FANCM is conserved with parts of the human Fanconi anaemia proteins, as are homologues of the Swi2/Snf2 family and of PIF1.
Collapse
Affiliation(s)
- Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
62
|
Higgins JD, Ferdous M, Osman K, Franklin FCH. The RecQ helicase AtRECQ4A is required to remove inter-chromosomal telomeric connections that arise during meiotic recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:492-502. [PMID: 21265901 DOI: 10.1111/j.1365-313x.2010.04438.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RecQ helicases are a conserved group of proteins with a role in the maintenance of genome integrity. In Saccharomyces cerevisiae (budding yeast), meiotic recombination is increased in the absence of the RecQ helicase Sgs1. Here we investigated the potential meiotic role of the Sgs1 homologue AtRECQ4A and the closely related AtRECQ4B. Both proteins have been shown to function during recombination in somatic cells, but so far their meiotic role has not been investigated. Both AtRECQ4A and AtRECQ4B were expressed in reproductive tissues. Although immunolocalization studies showed that AtRECQ4A associates with recombination intermediates, we found no evidence that its loss or that of AtRECQ4B had a significant effect on meiotic cross-overs, suggesting functional redundancy with other RECQ family members. Nevertheless, pollen viability decreased in Atrecq4A, resulting in a reduction in fertility, although this was not the case in Atrecq4B. Cytological analysis revealed chromatin bridges between the telomeres of non-homologous chromosomes in Atrecq4A at metaphase I, in some instances accompanied by chromosome fragmentation at anaphase I. The bridges required telomeric repeats and were dependent on meiotic recombination. Immunolocalization confirmed the association of AtRECQ4A with the telomeres during prophase I, which we propose enables dissolution of recombination-dependent telomeric associations. Thus, this study has identified a hitherto unknown role for a member of the RECQ helicase family during meiosis that contributes to the maintenance of chromosome integrity. As telomere structure is generally conserved, it seems likely that these associations may arise during meiosis in other species, where they must also be removed.
Collapse
Affiliation(s)
- James D Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
63
|
Abstract
The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.
Collapse
Affiliation(s)
- Kara A Bernstein
- Columbia University Medical Center, Department of Genetics & Development, New York, New York 10032, USA.
| | | | | |
Collapse
|
64
|
Russell B, Bhattacharyya S, Keirsey J, Sandy A, Grierson P, Perchiniak E, Kavecansky J, Acharya S, Groden J. Chromosome breakage is regulated by the interaction of the BLM helicase and topoisomerase IIalpha. Cancer Res 2011; 71:561-71. [PMID: 21224348 DOI: 10.1158/0008-5472.can-10-1727] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cells deficient in the recQ-like helicase BLM are characterized by chromosome changes that suggest the disruption of normal mechanisms needed to resolve recombination intermediates and to maintain chromosome stability. Human BLM and topoisomerase IIα interact directly via amino acids 489-587 of BLM and colocalize predominantly in late G2 and M phases of the cell cycle. Deletion of this region does not affect the inherent in vitro helicase activity of BLM but inhibits the topoisomerase IIα-dependent enhancement of its activity, based on the analysis of specific DNA substrates that represent some recombination intermediates. Deletion of the interaction domain from BLM fails to correct the elevated chromosome breakage of transfected BLM-deficient cells. Our results demonstrate that the BLM-topoisomerase IIα interaction is important for preventing chromosome breakage and elucidate a DNA repair mechanism that is critical to maintain chromosome stability in cells and to prevent tumor formation.
Collapse
Affiliation(s)
- Beatriz Russell
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2011; 4:118-37. [PMID: 21509200 PMCID: PMC3073292 DOI: 10.4161/cib.4.1.13844] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 12/20/2022] Open
Abstract
Helicases are motor proteins that catalyze the unwinding of duplex nucleic acids in an ATP-dependent manner. They are involved in almost all the nucleic acid transactions. In the present study, we report a comprehensive analysis of helicase gene family in human and its comparison with homologs in model organisms. The human genome encodes for 95 non-redundant helicase proteins, of which 64 are RNA helicases and 31 are DNA helicases. 57 RNA helicases are validated based on annotations and occurrence of conserved helicase signature motifs. These include 14 DExH and 37 DExD subfamily members, six other members such as U5.snRNP, ATR-X, Suv3, FANCJ, and two of superkiller viralicidic activity 2-like helicases. 31 DNA helicases are also identified, which include RecQ, MCM and RuvB-like helicases. Finding a set of helicases in human and almost similar sequences in model organisms suggests that the "core" members of helicase gene family are highly conserved throughout evolution. The present study gives an overview of members of RNA and DNA helicases encoded by the human genome along with their conserved motifs, phylogeny and homologs in model organisms. The study on comparing these homologs will spread light on the organization and complexity of helicase gene family in model organisms. The comprehensive analysis of human helicases presented in this study will further provide an invaluable resource for elaborate biological research on these helicases.
Collapse
Affiliation(s)
- Pavan Umate
- International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | | | | |
Collapse
|
66
|
The adenovirus E1b55K/E4orf6 complex induces degradation of the Bloom helicase during infection. J Virol 2010; 85:1887-92. [PMID: 21123383 DOI: 10.1128/jvi.02134-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The adenovirus (Ad) E1b55K and E4orf6 gene products assemble an E3 ubiquitin ligase complex that promotes degradation of cellular proteins. Among the known substrates are p53 and the Mre11-Rad50-Nbs1 (MRN) complex. Since members of the RecQ helicase family function together with MRN in genome maintenance, we investigated whether adenovirus affects RecQ proteins. We show that Bloom helicase (BLM) is degraded during adenovirus type 5 (Ad5) infection. BLM degradation is mediated by E1b55K/E4orf6 but is independent of MRN. We detected BLM localized at discrete foci around viral replication centers. These studies identify BLM as a new substrate for degradation by the adenovirus E1b55K/E4orf6 complex.
