51
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
52
|
Bourgeois Y, Ruggiero RP, Hariyani I, Boissinot S. Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations. PLoS Genet 2020; 16:e1009082. [PMID: 33017388 PMCID: PMC7561263 DOI: 10.1371/journal.pgen.1009082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/15/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
The interactions between transposable elements (TEs) and their hosts constitute one of the most profound co-evolutionary processes found in nature. The population dynamics of TEs depends on factors specific to each TE families, such as the rate of transposition and insertional preference, the demographic history of the host and the genomic landscape. How these factors interact has yet to be investigated holistically. Here we are addressing this question in the green anole (Anolis carolinensis) whose genome contains an extraordinary diversity of TEs (including non-LTR retrotransposons, SINEs, LTR-retrotransposons and DNA transposons). We observed a positive correlation between recombination rate and frequency of TEs and densities for LINEs, SINEs and DNA transposons. For these elements, there was a clear impact of demography on TE frequency and abundance, with a loss of polymorphic elements and skewed frequency spectra in recently expanded populations. On the other hand, some LTR-retrotransposons displayed patterns consistent with a very recent phase of intense amplification. To determine how demography, genomic features and intrinsic properties of TEs interact we ran simulations using SLiM3. We determined that i) short TE insertions are not strongly counter-selected, but long ones are, ii) neutral demographic processes, linked selection and preferential insertion may explain positive correlations between average TE frequency and recombination, iii) TE insertions are unlikely to have been massively recruited in recent adaptation. We demonstrate that deterministic and stochastic processes have different effects on categories of TEs and that a combination of empirical analyses and simulations can disentangle these mechanisms.
Collapse
Affiliation(s)
- Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- * E-mail: (YB); (SB)
| | - Robert P. Ruggiero
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, United States of America
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- * E-mail: (YB); (SB)
| |
Collapse
|
53
|
Blommaert J. Genome size evolution: towards new model systems for old questions. Proc Biol Sci 2020; 287:20201441. [PMID: 32842932 PMCID: PMC7482279 DOI: 10.1098/rspb.2020.1441] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Genome size (GS) variation is a fundamental biological characteristic; however, its evolutionary causes and consequences are the topic of ongoing debate. Whether GS is a neutral trait or one subject to selective pressures, and how strong these selective pressures are, may remain open questions. Fundamentally, the genomic sequences responsible for this variation directly impact the potential evolutionary outcomes and, equally, are the targets of different evolutionary pressures. For example, duplications and deletions of genic regions (large or small) can have immediate and drastic phenotypic effects, while an expansion or contraction of non-coding DNA is less likely to cause catastrophic phenotypic effects. However, in the long term, the accumulation or deletion of ncDNA is likely to have larger effects. Modern sequencing technologies are allowing for the dissection of these proximate causes, but a combination of these new technologies with more traditional evolutionary experiments and approaches could revolutionize this debate and potentially resolve many of these arguments. Here, I discuss an ambitious way forward for GS research, putting it in context of historical debates, theories and sometimes contradictory evidence, and highlighting the promise of combining new sequencing technologies and analytical developments with more traditional experimental evolution approaches.
