51
|
Gao JY, Chen Y, Su DY, Marshall C, Xiao M. Depressive- and anxiety-like phenotypes in young adult APP Swe/PS1 dE9 transgenic mice with insensitivity to chronic mild stress. Behav Brain Res 2018; 353:114-123. [PMID: 30012417 DOI: 10.1016/j.bbr.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
Early Alzheimer's disease (AD) and depression share many symptoms, but the underlying mechanisms are not clear. Therefore, characterizing the shared and different biological changes between the two disorders will be helpful in making an early diagnosis and planning treatment. In the present study, 8-week-old APPSwe/PS1dE9 transgenic mice received chronic mild stress (CMS) for 8 weeks followed by a series of behavioral, biochemical and pathological analyses. APPSwe/PS1dE9 mice showed depressive- and anxiety-like behaviors, and reduced sociability, accompanied by high levels of soluble beta-amyloid, glial activation, neuroinflammation and brain derived neurotrophic factor signaling disturbance in the hippocampus. Notably, APPSwe/PS1dE9 mice exposure to CMS partially aggravated anxiety-like states rather than depressive-like responses and sociability deficits, with further elevated hippocampal interleukin-6 and tumor necrosis factor-α levels. These results demonstrated that young adult APPSwe/PS1dE9 have depressive- and anxiety-like phenotypes that were resistant to CMS compared to wild-type mice. This finding may help to understand the pathogenic mechanism of psychiatric symptoms associated with early AD.
Collapse
Affiliation(s)
- Jun-Ying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory for Aging &Disease, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong-Yuan Su
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY, United States
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory for Aging &Disease, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
52
|
Regulation of Central Nervous System Myelination in Higher Brain Functions. Neural Plast 2018; 2018:6436453. [PMID: 29692804 PMCID: PMC5859868 DOI: 10.1155/2018/6436453] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/03/2018] [Indexed: 12/04/2022] Open
Abstract
The hippocampus and the prefrontal cortex are interconnected brain regions, playing central roles in higher brain functions, including learning and memory, planning complex cognitive behavior, and moderating social behavior. The axons in these regions continue to be myelinated into adulthood in humans, which coincides with maturation of personality and decision-making. Myelin consists of dense layers of lipid membranes wrapping around the axons to provide electrical insulation and trophic support and can profoundly affect neural circuit computation. Recent studies have revealed that long-lasting changes of myelination can be induced in these brain regions by experience, such as social isolation, stress, and alcohol abuse, as well as by neurological and psychiatric abnormalities. However, the mechanism and function of these changes remain poorly understood. Myelin regulation represents a new form of neural plasticity. Some progress has been made to provide new mechanistic insights into activity-independent and activity-dependent regulations of myelination in different experimental systems. More extensive investigations are needed in this important but underexplored research field, in order to shed light on how higher brain functions and myelination interplay in the hippocampus and prefrontal cortex.
Collapse
|
53
|
Ruland C, Berlandi J, Eikmeier K, Weinert T, Lin FJ, Ambree O, Seggewiss J, Paulus W, Jeibmann A. Decreased cerebral Irp-1B limits impact of social isolation in wild type and Alzheimer's disease modeled in Drosophila melanogaster. GENES BRAIN AND BEHAVIOR 2018; 17:e12451. [PMID: 29251829 DOI: 10.1111/gbb.12451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 11/27/2022]
Abstract
Environmental factors, such as housing conditions and cognitively stimulating activities, have been shown to affect behavioral phenotypes and to modulate neurodegenerative conditions such as Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder affecting cognitive functions. Epidemiological evidence and experimental studies using rodent models have indicated that social interaction reduces development and progression of disease. Drosophila models of Aβ42-associated AD lead to AD-like phenotypes, such as long-term memory impairment, locomotor and survival deficits, while effects of environmental conditions on AD-associated phenotypes have not been assessed in the fly. Here, we show that single housing reduced survival and motor performance of Aβ42 expressing and control flies. Gene expression analyses of Aβ42 expressing and control flies that had been exposed to different housing conditions showed upregulation of Iron regulatory protein 1B (Irp-1B) in fly brains following single housing. Downregulating Irp-1B in neurons of single-housed Aβ42 expressing and control flies rescued both survival and motor performance deficits. Thus, we provide novel evidence that increased cerebral expression of Irp-1B may underlie worsened behavioral outcome in socially deprived flies and can additionally modulate AD-like phenotypes.