Collapse
|
67
|
Amin AD, Chaix ABH, Mason RP, Badge RM, Borts RH. The roles of the Saccharomyces cerevisiae RecQ helicase SGS1 in meiotic genome surveillance. PLoS One 2010; 5:e15380. [PMID: 21085703 PMCID: PMC2976770 DOI: 10.1371/journal.pone.0015380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/01/2010] [Indexed: 11/24/2022] Open
Abstract
Background The Saccharomyces cerevisiae RecQ helicase Sgs1 is essential for mitotic and meiotic genome stability. The stage at which Sgs1 acts during meiosis is subject to debate. Cytological experiments showed that a deletion of SGS1 leads to an increase in synapsis initiation complexes and axial associations leading to the proposal that it has an early role in unwinding surplus strand invasion events. Physical studies of recombination intermediates implicate it in the dissolution of double Holliday junctions between sister chromatids. Methodology/Principal Findings In this work, we observed an increase in meiotic recombination between diverged sequences (homeologous recombination) and an increase in unequal sister chromatid events when SGS1 is deleted. The first of these observations is most consistent with an early role of Sgs1 in unwinding inappropriate strand invasion events while the second is consistent with unwinding or dissolution of recombination intermediates in an Mlh1- and Top3-dependent manner. We also provide data that suggest that Sgs1 is involved in the rejection of ‘second strand capture’ when sequence divergence is present. Finally, we have identified a novel class of tetrads where non-sister spores (pairs of spores where each contains a centromere marker from a different parent) are inviable. We propose a model for this unusual pattern of viability based on the inability of sgs1 mutants to untangle intertwined chromosomes. Our data suggest that this role of Sgs1 is not dependent on its interaction with Top3. We propose that in the absence of SGS1 chromosomes may sometimes remain entangled at the end of pre-meiotic replication. This, combined with reciprocal crossing over, could lead to physical destruction of the recombined and entangled chromosomes. We hypothesise that Sgs1, acting in concert with the topoisomerase Top2, resolves these structures. Conclusions This work provides evidence that Sgs1 interacts with various partner proteins to maintain genome stability throughout meiosis.
Collapse
Affiliation(s)
- Amit Dipak Amin
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Robert P. Mason
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Richard M. Badge
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Rhona H. Borts
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
68
|
Xu D, Muniandy P, Leo E, Yin J, Thangavel S, Shen X, Ii M, Agama K, Guo R, Fox D, Meetei AR, Wilson L, Nguyen H, Weng NP, Brill SJ, Li L, Vindigni A, Pommier Y, Seidman M, Wang W. Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J 2010; 29:3140-55. [PMID: 20711169 PMCID: PMC2944062 DOI: 10.1038/emboj.2010.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/13/2010] [Indexed: 11/08/2022] Open
Abstract
BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C-terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM-deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA-binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA-binding interface for the BLM complex to restart stalled replication forks.
Collapse
Affiliation(s)
- Dongyi Xu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Parameswary Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Elisabetta Leo
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinhu Yin
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Xi Shen
- Departments of Experimental Radiation Oncology and Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miki Ii
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rong Guo
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - David Fox
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Amom Ruhikanta Meetei
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lauren Wilson
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Huy Nguyen
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nan-ping Weng
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Steven J Brill
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Lei Li
- Departments of Experimental Radiation Oncology and Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandro Vindigni
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
69
|
Rahn JJ, Lowery MP, Della-Coletta L, Adair GM, Nairn RS. Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes. Mech Ageing Dev 2010; 131:562-73. [PMID: 20708636 PMCID: PMC2949496 DOI: 10.1016/j.mad.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 08/03/2010] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination. We constructed Chinese hamster ovary (CHO) cell lines isogenic with the cell lines used in these previous studies by depleting WRN using shRNA vectors. When intrachromosomal, mitotic recombination was assayed in WRN-depleted CHO cells, a hyperrecombination phenotype was observed, and a small number of aberrant recombinants were generated. Targeted homologous recombination was also examined in WRN-depleted CHO cells using a plasmid-chromosome targeting assay. In these experiments, loss of WRN resulted in a significant decrease in nonhomologous integration events and ablation of recombinants that required random integration of the corrected targeting vector. Aberrant recombinants were also recovered, but only from WRN-depleted cells. The pleiotropic recombination phenotypes conferred by WRN depletion, reflected in distinct homologous and nonhomologous recombination pathways, suggest a role for WRN in processing specific types of homologous recombination intermediates as well as an important function in nonhomologous recombination.
Collapse
Affiliation(s)
- Jennifer J. Rahn
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
| | - Megan P. Lowery
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
| | - Luis Della-Coletta
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
| | - Gerald M. Adair
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
| | - Rodney S. Nairn
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
- University of Texas Graduate School of Biomedical Sciences at Houston, P.O. Box 20334, Houston TX 77225
| |
Collapse
|
70
|
Kang MJ, Lee CH, Kang YH, Cho IT, Nguyen TA, Seo YS. Genetic and functional interactions between Mus81-Mms4 and Rad27. Nucleic Acids Res 2010; 38:7611-25. [PMID: 20660481 PMCID: PMC2995070 DOI: 10.1093/nar/gkq651] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The two endonucleases, Rad27 (yeast Fen1) and Dna2, jointly participate in the processing of Okazaki fragments in yeasts. Mus81–Mms4 is a structure-specific endonuclease that can resolve stalled replication forks as well as toxic recombination intermediates. In this study, we show that Mus81–Mms4 can suppress dna2 mutational defects by virtue of its functional and physical interaction with Rad27. Mus81–Mms4 stimulated Rad27 activity significantly, accounting for its ability to restore the growth defects caused by the dna2 mutation. Interestingly, Rad27 stimulated the rate of Mus81–Mms4 catalyzed cleavage of various substrates, including regressed replication fork substrates. The ability of Rad27 to stimulate Mus81–Mms4 did not depend on the catalytic activity of Rad27, but required the C-terminal 64 amino acid fragment of Rad27. This indicates that the stimulation was mediated by a specific protein–protein interaction between the two proteins. Our in vitro data indicate that Mus81–Mms4 and Rad27 act together during DNA replication and resolve various structures that can impede normal DNA replication. This conclusion was further strengthened by the fact that rad27 mus81 or rad27 mms4 double mutants were synergistically lethal. We discuss the significance of the interactions between Rad27, Dna2 and Mus81–Mms4 in context of DNA replication.
Collapse
Affiliation(s)
- Min-Jung Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | |
Collapse
|
71
|
TOPO3alpha influences antigenic variation by monitoring expression-site-associated VSG switching in Trypanosoma brucei. PLoS Pathog 2010; 6:e1000992. [PMID: 20628569 PMCID: PMC2900300 DOI: 10.1371/journal.ppat.1000992] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 06/08/2010] [Indexed: 12/24/2022] Open
Abstract
Homologous recombination (HR) mediates one of the major mechanisms of trypanosome antigenic variation by placing a different variant surface glycoprotein (VSG) gene under the control of the active expression site (ES). It is believed that the majority of VSG switching events occur by duplicative gene conversion, but only a few DNA repair genes that are central to HR have been assigned a role in this process. Gene conversion events that are associated with crossover are rarely seen in VSG switching, similar to mitotic HR. In other organisms, TOPO3alpha (Top3 in yeasts), a type IA topoisomerase, is part of a complex that is involved in the suppression of crossovers. We therefore asked whether a related mechanism might suppress VSG recombination. Using a set of reliable recombination and switching assays that could score individual switching mechanisms, we discovered that TOPO3alpha function is conserved in Trypanosoma brucei and that TOPO3alpha plays a critical role in antigenic switching. Switching frequency increased 10-40-fold in the absence of TOPO3alpha and this hyper-switching phenotype required RAD51. Moreover, the preference of 70-bp repeats for VSG recombination was mitigated, while homology regions elsewhere in ES were highly favored, in the absence of TOPO3alpha. Our data suggest that TOPO3alpha may remove undesirable recombination intermediates constantly arising between active and silent ESs, thereby balancing ES integrity against VSG recombination.
