51
|
Lekovich J, Man L, Xu K, Canon C, Lilienthal D, Stewart JD, Pereira N, Rosenwaks Z, Gerhardt J. CGG repeat length and AGG interruptions as indicators of fragile X-associated diminished ovarian reserve. Genet Med 2017; 20:957-964. [PMID: 29267266 DOI: 10.1038/gim.2017.220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Fragile X premutation (PM) carriers may experience difficulties conceiving a child probably due to fragile X-associated diminished ovarian reserve (FXDOR). We investigated which subgroups of carriers with a PM are at higher risk of FXDOR, and whether the number of AGG interruptions within the repeat sequence further ameliorates the risk. METHODS We compared markers of ovarian reserve, including anti-Müllerian hormone, antral follicle count, and number of oocytes retrieved between different subgroups of patients with a PM. RESULTS We found that carriers with midrange repeats size (70-90 CGG) demonstrate significantly lower ovarian reserve. Additionally, the number of AGG interruptions directly correlated with parameters of ovarian reserve. Patients with longer uninterrupted CGG repeats post-AGG interruptions had the lowest ovarian reserve. CONCLUSION This study connects AGG interruptions and certain CGG repeat length to reduced ovarian reserve in carriers with a PM. A possible explanation for our findings is the proposed gonadotoxicity of the FMR1 transcripts. Reduction of AGG interruptions could increase the likelihood that secondary RNA structures in the FMR1 messenger RNA are formed, which could cause cell dysfunction within the ovaries. These findings may provide women with guidance regarding their fertility potential and accordingly assist with their family planning.
Collapse
Affiliation(s)
- Jovana Lekovich
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Limor Man
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kangpu Xu
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Chelsea Canon
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA
| | - Debra Lilienthal
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Joshua D Stewart
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Nigel Pereira
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA. .,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
52
|
Boivin M, Willemsen R, Hukema RK, Sellier C. Potential pathogenic mechanisms underlying Fragile X Tremor Ataxia Syndrome: RAN translation and/or RNA gain-of-function? Eur J Med Genet 2017; 61:674-679. [PMID: 29223504 DOI: 10.1016/j.ejmg.2017.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/19/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disease caused by an expansion of 55-200 CGG repeats located in the FMR1 gene. The main clinical and neuropathological features of FXTAS are progressive intention tremor and gait ataxia associated with brain atrophy, neuronal cell loss and presence of ubiquitin-positive intranuclear inclusions in both neurons and astrocytes. At the molecular level, FXTAS is characterized by increased expression of FMR1 sense and antisense RNA containing expanded CGG or GGC repeats, respectively. Here, we discuss the putative molecular mechanisms underlying FXTAS and notably recent reports that expanded CGG and GGC repeats may be pathogenic through RAN translation into toxic proteins.
Collapse
Affiliation(s)
- Manon Boivin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
53
|
Mila M, Alvarez-Mora M, Madrigal I, Rodriguez-Revenga L. Fragile X syndrome: An overview and update of the FMR1
gene. Clin Genet 2017; 93:197-205. [DOI: 10.1111/cge.13075] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/31/2023]
Affiliation(s)
- M. Mila
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - M.I. Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - I. Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - L. Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
54
|
Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-Associated Diminished Ovarian Reserve and Primary Ovarian Insufficiency from Molecular Mechanisms to Clinical Manifestations. Front Mol Neurosci 2017; 10:290. [PMID: 28955201 PMCID: PMC5600956 DOI: 10.3389/fnmol.2017.00290] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS), is caused by a loss-of-function mutation in the FMR1 gene located on the X-chromosome, which leads to the most common cause of inherited intellectual disability in males and the leading single-gene defect associated with autism. A full mutation (FM) is represented by more than 200 CGG repeats within the FMR1 gene, resulting in FXS. A FM is inherited from women carrying a FM or a premutation (PM; 55–200 CGG repeats) allele. PM is associated with phenotypes distinct from those associated with FM. Some manifestations of the PM are unique; fragile-X-associated tremor/ataxia syndrome (FXTAS), and fragile-X-associated primary ovarian insufficiency (FXPOI), while others tend to be non-specific such as intellectual disability. In addition, women carrying a PM may suffer from subfertility or infertility. There is a need to elucidate whether the impairment of ovarian function found in PM carriers arises during the primordial germ cell (PGC) development stage, or due to a rapidly diminishing oocyte pool throughout life or even both. Due to the possibility of expansion into a FM in the next generation, and other ramifications, carrying a PM can have an enormous impact on one’s life; therefore, preconception counseling for couples carrying the PM is of paramount importance. In this review, we will elaborate on the clinical manifestations in female PM carriers and propose the definition of fragile-X-associated diminished ovarian reserve (FXDOR), then we will review recent scientific findings regarding possible mechanisms leading to FXDOR and FXPOI. Lastly, we will discuss counseling, preventative measures and interventions available for women carrying a PM regarding different aspects of their reproductive life, fertility treatment, pregnancy, prenatal testing, contraception and fertility preservation options.