Collapse
Affiliation(s)
- C Ruland
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.,Department of Psychiatry, University of Münster, Münster, Germany
| | - J Berlandi
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - K Eikmeier
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - T Weinert
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - F J Lin
- Department of Biology, Coastal Carolina University, Conway, South Carolina
| | - O Ambree
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Behavioral Biology, University of Osnabrück, Osnabrück, Germany
| | - J Seggewiss
- Institute for Human Genetics, University Hospital Münster, Münster, Germany
| | - W Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - A Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
54
|
Hsiao YH, Chang CH, Gean PW. Impact of social relationships on Alzheimer's memory impairment: mechanistic studies. J Biomed Sci 2018; 25:3. [PMID: 29325565 PMCID: PMC5764000 DOI: 10.1186/s12929-018-0404-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive memory and neuronal loss culminating in cognitive impairment that not only affects a person's living ability but also becomes a society's as well as a family's economic burden. AD is the most common form of dementia in older persons. It is expected that the number of people with AD dementia will increase dramatically in the next 30 years, projecting to 75 million in 2030 and 131.5 million in 2050 worldwide. So far, no sufficient evidence is available to support that any medicine is able to prevent or reverse the progression of the disease. Early studies have shown that social environment, particularly social relationships, can affect one's behavior and mental health. A study analyzing the correlation between loneliness and risk of developing AD revealed that lonely persons had higher risk of AD compared with persons who were not lonely. On the other hand, it has been reported that we can prevent cognitive decline and delay the onset of AD if we keep mentally active and frequently participate in social activities. In this review, we focus on the impact of social behaviors on the progression of cognitive deficit in animal models of AD with a particular emphasis on a mechanistic scheme that explains how social isolation exacerbates cognitive impairment and how social interaction with conspecifics rescues AD patients' memory deficit.
Collapse
Affiliation(s)
- Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Shieh Rd, Tainan City, 701, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Shieh Rd, Tainan City, 701, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Shieh Rd, Tainan City, 701, Taiwan.
| |
Collapse
|
55
|
Gelman S, Palma J, Tombaugh G, Ghavami A. Differences in Synaptic Dysfunction Between rTg4510 and APP/PS1 Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2018; 61:195-208. [PMID: 29154272 PMCID: PMC5836403 DOI: 10.3233/jad-170457] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/15/2022]
Abstract
Genetically modified mice have provided insights into the progression and pathology of Alzheimer's disease (AD). Here, we have examined two mouse models of AD: the rTg4510 mouse, which overexpresses mutant human Tau gene, and the APP/PS1 mouse, which overexpresses mutant human genes for amyloid precursor protein and presenilin 1. Both models exhibit deficits in hippocampal function, but comparative analyses of these deficits are sparse. We used extracellular field potential recordings in hippocampal slices to study basal synaptic transmission (BST), paired-pulse facilitation (PPF), and long-term potentiation (LTP) at the Schaffer collateral-CA1 pyramidal cell synapses in both models. We found that 6-7, but not 2-3-month-old rTg4510 mice exhibited reduced pre-synaptic activation (fiber volley (FV) amplitude, ∼50%) and field excitatory post-synaptic potential (fEPSP) slope (∼40%) compared to wild-type controls. In contrast to previous reports, BST, when controlled for FV amplitude, was not altered in rTg4510. APP/PS1 mice (2-3 mo and 8-10 mo) had unchanged FV amplitude compared to wild-type controls, while fEPSP slope was reduced by ∼34% in older mice, indicating a deficit in BST. PPF was unchanged in 8-10-month-old APP/PS1 mice, but was reduced in 6-7-month-old rTg4510 mice. LTP was reduced only in older rTg4510 and APP/PS1 mice. Our data suggest that BST deficits appear earlier in APP/PS1 than in rTg4510, which exhibited no BST deficits at the ages tested. However, FV and synaptic plasticity deficits developed earlier in rTg4510. These findings highlight fundamental differences in the progression of synaptic pathology in two genetically distinct models of AD.