Collapse
|
72
|
DNA ligase 4 stabilizes the ribosomal DNA array upon fork collapse at the replication fork barrier. DNA Repair (Amst) 2010; 9:879-88. [PMID: 20541983 DOI: 10.1016/j.dnarep.2010.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/11/2010] [Accepted: 05/19/2010] [Indexed: 01/25/2023]
Abstract
DNA double-strand breaks (DSB) were shown to occur at the replication fork barrier in the ribosomal DNA of Saccharomyces cerevisiae using 2D-gel electrophoresis. Their origin, nature and magnitude, however, have remained elusive. We quantified these DSBs and show that a surprising 14% of replicating ribosomal DNA molecules are broken at the replication fork barrier in replicating wild-type cells. This translates into an estimated steady-state level of 7-10 DSBs per cell during S-phase. Importantly, breaks detectable in wild-type and sgs1 mutant cells differ from each other in terms of origin and repair. Breaks in wild-type, which were previously reported as DSBs, are likely an artefactual consequence of nicks nearby the rRFB. Sgs1 deficient cells, in which replication fork stability is compromised, reveal a class of DSBs that are detectable only in the presence of functional Dnl4. Under these conditions, Dnl4 also limits the formation of extrachromosomal ribosomal DNA circles. Consistently, dnl4 cells displayed altered fork structures at the replication fork barrier, leading us to propose an as yet unrecognized role for Dnl4 in the maintenance of ribosomal DNA stability.
Collapse
|
73
|
Mechanisms of recombination between diverged sequences in wild-type and BLM-deficient mouse and human cells. Mol Cell Biol 2010; 30:1887-97. [PMID: 20154148 DOI: 10.1128/mcb.01553-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Double-strand breaks (DSBs) are particularly deleterious DNA lesions for which cells have developed multiple mechanisms of repair. One major mechanism of DSB repair in mammalian cells is homologous recombination (HR), whereby a homologous donor sequence is used as a template for repair. For this reason, HR repair of DSBs is also being exploited for gene modification in possible therapeutic approaches. HR is sensitive to sequence divergence, such that the cell has developed ways to suppress recombination between diverged ("homeologous") sequences. In this report, we have examined several aspects of HR between homeologous sequences in mouse and human cells. We found that gene conversion tracts are similar for mouse and human cells and are generally < or =100 bp, even in Msh2(-)(/)(-) cells which fail to suppress homeologous recombination. Gene conversion tracts are mostly unidirectional, with no observed mutations. Additionally, no alterations were observed in the donor sequences. While both mouse and human cells suppress homeologous recombination, the suppression is substantially less in the transformed human cells, despite similarities in the gene conversion tracts. BLM-deficient mouse and human cells suppress homeologous recombination to a similar extent as wild-type cells, unlike Sgs1-deficient Saccharomyces cerevisiae.
Collapse
|
74
|
Abstract
Mutations in the highly conserved RecQ helicase, BLM, cause the rare cancer predisposition disorder, Bloom's syndrome. The orthologues of BLM in Saccharomyces cerevisiae and Schizosaccharomyces pombe are SGS1 and rqh1(+), respectively. Studies in these yeast species have revealed a plethora of roles for the Sgs1 and Rqh1 proteins in repair of double strand breaks, restart of stalled replication forks, processing of aberrant intermediates that arise during meiotic recombination, and maintenance of telomeres. In this review, we focus on the known roles of Sgs1 and Rqh1 and how studies in yeast species have improved our knowledge of how BLM suppresses neoplastic transformation.
Collapse
Affiliation(s)
- Thomas M Ashton
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
75
|
Lu CY, Tsai CH, Brill SJ, Teng SC. Sumoylation of the BLM ortholog, Sgs1, promotes telomere-telomere recombination in budding yeast. Nucleic Acids Res 2009; 38:488-98. [PMID: 19906698 PMCID: PMC2810998 DOI: 10.1093/nar/gkp1008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BLM and WRN are members of the RecQ family of DNA helicases, and in humans their loss is associated with syndromes characterized by genome instability and cancer predisposition. As the only RecQ DNA helicase in the yeast Saccharomyces cerevisiae, Sgs1 is known to safeguard genome integrity through its role in DNA recombination. Interestingly, WRN, BLM and Sgs1 are all known to be modified by the small ubiquitin-related modifier (SUMO), although the significance of this posttranslational modification remains elusive. Here, we demonstrate that Sgs1 is specifically sumoylated under the stress of DNA double strand breaks. The major SUMO attachment site in Sgs1 is lysine 621, which lies between the Top3 binding domain and the DNA helicase domain. Surprisingly, sumoylation of K621 was found to be uniquely required for Sgs1's role in telomere-telomere recombination. In contrast, sumoylation was dispensable for Sgs1's roles in DNA damage tolerance, supppression of direct repeat and rDNA recombination, and promotion of top3Delta slow growth. Our results demonstrate that although modification by SUMO is a conserved feature of RecQ family DNA helicases, the major sites of modification are located on different domains of the protein in different organisms. We suggest that sumoylation of different domains of RecQ DNA helicases from different organisms contributes to conserved roles in regulating telomeric recombination.