Collapse
Affiliation(s)
- Limor Man
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Jovana Lekovich
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| |
Collapse
|
55
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
56
|
Sellier C, Buijsen RAM, He F, Natla S, Jung L, Tropel P, Gaucherot A, Jacobs H, Meziane H, Vincent A, Champy MF, Sorg T, Pavlovic G, Wattenhofer-Donze M, Birling MC, Oulad-Abdelghani M, Eberling P, Ruffenach F, Joint M, Anheim M, Martinez-Cerdeno V, Tassone F, Willemsen R, Hukema RK, Viville S, Martinat C, Todd PK, Charlet-Berguerand N. Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome. Neuron 2017; 93:331-347. [PMID: 28065649 PMCID: PMC5263258 DOI: 10.1016/j.neuron.2016.12.016] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/06/2016] [Accepted: 12/02/2016] [Indexed: 11/26/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5′ UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2β and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2β rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS. CGG repeats in the 5′ UTR of FMR1 are translated through initiation to an ACG codon Translation of CGG repeats in the polyglycine protein, FMRpolyG, is toxic in mice FMRpolyG binds and disrupts protein of the nuclear lamina
Collapse
Affiliation(s)
- Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| | - Ronald A M Buijsen
- Department of Clinical Genetics, Erasmus MC, 3015 Rotterdam, the Netherlands
| | - Fang He
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Veteran Association Health System, Ann Arbor, MI 48105, USA; Department of Biological and Health Sciences, Texas A&M University - Kingsville, Kingsville, TX 78363, USA
| | - Sam Natla
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Philippe Tropel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Angeline Gaucherot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Hugues Jacobs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Hamid Meziane
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Alexandre Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Marie-France Champy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Tania Sorg
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Guillaume Pavlovic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Marie Wattenhofer-Donze
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Marie-Christine Birling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; PHENOMIN, Institut Clinique de la Souris (ICS), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Pascal Eberling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Mathilde Joint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Mathieu Anheim
- Department of Neurology, University Hospital of Strasbourg, Hôpital de Hautepierre, 67200 Strasbourg, France
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; M.I.N.D. Institute, University of California, Davis, Health System, Sacramento, CA 95817, USA
| | - Flora Tassone
- M.I.N.D. Institute, University of California, Davis, Health System, Sacramento, CA 95817, USA
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, 3015 Rotterdam, the Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3015 Rotterdam, the Netherlands
| | - Stéphane Viville
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; Laboratoire de Diagnostic Génétique, UF3472 - Infertilité, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg, France; IPPTS, 3 rue Koeberlé, 67000 Strasbourg, France
| | | | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Veteran Association Health System, Ann Arbor, MI 48105, USA
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France.
| |
Collapse
|
57
|
Campbell S, Eley SEA, McKechanie AG, Stanfield AC. Endocrine Dysfunction in Female FMR1 Premutation Carriers: Characteristics and Association with Ill Health. Genes (Basel) 2016; 7:genes7110101. [PMID: 27869718 PMCID: PMC5126787 DOI: 10.3390/genes7110101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Female FMR1 premutation carriers (PMC) have been suggested to be at greater risk of ill health, in particular endocrine dysfunction, compared to the general population. We set out to review the literature relating to endocrine dysfunction, including premature ovarian insufficiency (POI), in female PMCs, and then to consider whether endocrine dysfunction in itself may be predictive of other illnesses in female PMCs. A systematic review and pilot data from a semi-structured health questionnaire were used. Medline, Embase, and PsycInfo were searched for papers concerning PMCs and endocrine dysfunction. For the pilot study, self-reported diagnoses in females were compared between PMCs with endocrine dysfunction (n = 18), PMCs without endocrine dysfunction (n = 14), and individuals without the premutation (n = 15). Twenty-nine papers were identified in the review; the majority concerned POI and reduced fertility, which are consistently found to be more common in PMCs than controls. There was some evidence that thyroid dysfunction may occur more frequently in subgroups of PMCs and that those with endocrine difficulties have poorer health than those without. In the pilot study, PMCs with endocrine problems reported higher levels of fibromyalgia (p = 0.03), tremor (p = 0.03), headache (p = 0.01) and obsessive-compulsive disorder (p = 0.009) than either comparison group. Further larger scale research is warranted to determine whether female PMCs are at risk of endocrine disorders other than those associated with reproduction and whether endocrine dysfunction identifies a high-risk group for the presence of other health conditions.