Collapse
Affiliation(s)
- Julie Blommaert
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
54
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
55
|
Kofler R. piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions. Genome Biol Evol 2020; 12:736-749. [PMID: 32219390 PMCID: PMC7259680 DOI: 10.1093/gbe/evaa064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
piRNA clusters are thought to repress transposable element (TE) activity in mammals and invertebrates. Here, we show that a simple population genetics model reveals a constraint on the size of piRNA clusters: The total size of the piRNA clusters of an organism must exceed 0.2% of a genome to repress TE invasions. Moreover, larger piRNA clusters accounting for up to 3% of the genome may be necessary when populations are small, transposition rates are high, and TE insertions are recessive. If piRNA clusters are too small, the load of deleterious TE insertions that accumulate during a TE invasion may drive populations extinct before an effective piRNA-based defense against the TE can be established. Our findings are solely based on three well-supported assumptions: 1) TEs multiply within genomes, 2) TEs are mostly deleterious, and 3) piRNA clusters act as transposon traps, where a single insertion in a cluster silences all TE copies in trans. Interestingly, the piRNA clusters of some species meet our observed minimum size requirements, whereas the clusters of other species do not. Species with small piRNA clusters, such as humans and mice, may experience severe fitness reductions during invasions of novel TEs, which is possibly even threatening the persistence of some populations. This work also raises the important question of how piRNA clusters evolve. We propose that the size of piRNA clusters may be at an equilibrium between evolutionary forces that act to expand and contract piRNA clusters.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
56
|
Naciri Y, Linder HP. The genetics of evolutionary radiations. Biol Rev Camb Philos Soc 2020; 95:1055-1072. [PMID: 32233014 DOI: 10.1111/brv.12598] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
With the realization that much of the biological diversity on Earth has been generated by discrete evolutionary radiations, there has been a rapid increase in research into the biotic (key innovations) and abiotic (key environments) circumstances in which such radiations took place. Here we focus on the potential importance of population genetic structure and trait genetic architecture in explaining radiations. We propose a verbal model describing the stages of an evolutionary radiation: first invading a suitable adaptive zone and expanding both spatially and ecologically through this zone; secondly, diverging genetically into numerous distinct populations; and, finally, speciating. There are numerous examples of the first stage; the difficulty, however, is explaining how genetic diversification can take place from the establishment of a, presumably, genetically depauperate population in a new adaptive zone. We explore the potential roles of epigenetics and transposable elements (TEs), of neutral process such as genetic drift in combination with trait genetic architecture, of gene flow limitation through isolation by distance (IBD), isolation by ecology and isolation by colonization, the possible role of intra-specific competition, and that of admixture and hybridization in increasing the genetic diversity of the founding populations. We show that many of the predictions of this model are corroborated. Most radiations occur in complex adaptive zones, which facilitate the establishment of many small populations exposed to genetic drift and divergent selection. We also show that many radiations (especially those resulting from long-distance dispersal) were established by polyploid lineages, and that many radiating lineages have small genome sizes. However, there are several other predictions which are not (yet) possible to test: that epigenetics has played a role in radiations, that radiations occur more frequently in clades with small gene flow distances, or that the ancestors of radiations had large fundamental niches. At least some of these may be testable in the future as more genome and epigenome data become available. The implication of this model is that many radiations may be hard polytomies because the genetic divergence leading to speciation happens within a very short time, and that the divergence history may be further obscured by hybridization. Furthermore, it suggests that only lineages with the appropriate genetic architecture will be able to radiate, and that such a radiation will happen in a meta-population environment. Understanding the genetic architecture of a lineage may be an essential part of accounting for why some lineages radiate, and some do not.
Collapse
Affiliation(s)
- Yamama Naciri
- Plant Systematics and Biodiversity Laboratory, Department of Botany and Plant biology of the University of Geneva, 1 Chemin de l'Impératrice, CH-1292, Chambésy, Geneva, Switzerland
| | - H Peter Linder
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| |
Collapse
|
57
|
Abstract
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both
in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
58
|
Abstract
In mammals and invertebrates, the proliferation of an invading transposable element (TE) is thought to be stopped by an insertion into a piRNA cluster. Here, we explore the dynamics of TE invasions under this trap model using computer simulations. We found that piRNA clusters confer a substantial benefit, effectively preventing extinction of host populations from a proliferation of deleterious TEs. TE invasions consist of three distinct phases: first, the TE amplifies within the population, next TE proliferation is stopped by segregating cluster insertions, and finally the TE is inactivated by fixation of a cluster insertion. Suppression by segregating cluster insertions is unstable and bursts of TE activity may yet occur. The transposition rate and the population size mostly influence the length of the phases but not the amount of TEs accumulating during an invasion. Solely, the size of piRNA clusters was identified as a major factor influencing TE abundance. We found that a single nonrecombining cluster is more efficient in stopping invasions than clusters distributed over several chromosomes. Recombination among cluster sites makes it necessary that each diploid carries, on the average, four cluster insertions to stop an invasion. Surprisingly, negative selection in a model with piRNA clusters can lead to a novel equilibrium state, where TE copy numbers remain stable despite only some individuals in a population carrying a cluster insertion. In Drosophila melanogaster, the trap model accounts for the abundance of TEs produced in the germline but fails to predict the abundance of TEs produced in the soma.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
59
|
Lu H, Cui X, Zhao Y, Magwanga RO, Li P, Cai X, Zhou Z, Wang X, Liu Y, Xu Y, Hou Y, Peng R, Wang K, Liu F. Identification of a genome-specific repetitive element in the Gossypium D genome. PeerJ 2020; 8:e8344. [PMID: 31915591 PMCID: PMC6944119 DOI: 10.7717/peerj.8344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023] Open
Abstract
The activity of genome-specific repetitive sequences is the main cause of genome variation between Gossypium A and D genomes. Through comparative analysis of the two genomes, we retrieved a repetitive element termed ICRd motif, which appears frequently in the diploid Gossypium raimondii (D5) genome but rarely in the diploid Gossypium arboreum (A2) genome. We further explored the existence of the ICRd motif in chromosomes of G. raimondii, G. arboreum, and two tetraploid (AADD) cotton species, Gossypium hirsutum and Gossypium barbadense, by fluorescence in situ hybridization (FISH), and observed that the ICRd motif exists in the D5 and D-subgenomes but not in the A2 and A-subgenomes. The ICRd motif comprises two components, a variable tandem repeat (TR) region and a conservative sequence (CS). The two constituents each have hundreds of repeats that evenly distribute across 13 chromosomes of the D5genome. The ICRd motif (and its repeats) was revealed as the common conservative region harbored by ancient Long Terminal Repeat Retrotransposons. Identification and investigation of the ICRd motif promotes the study of A and D genome differences, facilitates research on Gossypium genome evolution, and provides assistance to subgenome identification and genome assembling.