Collapse
Affiliation(s)
- Chia-Yin Lu
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
76
|
Westmoreland J, Ma W, Yan Y, Van Hulle K, Malkova A, Resnick MA. RAD50 is required for efficient initiation of resection and recombinational repair at random, gamma-induced double-strand break ends. PLoS Genet 2009; 5:e1000656. [PMID: 19763170 PMCID: PMC2734177 DOI: 10.1371/journal.pgen.1000656] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 08/19/2009] [Indexed: 11/19/2022] Open
Abstract
Resection of DNA double-strand break (DSB) ends is generally considered a critical determinant in pathways of DSB repair and genome stability. Unlike for enzymatically induced site-specific DSBs, little is known about processing of random “dirty-ended” DSBs created by DNA damaging agents such as ionizing radiation. Here we present a novel system for monitoring early events in the repair of random DSBs, based on our finding that single-strand tails generated by resection at the ends of large molecules in budding yeast decreases mobility during pulsed field gel electrophoresis (PFGE). We utilized this “PFGE-shift” to follow the fate of both ends of linear molecules generated by a single random DSB in circular chromosomes. Within 10 min after γ-irradiation of G2/M arrested WT cells, there is a near-synchronous PFGE-shift of the linearized circular molecules, corresponding to resection of a few hundred bases. Resection at the radiation-induced DSBs continues so that by the time of significant repair of DSBs at 1 hr there is about 1–2 kb resection per DSB end. The PFGE-shift is comparable in WT and recombination-defective rad52 and rad51 strains but somewhat delayed in exo1 mutants. However, in rad50 and mre11 null mutants the initiation and generation of resected ends at radiation-induced DSB ends is greatly reduced in G2/M. Thus, the Rad50/Mre11/Xrs2 complex is responsible for rapid processing of most damaged ends into substrates that subsequently undergo recombinational repair. A similar requirement was found for RAD50 in asynchronously growing cells. Among the few molecules exhibiting shift in the rad50 mutant, the residual resection is consistent with resection at only one of the DSB ends. Surprisingly, within 1 hr after irradiation, double-length linear molecules are detected in the WT and rad50, but not in rad52, strains that are likely due to crossovers that are largely resection- and RAD50-independent. Double-strand breaks (DSBs) in chromosomal DNA are common sources of genomic change that may be beneficial or deleterious to an organism, from yeast to humans. While they can arise through programmed cellular events, DSBs are frequently associated with defective chromosomal replication, and they are induced by various types of DNA damaging agents such as those employed in cancer therapy, especially ionizing radiation. Elaborate systems have evolved for DSB recognition and subsequent repair, either by homologous recombination or by direct joining of ends. Although much is known about repair mechanisms associated with defined, artificially produced DSBs, there is a relative dearth of information about events surrounding random DSBs. Using a novel, yeast-based system that is applicable to other organisms, we have addressed resection at DSBs, considered a first step in repair. We provide the first direct evidence that cells possess a highly efficient system for recognition and initiation of resection at γ-radiation–induced dirty ends and that the resection is largely dependent on the Rad50/Mre11/Xrs2 complex, identified by the RAD50 gene. The system provides unique opportunities to address other components in resection and repair as well as to identify the contribution of random DSBs and resection to genome instability resulting from other DNA damaging agents.
Collapse
Affiliation(s)
- Jim Westmoreland
- Chromosome Stability Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Wenjian Ma
- Chromosome Stability Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Yan Yan
- Chromosome Stability Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Kelly Van Hulle
- Biology Department, Indiana University–Purdue University, Indianapolis, Indiana, United States of America
| | - Anna Malkova
- Biology Department, Indiana University–Purdue University, Indianapolis, Indiana, United States of America
| | - Michael A. Resnick
- Chromosome Stability Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
77
|
Abstract
Around 1% of the open reading frames in the human genome encode predicted DNA and RNA helicases. One highly conserved group of DNA helicases is the RecQ family. Genetic defects in three of the five human RecQ helicases, BLM, WRN and RECQ4, give rise to defined syndromes associated with cancer predisposition, some features of premature ageing and chromosomal instability. In recent years, there has been a tremendous advance in our understanding of the cellular functions of individual RecQ helicases. In this Review, we discuss how these proteins might suppress genomic rearrangements, and therefore function as 'caretaker' tumour suppressors.
Collapse
Affiliation(s)
- Wai Kit Chu
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
78
|
Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol Cell 2009; 35:82-92. [PMID: 19595718 PMCID: PMC2722067 DOI: 10.1016/j.molcel.2009.06.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/07/2009] [Accepted: 06/18/2009] [Indexed: 12/12/2022]
Abstract
Large-scale expansions of DNA repeats are implicated in numerous hereditary disorders in humans. We describe a yeast experimental system to analyze large-scale expansions of triplet GAA repeats responsible for the human disease Friedreich's ataxia. When GAA repeats were placed into an intron of the chimeric URA3 gene, their expansions caused gene inactivation, which was detected on the selective media. We found that the rates of expansions of GAA repeats increased exponentially with their lengths. These rates were only mildly dependent on the repeat's orientation within the replicon, whereas the repeat-mediated replication fork stalling was exquisitely orientation dependent. Expansion rates were significantly elevated upon inactivation of the replication fork stabilizers, Tof1 and Csm3, but decreased in the knockouts of postreplication DNA repair proteins, Rad6 and Rad5, and the DNA helicase Sgs1. We propose a model for large-scale repeat expansions based on template switching during replication fork progression through repetitive DNA.
Collapse
Affiliation(s)
| | - Irina Voineagu
- Department of Biology, Tufts University, Medford, MA 02155
| | - Robert Matera
- Department of Biology, Tufts University, Medford, MA 02155
| | - Nicole Cherng
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Vidhya Narayanan
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | |
Collapse
|
79
|
Mao N, Kojic M, Holloman WK. Role of Blm and collaborating factors in recombination and survival following replication stress in Ustilago maydis. DNA Repair (Amst) 2009; 8:752-9. [PMID: 19349216 PMCID: PMC2693308 DOI: 10.1016/j.dnarep.2009.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/16/2009] [Accepted: 02/06/2009] [Indexed: 11/20/2022]
Abstract
Inactivation of the structural gene for the RecQ family member, BLM in human, Sgs1 in budding yeast, or Rqh1 in fission yeast leads to inappropriate recombination, chromosome abnormalities, and disturbed replication fork progression. Studies with yeasts have demonstrated that auxiliary gene functions can contribute in overlapping ways with Sgs1 or Rqh1 to circumvent or overcome lesions in DNA caused by certain genotoxic agents. In the combined absence of these functions, recombination-mediated processes lead to severe loss of fitness. Here we performed a genetic study to determine the role of the Ustilago maydis Blm homolog in DNA repair and in alleviating replication stress. We characterized the single mutant as well as double mutants additionally deleted of genes encoding Srs2, Fbh1, Mus81, or Exo1. Unlike yeasts, neither the blm srs2, blm exo1, nor blm mus81 double mutant exhibited extreme loss of fitness. Inactivation of Brh2, the BRCA2 homolog, suppressed toxicity to hydroxyurea caused by loss of Blm function. However, differential suppression by Brh2 derivatives lacking the canonical DNA-binding region suggests that the particular domain structure comprising this DNA-binding region may be instrumental in promoting the observed hydroxyurea toxicity.