Collapse
Affiliation(s)
- Sonya Campbell
- The Patrick Wild Centre, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | - Sarah E A Eley
- The Patrick Wild Centre, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | - Andrew G McKechanie
- The Patrick Wild Centre, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | - Andrew C Stanfield
- The Patrick Wild Centre, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| |
Collapse
|
58
|
Molecular Correlates and Recent Advancements in the Diagnosis and Screening of FMR1-Related Disorders. Genes (Basel) 2016; 7:genes7100087. [PMID: 27754417 PMCID: PMC5083926 DOI: 10.3390/genes7100087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability and autism. Molecular diagnostic testing of FXS and related disorders (fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS)) relies on a combination of polymerase chain reaction (PCR) and Southern blot (SB) for the fragile X mental retardation 1 (FMR1) CGG-repeat expansion and methylation analyses. Recent advancements in PCR-based technologies have enabled the characterization of the complete spectrum of CGG-repeat mutation, with or without methylation assessment, and, as a result, have reduced our reliance on the labor- and time-intensive SB, which is the gold standard FXS diagnostic test. The newer and more robust triplet-primed PCR or TP-PCR assays allow the mapping of AGG interruptions and enable the predictive analysis of the risks of unstable CGG expansion during mother-to-child transmission. In this review, we have summarized the correlation between several molecular elements, including CGG-repeat size, methylation, mosaicism and skewed X-chromosome inactivation, and the extent of clinical involvement in patients with FMR1-related disorders, and reviewed key developments in PCR-based methodologies for the molecular diagnosis of FXS, FXTAS and FXPOI, and large-scale (CGG)n expansion screening in newborns, women of reproductive age and high-risk populations.
Collapse
|
59
|
Foote MM, Careaga M, Berman RF. What has been learned from mouse models of the Fragile X Premutation and Fragile X-associated tremor/ataxia syndrome? Clin Neuropsychol 2016; 30:960-72. [PMID: 27355912 DOI: 10.1080/13854046.2016.1158254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To describe in this review how research using mouse models developed to study the Fragile X premutation (PM) and Fragile X-associated tremor/ataxia syndrome (FXTAS) have contributed to understanding these disorders. PM carriers bear an expanded CGG trinucleotide repeat on the Fragile X Mental Retardation 1 (FMR1) gene, and are at risk for developing the late onset neurodegenerative disorder FXTAS. CONCLUSIONS Much has been learned about these genetic disorders from the development and study of mouse models. This includes new insights into the early cellular and molecular events that occur in PM carriers and in FXTAS, the presence of multiorgan pathology beyond the CNS, immunological dysregulation, unexpected synthesis of a potentially toxic peptide in FXTAS (i.e., FMRpolyG), and evidence that the disease process may be halted or reversed by appropriate molecular therapies given early in the course of disease.