Collapse
Affiliation(s)
- Simon Gelman
- Psychogenics, Inc., Montvale, NJ and Tarrytown, NY, USA
| | | | | | | |
Collapse
|
56
|
Hoeijmakers L, Ruigrok SR, Amelianchik A, Ivan D, van Dam AM, Lucassen PJ, Korosi A. Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer's disease mouse model. Brain Behav Immun 2017; 63:160-175. [PMID: 28027926 DOI: 10.1016/j.bbi.2016.12.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/12/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Exposure to stress during the sensitive period of early-life increases the risk to develop cognitive impairments and psychopathology later in life. In addition, early-life stress (ES) exposure, next to genetic causes, has been proposed to modulate the development and progression of Alzheimer's disease (AD), however evidence for this hypothesis is currently lacking. We here tested whether ES modulates progression of AD-related neuropathology and assessed the possible contribution of neuroinflammatory factors in this. We subjected wild-type (WT) and transgenic APP/PS1 mice, as a model for amyloid neuropathology, to chronic ES from postnatal day (P)2 to P9. We next studied how ES exposure affected; 1) amyloid β (Aβ) pathology at an early (4month old) and at a more advanced pathological (10month old) stage, 2) neuroinflammatory mediators immediately after ES exposure as well as in adult WT mice, and 3) the neuroinflammatory response in relation to Aβ neuropathology. ES exposure resulted in a reduction of cell-associated amyloid in 4month old APP/PS1 mice, but in an exacerbation of Aβ plaque load at 10months of age, demonstrating that ES affects Aβ load in the hippocampus in an age-dependent manner. Interestingly, ES modulated various neuroinflammatory mediators in the hippocampus of WT mice as well as in response to Aβ neuropathology. In WT mice, immediately following ES exposure (P9), Iba1-immunopositive microglia exhibited reduced complexity and hippocampal interleukin (IL)-1β expression was increased. In contrast, microglial Iba1 and CD68 were increased and hippocampal IL-6 expression was decreased at 4months, while these changes resolved by 10months of age. Finally, Aβ neuropathology triggered a neuroinflammatory response in APP/PS1 mice that was altered after ES exposure. APP/PS1 mice exhibited increased CD68 expression at 4months, which was further enhanced by ES, whereas the microglial response to Aβ neuropathology, as measured by Iba1 and CD11b, was less prominent after ES at 10months of age. Finally, the hippocampus appears to be more vulnerable for these ES-induced effects, since ES did not affect Aβ neuropathology and neuroinflammation in the entorhinal cortex of adult ES exposed mice. Overall, our results demonstrate that ES exposure has both immediate and lasting effects on the neuroinflammatory response. In the context of AD, such alterations in neuroinflammation might contribute to aggravated neuropathology in ES exposed mice, hence altering disease progression. This indicates that, at least in a genetic context, ES could aggravate AD pathology.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Anna Amelianchik
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Daniela Ivan
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, De Boelelaan 1108, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| |
Collapse
|
57
|
Yin M, Chen Y, Zheng H, Pu T, Marshall C, Wu T, Xiao M. Assessment of mouse cognitive and anxiety-like behaviors and hippocampal inflammation following a repeated and intermittent paradoxical sleep deprivation procedure. Behav Brain Res 2017; 321:69-78. [DOI: 10.1016/j.bbr.2016.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022]
|
58
|
Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y. Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs 2017; 31:1057-1082. [PMID: 29260466 PMCID: PMC5747579 DOI: 10.1007/s40263-017-0483-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Collapse
Affiliation(s)
- A. Ardura-Fabregat
- grid.5963.9Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - E. W. G. M. Boddeke
- 0000 0004 0407 1981grid.4830.fDepartment of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A. Boza-Serrano
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - S. Brioschi
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - S. Castro-Gomez
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Ceyzériat
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Dansokho
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - T. Dierkes
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dBiomedical Centre, Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - G. Gelders
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Michael T. Heneka
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - L. Hoeijmakers
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - L. Iaccarino
- grid.15496.3fVita-Salute San Raffaele University, Milan, Italy ,0000000417581884grid.18887.3eIn Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S. Jahnert
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Landreth
- 0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - N. Lonnemann
- 0000 0001 1090 0254grid.6738.aDepartment of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - R. M. McManus
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Paulus
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - K. Reemst
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J. M. Sanchez-Caro
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Tiberi
- grid.6093.cBio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - A. Van der Perren
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - A. Vautheny
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Venegas
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - A. Webers
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - P. Weydt
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - T. S. Wijasa