Collapse
Affiliation(s)
- Hejun Lu
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Namur, Belgium.,Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Xinglei Cui
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yanyan Zhao
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Richard Odongo Magwanga
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China.,School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo-Kenya, Bondo, Kenya
| | - Pengcheng Li
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Xiaoyan Cai
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Zhongli Zhou
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Xingxing Wang
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yanchao Xu
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yuqing Hou
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, China
| | - Kunbo Wang
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China.,Tarium University, Alar, Xinjiang, China
| | - Fang Liu
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| |
Collapse
|
60
|
Lu H, Cui X, Zhao Y, Magwanga RO, Li P, Cai X, Zhou Z, Wang X, Liu Y, Xu Y, Hou Y, Peng R, Wang K, Liu F. Identification of a genome-specific repetitive element in the Gossypium D genome. PeerJ 2020; 8:e8344. [PMID: 31915591 DOI: 10.7287/peerj.preprints.27806v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/04/2019] [Indexed: 05/23/2023] Open
Abstract
The activity of genome-specific repetitive sequences is the main cause of genome variation between Gossypium A and D genomes. Through comparative analysis of the two genomes, we retrieved a repetitive element termed ICRd motif, which appears frequently in the diploid Gossypium raimondii (D5) genome but rarely in the diploid Gossypium arboreum (A2) genome. We further explored the existence of the ICRd motif in chromosomes of G. raimondii, G. arboreum, and two tetraploid (AADD) cotton species, Gossypium hirsutum and Gossypium barbadense, by fluorescence in situ hybridization (FISH), and observed that the ICRd motif exists in the D5 and D-subgenomes but not in the A2 and A-subgenomes. The ICRd motif comprises two components, a variable tandem repeat (TR) region and a conservative sequence (CS). The two constituents each have hundreds of repeats that evenly distribute across 13 chromosomes of the D5genome. The ICRd motif (and its repeats) was revealed as the common conservative region harbored by ancient Long Terminal Repeat Retrotransposons. Identification and investigation of the ICRd motif promotes the study of A and D genome differences, facilitates research on Gossypium genome evolution, and provides assistance to subgenome identification and genome assembling.