Collapse
Affiliation(s)
- Ninghui Mao
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, NY 10021
| | - Milorad Kojic
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, NY 10021
| | - William K. Holloman
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, NY 10021
| |
Collapse
|
80
|
Abstract
The six Saccharomyces cerevisiae SLX genes were identified in a screen for factors required for the viability of cells lacking Sgs1, a member of the RecQ helicase family involved in processing stalled replisomes and in the maintenance of genome stability. The six SLX gene products form three distinct heterodimeric complexes, and all three have catalytic activity. Slx3-Slx2 (also known as Mus81-Mms4) and Slx1-Slx4 are both heterodimeric endonucleases with a marked specificity for branched replication fork-like DNA species, whereas Slx5-Slx8 is a SUMO (small ubiquitin-related modifier)-targeted E3 ubiquitin ligase. All three complexes play important, but distinct, roles in different aspects of the cellular response to DNA damage and perturbed DNA replication. Slx4 interacts physically not only with Slx1, but also with Rad1-Rad10 [XPF (xeroderma pigmentosum complementation group F)-ERCC1 (excision repair cross-complementing 1) in humans], another structure-specific endonuclease that participates in the repair of UV-induced DNA damage and in a subpathway of recombinational DNA DSB (double-strand break) repair. Curiously, Slx4 is essential for repair of DSBs by Rad1-Rad10, but is not required for repair of UV damage. Slx4 also promotes cellular resistance to DNA-alkylating agents that block the progression of replisomes during DNA replication, by facilitating the error-free mode of lesion bypass. This does not require Slx1 or Rad1-Rad10, and so Slx4 has several distinct roles in protecting genome stability. In the present article, I provide an overview of our current understanding of the cellular roles of the Slx proteins, paying particular attention to the advances that have been made in understanding the cellular roles of Slx4. In particular, protein-protein interactions and underlying molecular mechanisms are discussed and I draw attention to the many questions that have yet to be answered.
Collapse
Affiliation(s)
- John Rouse
- MRC Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
81
|
Bhattacharyya S, Keirsey J, Russell B, Kavecansky J, Lillard-Wetherell K, Tahmaseb K, Turchi JJ, Groden J. Telomerase-associated protein 1, HSP90, and topoisomerase IIalpha associate directly with the BLM helicase in immortalized cells using ALT and modulate its helicase activity using telomeric DNA substrates. J Biol Chem 2009; 284:14966-77. [PMID: 19329795 PMCID: PMC2685679 DOI: 10.1074/jbc.m900195200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/13/2009] [Indexed: 11/06/2022] Open
Abstract
The BLM helicase associates with the telomere structural proteins TRF1 and TRF2 in immortalized cells using the alternative lengthening of telomere (ALT) pathways. This work focuses on identifying protein partners of BLM in cells using ALT. Mass spectrometry and immunoprecipitation techniques have identified three proteins that bind directly to BLM and TRF2 in ALT cells: telomerase-associated protein 1 (TEP1), heat shock protein 90 (HSP90), and topoisomerase IIalpha (TOPOIIalpha). BLM predominantly co-localizes with these proteins in foci actively synthesizing DNA during late S and G(2)/M phases of the cell cycle when ALT is thought to occur. Immunoprecipitation studies also indicate that only HSP90 and TOPOIIalpha are components of a specific complex containing BLM, TRF1, and TRF2 but that this complex does not include TEP1. TEP1, TOPOIIalpha, and HSP90 interact directly with BLM in vitro and modulate its helicase activity on telomere-like DNA substrates but not on non-telomeric substrates. Initial studies suggest that knockdown of BLM in ALT cells reduces average telomere length but does not do so in cells using telomerase.
Collapse
Affiliation(s)
- Saumitri Bhattacharyya
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Brady A, Maxwell K, Daniels N, Cowen LJ. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways. PLoS One 2009; 4:e5364. [PMID: 19399174 PMCID: PMC2670499 DOI: 10.1371/journal.pone.0005364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 03/24/2009] [Indexed: 11/18/2022] Open
Abstract
As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.
Collapse
Affiliation(s)
- Arthur Brady
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (AB); (LJC)
| | - Kyle Maxwell
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States of America
| | - Noah Daniels
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States of America
| | - Lenore J. Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States of America
- * E-mail: (AB); (LJC)
| |
Collapse
|
83
|
Bernstein KA, Shor E, Sunjevaric I, Fumasoni M, Burgess RC, Foiani M, Branzei D, Rothstein R. Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. EMBO J 2009; 28:915-25. [PMID: 19214189 DOI: 10.1038/emboj.2009.28] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/13/2009] [Indexed: 01/04/2023] Open
Abstract
Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund-Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation-of-function alleles of SGS1 that suppress the slow growth of top3Delta and rmi1Delta cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild-type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1-D664Delta, unlike sgs1Delta, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication-associated X-shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1-D664Delta allele exhibits increased spontaneous RPA foci, suggesting that the persistent X-structures may contain single-stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair.
Collapse
Affiliation(s)
- Kara A Bernstein
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Mankouri HW, Ngo HP, Hickson ID. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol Biol Cell 2009; 20:1683-94. [PMID: 19158388 DOI: 10.1091/mbc.e08-08-0877] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Esc2 is a member of the RENi family of SUMO-like domain proteins and is implicated in gene silencing in Saccharomyces cerevisiae. Here, we identify a dual role for Esc2 during S-phase in mediating both intra-S-phase DNA damage checkpoint signaling and preventing the accumulation of Rad51-dependent homologous recombination repair (HRR) intermediates. These roles are qualitatively similar to those of Sgs1, the yeast ortholog of the human Bloom's syndrome protein, BLM. However, whereas mutation of either ESC2 or SGS1 leads to the accumulation of unprocessed HRR intermediates in the presence of MMS, the accumulation of these structures in esc2 (but not sgs1) mutants is entirely dependent on Mph1, a protein that shows structural similarity to the Fanconi anemia group M protein (FANCM). In the absence of both Esc2 and Sgs1, the intra-S-phase DNA damage checkpoint response is compromised after exposure to MMS, and sgs1esc2 cells attempt to undergo mitosis with unprocessed HRR intermediates. We propose a model whereby Esc2 acts in an Mph1-dependent process, separately from Sgs1, to influence the repair/tolerance of MMS-induced lesions during S-phase.
Collapse
Affiliation(s)
- Hocine W Mankouri
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | |
Collapse
|
85
|
SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 2009; 16:159-67. [PMID: 19136956 DOI: 10.1038/nsmb.1544] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 12/04/2008] [Indexed: 01/30/2023]
Abstract
Several molecular mechanisms have been proposed to explain trinucleotide repeat expansions. Here we show that in yeast srs2Delta cells, CTG repeats undergo both expansions and contractions, and they show increased chromosomal fragility. Deletion of RAD52 or RAD51 suppresses these phenotypes, suggesting that recombination triggers trinucleotide repeat instability in srs2Delta cells. In sgs1Delta cells, CTG repeats undergo contractions and increased fragility by a mechanism partially dependent on RAD52 and RAD51. Analysis of replication intermediates revealed abundant joint molecules at the CTG repeats during S phase. These molecules migrate similarly to reversed replication forks, and their presence is dependent on SRS2 and SGS1 but not RAD51. Our results suggest that Srs2 promotes fork reversal in repetitive sequences, preventing repeat instability and fragility. In the absence of Srs2 or Sgs1, DNA damage accumulates and is processed by homologous recombination, triggering repeat rearrangements.