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - X. Xiang
- 0000 0004 1936 973Xgrid.5252.0Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany ,0000 0004 1936 973Xgrid.5252.0Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, 82152 Munich, Germany
| | - Y. Yang
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| |
Collapse
|
59
|
Behavioural Phenotyping of APPswe/PS1δE9 Mice: Age-Rrelated Changes and Effect of Long-Term Paroxetine Treatment. PLoS One 2016; 11:e0165144. [PMID: 27814403 PMCID: PMC5096719 DOI: 10.1371/journal.pone.0165144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating illness characterized by a progressive loss of cognitive, social, and emotional functions, including memory impairments and more global cognitive deficits. Clinical-epidemiological evidence suggests that neuropsychiatric symptoms precede the onset of cognitive symptoms both in humans with early and late onset AD. The behavioural profile promoted by the AD pathology is believed to associate with degeneration of the serotonergic system. Using the APPswe/PS1δE9 model of AD-like pathology starting with 9 months old mice, we characterised long term non-cognitive behavioural changes measured at 9, 12, 15, and 18 months of age and applied principal component analysis on data obtained from open field, elevated plus maze, and social interaction tests. Long-term treatment with the selective serotonin reuptake inhibitor (SSRI) paroxetine was applied to assess the role of 5-HT on the behavioural profile; duration of treatment was 9 months, initiated when mice were 9 months of age. Treatment with paroxetine delays the decline in locomotion, in exploration and risk assessment behaviour, found in the APP/PS1 mice. APP/PS1 mice also exhibit low social activity and less aggressiveness, both of which are not affected by treatment with paroxetine. The APP/PS1 behavioural phenotype, demonstrated in this study, only begins to manifest itself from 12 months of age. Our results indicate that treatment with SSRI might ameliorate some of the behavioural deficits found in aged APP/PS1 mice.
Collapse
|
60
|
Huang H, Nie S, Cao M, Marshall C, Gao J, Xiao N, Hu G, Xiao M. Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:303-322. [PMID: 27439903 PMCID: PMC5061676 DOI: 10.1007/s11357-016-9929-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/12/2016] [Indexed: 05/28/2023]
Abstract
Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.
Collapse
Affiliation(s)
- Huang Huang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
- Department of Neurology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Sipei Nie
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Charles Marshall
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, 41701, USA
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Na Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
61
|
Xu ZQ, Huang H, Chen YL, Gao YY, Xu J, Marshall C, Cai ZY, Xiao M. Different Expression Patterns of Amyloid-β Protein Precursor Secretases in Human and Mouse Hippocampal Neurons: A Potential Contribution to Species Differences in Neuronal Susceptibility to Amyloid-β Pathogenesis. J Alzheimers Dis 2016; 51:179-95. [DOI: 10.3233/jad-150634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhi-Qiang Xu
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huang Huang
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-Li Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun-Ying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Xu
- Department of Neurology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, USA
| | - Zhi-You Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
62
|
Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats. Mol Neurobiol 2016; 54:1927-1938. [PMID: 26899575 DOI: 10.1007/s12035-016-9781-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.
Collapse
|
63
|
On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biol Res 2016; 49:10. [PMID: 26897365 PMCID: PMC4761148 DOI: 10.1186/s40659-016-0074-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/12/2016] [Indexed: 12/15/2022] Open
Abstract
Cognitive ecologist posits that the more efficiently an animal uses information from the biotic and abiotic environment, the more adaptive are its cognitive abilities. Nevertheless, this approach does not test for natural neurodegenerative processes under field or experimental conditions, which may recover animals information processing and decision making and may explain, mechanistically, maladaptive behaviors. Here, we call for integrative approaches to explain the relationship between ultimate and proximate mechanisms behind social behavior. We highlight the importance of using the endemic caviomorph rodent Octodon degus as a valuable natural model for mechanistic studies of social behavior and to explain how physical environments can shape social experiences that might influence impaired cognitive abilities and the onset and progression of neurodegenerative disorders such as Alzheimer disease. We consequently suggest neuroecological approaches to examine how key elements of the environment may affect neural and cognitive mechanisms associated with learning, memory processes and brain structures involved in social behavior. We propose the following three core objectives of a program comprising interdisciplinary research in O. degus, namely: (1) to determine whether diet types provided after weaning can lead to cognitive impairment associated with spatial memory, learning and predisposing to develop Alzheimer disease in younger ages; (2) to examine if early life social experience has long term effects on behavior and cognitive responses and risk for development Alzheimer disease in later life and (3) To determine if an increase of social interactions in adult degu reared in different degree of social stressful conditions alter their behavior and cognitive responses.
Collapse
|