Collapse
Affiliation(s)
- Molly M Foote
- a Department of Neurological Surgery , University of California Davis , Davis , CA , USA
| | - Milo Careaga
- b Department of Psychiatry and UC Davis M.I.N.D. Institute , University of California Davis , Davis , CA , USA
| | - Robert F Berman
- c Department of Neurological Surgery and the UC Davis M.I.N.D. Institute , University of California Davis , Davis , CA , USA
| |
Collapse
|
60
|
Abstract
Many physicians are unaware of the many phenotypes associated with the fragile X premutation, an expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene that consists of 55-200 CGG repeats. The most severe of these phenotypes is fragile X-associated tremor/ataxia syndrome (FXTAS), which occurs in the majority of ageing male premutation carriers but in fewer than 20% of ageing women with the premutation. The prevalence of the premutation is 1 in 150-300 females, and 1 in 400-850 males, so physicians are likely to see people affected by FXTAS. Fragile X DNA testing is broadly available in the Western world. The clinical phenotype of FXTAS at presentation can vary and includes intention tremor, cerebellar ataxia, neuropathic pain, memory and/or executive function deficits, parkinsonian features, and psychological disorders, such as depression, anxiety and/or apathy. FXTAS causes brain atrophy and white matter disease, usually in the middle cerebellar peduncles, the periventricular area, and the splenium and/or genu of the corpus callosum. Here, we review the complexities involved in the clinical management of FXTAS and consider how targeted treatment for these clinical features of FXTAS will result from advances in our understanding of the molecular mechanisms that underlie this neurodegenerative disorder. Such targeted approaches should also be more broadly applicable to earlier forms of clinical involvement among premutation carriers.
Collapse
|
61
|
Molecular Pathophysiology of Fragile X-Associated Tremor/Ataxia Syndrome and Perspectives for Drug Development. THE CEREBELLUM 2016; 15:599-610. [DOI: 10.1007/s12311-016-0800-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Green KM, Linsalata AE, Todd PK. RAN translation-What makes it run? Brain Res 2016; 1647:30-42. [PMID: 27060770 DOI: 10.1016/j.brainres.2016.04.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
Nucleotide-repeat expansions underlie a heterogeneous group of neurodegenerative and neuromuscular disorders for which there are currently no effective therapies. Recently, it was discovered that such repetitive RNA motifs can support translation initiation in the absence of an AUG start codon across a wide variety of sequence contexts, and that the products of these atypical translation initiation events contribute to neuronal toxicity. This review examines what we currently know and do not know about repeat associated non-AUG (RAN) translation in the context of established canonical and non-canonical mechanisms of translation initiation. We highlight recent findings related to RAN translation in three repeat expansion disorders: CGG repeats in fragile X-associated tremor ataxia syndrome (FXTAS), GGGGCC repeats in C9orf72 associated amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and CAG repeats in Huntington disease. These studies suggest that mechanistic differences may exist for RAN translation dependent on repeat type, repeat reading frame, and the surrounding sequence context, but that for at least some repeats, RAN translation retains a dependence on some of the canonical translational initiation machinery. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Katelyn M Green
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexander E Linsalata
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter K Todd
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Veterans Affairs Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
63
|
Conca Dioguardi C, Uslu B, Haynes M, Kurus M, Gul M, Miao DQ, De Santis L, Ferrari M, Bellone S, Santin A, Giulivi C, Hoffman G, Usdin K, Johnson J. Granulosa cell and oocyte mitochondrial abnormalities in a mouse model of fragile X primary ovarian insufficiency. Mol Hum Reprod 2016; 22:384-96. [PMID: 26965313 DOI: 10.1093/molehr/gaw023] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
STUDY HYPOTHESIS We hypothesized that the mitochondria of granulosa cells (GC) and/or oocytes might be abnormal in a mouse model of fragile X premutation (FXPM). STUDY FINDING Mice heterozygous and homozygous for the FXPM have increased death (atresia) of large ovarian follicles, fewer corpora lutea with a gene dosage effect manifesting in decreased litter size(s). Furthermore, granulosa cells (GC) and oocytes of FXPM mice have decreased mitochondrial content, structurally abnormal mitochondria, and reduced expression of critical mitochondrial genes. Because this mouse allele produces the mutant Fragile X mental retardation 1 (Fmr1) transcript and reduced levels of wild-type (WT) Fmr1 protein (FMRP), but does not produce a Repeat Associated Non-ATG Translation (RAN)-translation product, our data lend support to the idea that Fmr1 mRNA with large numbers of CGG-repeats is intrinsically deleterious in the ovary. WHAT IS KNOWN ALREADY Mitochondrial dysfunction has been detected in somatic cells of human and mouse FX PM carriers and mitochondria are essential for oogenesis and ovarian follicle development, FX-associated primary ovarian insufficiency (FXPOI) is seen in women with FXPM alleles. These alleles have 55-200 CGG repeats in the 5' UTR of an X-linked gene known as FMR1. The molecular basis of the pathology seen in this disorder is unclear but is thought to involve either some deleterious consequence of overexpression of RNA with long CGG-repeat tracts or of the generation of a repeat-associated non-AUG translation (RAN translation) product that is toxic. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Analysis of ovarian function in a knock-in FXPM mouse model carrying 130 CGG repeats was performed as follows on WT, PM/+, and PM/PM genotypes. Histomorphometric assessment of follicle and corpora lutea numbers in ovaries from 8-month-old mice was executed, along with litter size analysis. Mitochondrial DNA copy number was quantified in oocytes and GC using quantitative PCR, and cumulus granulosa mitochondrial content was measured by flow cytometric analysis after staining of cells with Mitotracker dye. Transmission electron micrographs were prepared of GC within small growing follicles and mitochondrial architecture was compared. Quantitative RT-PCR analysis of key genes involved in mitochondrial structure and recycling was performed. MAIN RESULTS AND THE ROLE OF CHANCE A defect was found in follicle survival at the large antral stage in PM/+ and PM/PM mice. Litter size was significantly decreased in PM/PM mice, and corpora lutea were significantly reduced in mice of both mutant genotypes. Mitochondrial DNA copy number was significantly decreased in GC and metaphase II eggs in mutants. Flow cytometric analysis revealed that PM/+ and PM/PM animals lack the cumulus GC that harbor the greatest mitochondrial content as found in wild-type animals. Electron microscopic evaluation of GC of small growing follicles revealed mitochondrial structural abnormalities, including disorganized and vacuolar cristae. Finally, aberrant mitochondrial gene expression was detected. Mitofusin 2 (Mfn2) and Optic atrophy 1 (Opa1), genes involved in mitochondrial fusion and structure, respectively, were significantly decreased in whole ovaries of both mutant genotypes. Mitochondrial fission factor 1 (Mff1) was significantly decreased in PM/+ and PM/PM GC and eggs compared with wild-type controls. LIMITATIONS, REASONS FOR CAUTION Data from the mouse model used for these studies should be viewed with some caution when considering parallels to the human FXPOI condition. WIDER IMPLICATIONS OF THE FINDINGS Our data lend support to the idea that Fmr1 mRNA with large numbers of CGG-repeats is intrinsically deleterious in the ovary. FXPM disease states, including FXPOI, may share mitochondrial dysfunction as a common underlying mechanism. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS Studies were supported by NIH R21 071873 (J.J./G.H), The Albert McKern Fund for Perinatal Research (J.J.), NIH Intramural Funds (K.U.), and a TUBITAK Research Fellowship Award (B.U.). No conflict(s) of interest or competing interest(s) are noted.
Collapse
Affiliation(s)
- Carola Conca Dioguardi
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Division of Reproductive Endocrinology and Infertility, Yale School of Medicine, New Haven, CT, USA Vita-Salute San Raffaele University/IRCCS San Raffaele Hospital, Milan, Italy
| | - Bahar Uslu
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Division of Reproductive Endocrinology and Infertility, Yale School of Medicine, New Haven, CT, USA
| | - Monique Haynes
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Division of Reproductive Endocrinology and Infertility, Yale School of Medicine, New Haven, CT, USA
| | - Meltem Kurus
- Department of Histology & Embryology, Izmir Katip Celebi University School of Medicine, Izmir, Turkey
| | - Mehmet Gul
- Department of Histology & Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - De-Qiang Miao
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Division of Reproductive Endocrinology and Infertility, Yale School of Medicine, New Haven, CT, USA
| | - Lucia De Santis
- Department of Obstetrics & Gynecology, IVF Unit, Vita-Salute San Raffaele University/IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurizio Ferrari
- Laboratory of Clinical Molecular Biology and Cytogenetics, Vita-Salute San Raffaele University/IRCCS San Raffaele Hospital, Milan, Italy
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Division of Gynecologic Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Alessandro Santin
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Division of Gynecologic Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, M.I.N.D. Institute, University of California-Davis, Davis, CA, USA
| | - Gloria Hoffman
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Karen Usdin
- Laboratory of Cellular and Molecular Biology, NIH/NIDDK, Bethesda, MD, USA
| | - Joshua Johnson
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Division of Reproductive Endocrinology and Infertility, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|