Collapse
|
86
|
Chelysheva L, Vezon D, Belcram K, Gendrot G, Grelon M. The Arabidopsis BLAP75/Rmi1 homologue plays crucial roles in meiotic double-strand break repair. PLoS Genet 2008; 4:e1000309. [PMID: 19096505 PMCID: PMC2588655 DOI: 10.1371/journal.pgen.1000309] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/14/2008] [Indexed: 11/19/2022] Open
Abstract
In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIalpha/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair -- that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent.
Collapse
Affiliation(s)
- Liudmila Chelysheva
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Daniel Vezon
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Katia Belcram
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Ghislaine Gendrot
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Mathilde Grelon
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
- * E-mail:
| |
Collapse
|
87
|
Abstract
Bloom's syndrome is caused by mutations in the BLM gene. The BLM gene product, BLM helicase, forms a complex with two other proteins, DNA topoisomerase IIIalpha and RMI1. In this issue of Genes & Development, Wang and colleagues (2843-2855) and Meetei and colleagues (2856-2868) report the discovery of a fourth component of this complex called RMI2. RMI2 may be a representative of a new family of OB-fold-containing proteins that are important for complex stabilization and checkpoint response.
Collapse
Affiliation(s)
- Yilun Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
88
|
Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 2008; 134:981-94. [PMID: 18805091 PMCID: PMC2662516 DOI: 10.1016/j.cell.2008.08.037] [Citation(s) in RCA: 850] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/30/2008] [Accepted: 08/27/2008] [Indexed: 01/25/2023]
Abstract
Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.
Collapse
Affiliation(s)
- Zhu Zhu
- Baylor College of Medicine, Department of Molecular & Human Genetics One Baylor Plaza, Houston, TX 77030
| | - Woo-Hyun Chung
- Baylor College of Medicine, Department of Molecular & Human Genetics One Baylor Plaza, Houston, TX 77030
| | - Eun Yong Shim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Sang Eun Lee
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Grzegorz Ira
- Baylor College of Medicine, Department of Molecular & Human Genetics One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
89
|
Lee JY, Mogen JL, Chavez A, Johnson FB. Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination. J Biol Chem 2008; 283:29847-58. [PMID: 18757364 DOI: 10.1074/jbc.m804760200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast telomerase mutants, the Sgs1 RecQ helicase slows the rate of senescence and also facilitates the appearance of certain types of survivors of critical telomere shortening via mechanisms dependent on Rad52-dependent homologous recombination (HR). Here we describe a third function for Sgs1 in telomerase-deficient cells, inhibition of survivors that grow independent of Rad52. Unlike tlc1 rad52 double mutants, which do not form survivors of telomere dysfunction, tlc1 rad52 sgs1 triple mutants readily generated survivors. After emerging from growth crisis, the triple mutants progressively lost telomeric and subtelomeric sequences, yet grew for more than 1 year. Analysis of cloned chromosome termini and of copy number changes of loci genome-wide using tiling arrays revealed terminal deletions extending up to 57 kb, as well as changes in Ty retrotransposon copy numbers. Amplification of the remaining terminal sequences generated large palindromes at some chromosome termini. Sgs1 helicase activity but not checkpoint function was essential for inhibiting the appearance of the survivors, and the continued absence of Sgs1 was required for the growth of the established survivors. Thus, in addition to facilitating the maintenance of telomere repeat sequences via HR-dependent mechanisms, a RecQ helicase can prevent the adoption of HR-independent mechanisms that stabilize chromosome termini without the use of natural telomere sequences. This provides a novel mechanism by which RecQ helicases may help maintain genome integrity and thus prevent age-related diseases and cancer.
Collapse
Affiliation(s)
- Julia Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
90
|
Jessop L, Lichten M. Mus81/Mms4 endonuclease and Sgs1 helicase collaborate to ensure proper recombination intermediate metabolism during meiosis. Mol Cell 2008; 31:313-23. [PMID: 18691964 PMCID: PMC2584117 DOI: 10.1016/j.molcel.2008.05.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 02/29/2008] [Accepted: 05/29/2008] [Indexed: 11/17/2022]
Abstract
Budding yeast lacking the Sgs1 helicase and the Mus81/Mms4 endonuclease are inviable, and indirect studies implicate homologous recombination gone awry as the cause of death. We show that mutants lacking both enzymes have profound defects in meiotic recombination intermediate metabolism and crossover (CO) formation. Recombination intermediates (joint molecules, JMs) accumulate in these cells, many with structures that are infrequent in wild-type cells. These JMs persist, preventing nuclear division. Using an inducible expression system, we restored Mus81 or Sgs1 to sgs1 mus81 cells at a time when JMs are forming. Mus81 expression did not prevent JM formation but did restore JM resolution, CO formation, and nuclear division. In contrast, Sgs1 expression reduced the extent of JM accumulation. These results indicate that Sgs1 and Mus81/Mms4 collaborate to direct meiotic recombination toward interhomolog interactions that promote proper chromosome segregation, and also indicate that Mus81/Mms4 promotes JM resolution in vivo.
Collapse
Affiliation(s)
- Lea Jessop
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
91
|
Barea F, Tessaro S, Bonatto D. In silico analyses of a new group of fungal and plant RecQ4-homologous proteins. Comput Biol Chem 2008; 32:349-58. [PMID: 18701350 DOI: 10.1016/j.compbiolchem.2008.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 06/22/2008] [Accepted: 07/02/2008] [Indexed: 11/27/2022]
Abstract
Bacterial and eukaryotic RecQ helicases comprise a family of homologous proteins necessary for maintaining genomic integrity during the cell cycle and DNA repair. There is one known bacterial RecQ helicase, and five eukaryotic RecQ helicases that have been described: RecQ1p, RecQ4p, RecQ5p, Bloom, and Werner. While the biochemical functions of Bloom and Werner helicases are well understood, the same is not true for RecQ4p helicase. RecQ4p mutations lead to pathologies like Rothmund-Thompson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). Until now, RecQ4p helicases had only been described in metazoans, and their presence in organisms like fungi and plants were not known. Thus far only one RecQ-homologous protein (Sgs1p), similar to Bloom helicase, has been described in fungal genomes. In the present study we employed an in silico approach, and successfully identified and characterized a second RecQ helicase from the genomes of different fungal and two plant species that shows similarity to metazoan RecQ4 proteins. An in-depth phylogenetic analysis of these new fungal and plant RecQ4-like sequences (termed Hrq1p) indicated that they are orthologous to the metazoan RecQ4p. We employed hydrophobic cluster analysis (HCA) and three-dimensional modeling of selected Hrq1p sequences to compare conserved regions among Hrq1p, human RecQ4p and bacterial RecQp. The results indicated that Hrq1p sequences, as previously observed for metazoan RecQ4 proteins, probably act in genomic maintenance and/or chromatin remodeling in fungal and plant cells.
Collapse
Affiliation(s)
- Fernanda Barea
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
92
|
Cromie GA, Hyppa RW, Smith GR. The fission yeast BLM homolog Rqh1 promotes meiotic recombination. Genetics 2008; 179:1157-67. [PMID: 18562672 PMCID: PMC2475723 DOI: 10.1534/genetics.108.088955] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/31/2008] [Indexed: 01/04/2023] Open
Abstract
RecQ helicases are found in organisms as diverse as bacteria, fungi, and mammals. These proteins promote genome stability, and mutations affecting human RecQ proteins underlie premature aging and cancer predisposition syndromes, including Bloom syndrome, caused by mutations affecting the BLM protein. In this study we show that mutants lacking the Rqh1 protein of the fission yeast Schizosaccharomyces pombe, a RecQ and BLM homolog, have substantially reduced meiotic recombination, both gene conversions and crossovers. The relative proportion of gene conversions having associated crossovers is unchanged from that in wild type. In rqh1 mutants, meiotic DNA double-strand breaks are formed and disappear with wild-type frequency and kinetics, and spore viability is only moderately reduced. Genetic analyses and the wild-type frequency of both intersister and interhomolog joint molecules argue against these phenotypes being explained by an increase in intersister recombination at the expense of interhomolog recombination. We suggest that Rqh1 extends hybrid DNA and biases the recombination outcome toward crossing over. Our results contrast dramatically with those from the budding yeast ortholog, Sgs1, which has a meiotic antirecombination function that suppresses recombination events involving more than two DNA duplexes. These observations underscore the multiple recombination functions of RecQ homologs and emphasize that even conserved proteins can be adapted to play different roles in different organisms.
Collapse
Affiliation(s)
- Gareth A Cromie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | |
Collapse
|
93
|
Suski C, Marians KJ. Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell 2008; 30:779-89. [PMID: 18570879 PMCID: PMC2459239 DOI: 10.1016/j.molcel.2008.04.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/23/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
RecQ-like DNA helicases pair with cognate topoisomerase III enzymes to function in the maintenance of genomic integrity in many organisms. These proteins play roles in stabilizing stalled replication forks, the S phase checkpoint response, and suppressing genetic crossovers, and their inactivation results in hyper-recombination, gross chromosomal rearrangements, chromosome segregation defects, and human disease. Biochemical activities associated with these enzymes include the ability to resolve double Holliday junctions, a process thought to lead to the suppression of crossover formation. Using Escherichia coli RecQ and topoisomerase III, we demonstrate a second activity for this pair of enzymes that could account for their role in maintaining genomic stability: resolution of converging replication forks. This resolution reaction is specific for the RecQ-topoisomerase III pair and is mediated by interaction of both of these enzymes with the single-stranded DNA-binding protein SSB.
Collapse
Affiliation(s)
| | - Kenneth J. Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| |
Collapse
|
94
|
Alvaro D, Lisby M, Rothstein R. Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet 2008; 3:e228. [PMID: 18085829 PMCID: PMC2134942 DOI: 10.1371/journal.pgen.0030228] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 11/06/2007] [Indexed: 12/03/2022] Open
Abstract
To investigate the DNA damage response, we undertook a genome-wide study in Saccharomyces cerevisiae and identified 86 gene deletions that lead to increased levels of spontaneous Rad52 foci in proliferating diploid cells. More than half of the genes are conserved across species ranging from yeast to humans. Along with genes involved in DNA replication, repair, and chromatin remodeling, we found 22 previously uncharacterized open reading frames. Analysis of recombination rates and synthetic genetic interactions with rad52Δ suggests that multiple mechanisms are responsible for elevated levels of spontaneous Rad52 foci, including increased production of recombinogenic lesions, sister chromatid recombination defects, and improper focus assembly/disassembly. Our cell biological approach demonstrates the diversity of processes that converge on homologous recombination, protect against spontaneous DNA damage, and facilitate efficient repair. Homologous recombination (HR) is a cellular process that permits efficient repair of both endogenous and exogenous DNA damage. Although the principal players in HR have been well characterized, the interplay of diverse processes with the HR pathway remains mysterious. Traditionally, genetic screens investigating HR have utilized genetic assays, such as survival following exposure to DNA damaging agents or alterations in the rate of the generation of recombinant products. In this work, we instead utilize a cell biology phenotype, the relocalization of the central HR protein Rad52 into subnuclear foci reflecting repair centers actively engaged in HR. This approach allows us to identify mutants that affect the kinetics of HR repair center assembly and disassembly regardless of the outcome of recombination. We identified 86 gene deletions that lead to increases in the levels of spontaneous foci in proliferating diploid cells, 22 of which were deletions of previously uncharacterized ORFs (designated IRC2–11, 13–16, 18–25). Genetic characterization of the mutants revealed a diversity of mechanisms that underlie the focus phenotype. These include increasing the generation of DNA lesions, blocking the completion of HR, and altering the kinetics of genetic recombination and the assembly/disassembly of the HR protein complexes.
Collapse
Affiliation(s)
- David Alvaro
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
95
|
Abstract
Five members of the RecQ subfamily of DEx-H-containing DNA helicases have been identified in both human and mouse, and mutations in BLM, WRN, and RECQ4 are associated with human diseases of premature aging, cancer, and chromosomal instability. Although a genetic disease has not been linked to RECQ1 mutations, RECQ1 helicase is the most highly expressed of the human RecQ helicases, suggesting an important role in cellular DNA metabolism. Recent advances have elucidated a unique role of RECQ1 to suppress genomic instability. Embryonic fibroblasts from RECQ1-deficient mice displayed aneuploidy, chromosomal instability, and increased load of DNA damage.(1) Acute depletion of human RECQ1 renders cells sensitive to DNA damage and results in spontaneous gamma-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks.(2) Consistent with a role in DNA repair, RECQ1 relocalizes to irradiation-induced nuclear foci and associates with chromatin.(2) RECQ1 catalytic activities(3) and interactions with DNA repair proteins(2,4,5) are likely to be important for its molecular functions in genome homeostasis. Collectively, these studies provide the first evidence for an important role of RECQ1 to confer chromosomal stability that is unique from that of other RecQ helicases and suggest its potential involvement in tumorigenesis.
Collapse
Affiliation(s)
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology; National Institute on Aging; National Institutes of Health; Department of Health and Human Services; Baltimore, Maryland USA
| |
Collapse
|
96
|
Weinstein J, Rothstein R. The genetic consequences of ablating helicase activity and the Top3 interaction domain of Sgs1. DNA Repair (Amst) 2008; 7:558-71. [PMID: 18272435 PMCID: PMC2359228 DOI: 10.1016/j.dnarep.2007.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/08/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Sgs1, the RecQ helicase homolog, and Top3, the type-IA topoisomerase, physically interact and are required for genomic stability in budding yeast. Similarly, topoisomerase III genes physically pair with homologs of SGS1 in humans that are involved in the cancer predisposition and premature aging diseases Bloom, Werner, and Rothmund-Thompson syndromes. In the absence of Top1 activity, sgs1 mutants are severely growth impaired. Here, we investigate the role of Sgs1 helicase activity and its N-terminal Top3 interaction domain by using an allele-replacement technique to integrate mutant alleles at the native SGS1 genomic locus. We compare the phenotype of helicase-defective (sgs1-hd) and N-terminal deletion (sgs1-NDelta) strains to wild-type and sgs1 null strains. Like the sgs1 null, sgs1-hd mutations suppress top3 slow growth, cause a growth defect in the absence of Srs2 helicase, and impair meiosis. However, for recombination and the synthetic interaction with top1Delta mutations, loss of helicase activity exhibits a less severe phenotype than the null. Interestingly, deletion of the Top3 interaction domain of Sgs1 causes a top3-like phenotype, and furthermore, this effect is dependent on helicase activity. These results suggest that the protein-protein interaction between these two DNA-metabolism enzymes, even in the absence of helicase activity, is important for their function in catalyzing specific changes in DNA topology.
Collapse
Affiliation(s)
- Justin Weinstein
- Department of Genetics & Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032-2704, USA
| | | |
Collapse
|
97
|
Defective p53 engagement after the induction of DNA damage in cells deficient in topoisomerase 3beta. Proc Natl Acad Sci U S A 2008; 105:5063-8. [PMID: 18367668 DOI: 10.1073/pnas.0801235105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The type IA topoisomerases have been implicated in the repair of dsDNA breaks by homologous recombination and in the resolution of stalled or damaged DNA replication forks; thus, these proteins play important roles in the maintenance of genomic stability. We studied the functions of one of the two mammalian type IA enzymes, Top3beta, using murine embryonic fibroblasts (MEFs) derived from top3beta(-/-) embryos. top3beta(-/-) MEFs proliferated more slowly than TOP3beta(+/+) control MEFs, demonstrated increased sensitivity to DNA-damaging agents such as ionizing and UV radiation, and had increased DNA double-strand breaks as manifested by increased gamma-H2-AX phosphorylation. However, incomplete enforcement of the G(1)-S cell cycle checkpoint was observed in top3beta(-/-) MEFs. Notably, ataxia-telangiectasia, mutated (ATM)/ATM and Rad3-related (ATR)-dependent substrate phosphorylation after UV-B and ionizing radiation was impaired in top3beta(-/-) versus TOP3beta(+/+) control MEFs, and impaired up-regulation of total and Ser-18-phosphorylated p53 was observed in top3beta(-/-) cells. Taken together, these results suggest an unanticipated role for Top3beta beyond DNA repair in the activation of cellular responses to DNA damage.
Collapse
|
98
|
Abstract
Progress in aging research is now rapid, and surprisingly, studies in a single-celled eukaryote are a driving force. The genetic modulators of replicative life span in yeast are being identified, the molecular events that accompany aging are being discovered, and the extent to which longevity pathways are conserved between yeast and multicellular eukaryotes is being tested. In this review, we provide a brief retrospective view on the development of yeast as a model for aging and then turn to recent discoveries that have pushed aging research into novel directions and also linked aging in yeast to well-developed hypotheses in mammals. Although the question of what causes aging still cannot be answered definitively, that day may be rapidly approaching.
Collapse
Affiliation(s)
- K A Steinkraus
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
99
|
Abstract
Accurate segregation of chromosomes during meiosis requires physical links between homologs. These links are usually established through chromosome pairing, synapsis, and recombination, which occur during meiotic prophase. How chromosomes pair with their homologous partners is one of the outstanding mysteries of meiosis. Surprisingly, experimental evidence indicates that different organisms have found more than one way to accomplish this feat. Whereas some species depend on recombination machinery to achieve homologous pairing, others are able to pair and synapse their homologs in the absence of recombination. To ensure specific pairing between homologous chromosomes, both recombination-dependent and recombination-independent mechanisms must strike the proper balance between forces that promote chromosome interactions and activities that temper the promiscuity of those interactions. The initiation of synapsis is likely to be a tightly regulated step in a process that must be mechanically coupled to homolog pairing.
Collapse
Affiliation(s)
- Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Abby F. Dernburg
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
100
|
Nag DK, Cavallo SJ. Effects of mutations in SGS1 and in genes functionally related to SGS1 on inverted repeat-stimulated spontaneous unequal sister-chromatid exchange in yeast. BMC Mol Biol 2007; 8:120. [PMID: 18166135 PMCID: PMC2254439 DOI: 10.1186/1471-2199-8-120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 12/31/2007] [Indexed: 11/11/2022] Open
Abstract
Background The presence of inverted repeats (IRs) in DNA poses an obstacle to the normal progression of the DNA replication machinery, because these sequences can form secondary structures ahead of the replication fork. A failure to process and to restart the stalled replication machinery can lead to the loss of genome integrity. Consistently, IRs have been found to be associated with a high level of genome rearrangements, including deletions, translocations, inversions, and a high rate of sister-chromatid exchange (SCE). The RecQ helicase Sgs1, in Saccharomyces cerevisiae, is believed to act on stalled replication forks. To determine the role of Sgs1 when the replication machinery stalls at the secondary structure, we measured the rates of IR-associated and non-IR-associated spontaneous unequal SCE events in the sgs1 mutant, and in strains bearing mutations in genes that are functionally related to SGS1. Results The rate of SCE in sgs1 cells for both IR and non-IR-containing substrates was higher than the rate in the wild-type background. The srs2 and mus81 mutations had modest effects, compared to sgs1. The exo1 mutation increased SCE rates for both substrates. The sgs1 exo1 double mutant exhibited synergistic effects on spontaneous SCE. The IR-associated SCE events in sgs1 cells were partially MSH2-dependent. Conclusions These results suggest that Sgs1 suppresses spontaneous unequal SCE, and SGS1 and EXO1 regulate spontaneous SCE by independent mechanisms. The mismatch repair proteins, in contradistinction to their roles in mutation avoidance, promote secondary structure-associated genetic instability.
Collapse
Affiliation(s)
- Dilip K Nag
- Division of Molecular Medicine, Wadsworth Center, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12208, USA.
| | | |
Collapse
|