Collapse
Affiliation(s)
- Hejun Lu
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Namur, Belgium
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Xinglei Cui
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yanyan Zhao
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Richard Odongo Magwanga
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo-Kenya, Bondo, Kenya
| | - Pengcheng Li
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Xiaoyan Cai
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Zhongli Zhou
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Xingxing Wang
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yanchao Xu
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yuqing Hou
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, China
| | - Kunbo Wang
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
- Tarium University, Alar, Xinjiang, China
| | - Fang Liu
- Research Base of Tarium University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| |
Collapse
|
61
|
Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergio Pimpinelli
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| |
Collapse
|
62
|
Wideman JG, Novick A, Muñoz-Gómez SA, Doolittle WF. Neutral evolution of cellular phenotypes. Curr Opin Genet Dev 2019; 58-59:87-94. [PMID: 31574422 DOI: 10.1016/j.gde.2019.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
Abstract
Eukaryotes exhibit a great diversity of cellular and subcellular morphologies, but their basic underlying architecture is fairly constant. All have a nucleus, Golgi, cytoskeleton, plasma membrane, vesicles, ribosomes, and all known lineages but one have mitochondrion-related organelles. Moreover, most eukaryotes undergo processes such as mitosis, meiosis, DNA recombination, and often perform feats such as phagocytosis, and amoeboid and flagellar movement. With all of these commonalities, it is obvious that eukaryotes evolved from a common ancestor, but it is not obvious how eukaryotes came to have their diverse structural phenotypes. Are these phenotypes adaptations to particular niches, their evolution dominated by positive natural selection? Or is eukaryotic cellular diversity substantially the product of neutral evolutionary processes, with adaptation either illusory or a secondary consequence? In this paper, we outline how a hierarchical view of phenotype can be used to articulate a neutral theory of phenotypic evolution, involving processes such as gene loss, gene replacement by homologues or analogues, gene duplication followed by subfunctionalization, and constructive neutral evolution. We suggest that neutral iterations of these processes followed by entrenchment of their products can explain much of the diversity of cellular, developmental, and biochemical phenotypes of unicellular eukaryotes and should be explored in addition to adaptive explanations.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Centre for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287, USA; Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Aaron Novick
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Philosophy, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Philosophy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sergio A Muñoz-Gómez
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - W Ford Doolittle
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
63
|
Mustafin RN, Khusnutdinova EK. The Role of Reverse Transcriptase in the Origin of Life. BIOCHEMISTRY (MOSCOW) 2019; 84:870-883. [DOI: 10.1134/s0006297919080030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Abstract
Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as N6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Collapse
Affiliation(s)
- Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Jennifer M Frost
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK.
| |
Collapse
|
65
|
Press MO, Hall AN, Morton EA, Queitsch C. Substitutions Are Boring: Some Arguments about Parallel Mutations and High Mutation Rates. Trends Genet 2019; 35:253-264. [PMID: 30797597 PMCID: PMC6435258 DOI: 10.1016/j.tig.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/20/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
Abstract
Extant genomes are largely shaped by global transposition, copy-number fluctuation, and rearrangement of DNA sequences rather than by substitutions of single nucleotides. Although many of these large-scale mutations have low probabilities and are unlikely to repeat, others are recurrent or predictable in their effects, leading to stereotyped genome architectures and genetic variation in both eukaryotes and prokaryotes. Such recurrent, parallel mutation modes can profoundly shape the paths taken by evolution and undermine common models of evolutionary genetics. Similar patterns are also evident at the smaller scales of individual genes or short sequences. The scale and extent of this 'non-substitution' variation has recently come into focus through the advent of new genomic technologies; however, it is still not widely considered in genotype-phenotype association studies. In this review we identify common features of these disparate mutational phenomena and comment on the importance and interpretation of these mutational patterns.
Collapse
Affiliation(s)
| | - Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, WA 91895, USA; Department of Molecular and Cellular Biology, University of Washington, Seattle, WA 91895, USA
| | - Elizabeth A Morton
- Department of Genome Sciences, University of Washington, Seattle, WA 91895, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 91895, USA.
| |
Collapse
|
66
|
Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K. Transposable elements contribute to fungal genes and impact fungal lifestyle. Sci Rep 2019; 9:4307. [PMID: 30867521 PMCID: PMC6416283 DOI: 10.1038/s41598-019-40965-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
The last decade brought a still growing experimental evidence of mobilome impact on host's gene expression. We systematically analysed genomic location of transposable elements (TEs) in 625 publicly available fungal genomes from the NCBI database in order to explore their potential roles in genome evolution and correlation with species' lifestyle. We found that non-autonomous TEs and remnant copies are evenly distributed across genomes. In consequence, they also massively overlap with regions annotated as genes, which suggests a great contribution of TE-derived sequences to host's coding genome. Younger and potentially active TEs cluster with one another away from genic regions. This non-randomness is a sign of either selection against insertion of TEs in gene proximity or target site preference among some types of TEs. Proteins encoded by genes with old transposable elements insertions have significantly less repeat and protein-protein interaction motifs but are richer in enzymatic domains. However, genes only proximal to TEs do not display any functional enrichment. Our findings show that adaptive cases of TE insertion remain a marginal phenomenon, and the overwhelming majority of TEs are evolving neutrally. Eventually, animal-related and pathogenic fungi have more TEs inserted into genes than fungi with other lifestyles. This is the first systematic, kingdom-wide study concerning mobile elements and their genomic neighbourhood. The obtained results should inspire further research concerning the roles TEs played in evolution and how they shape the life we know today.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | | | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| |
Collapse
|
67
|
Mustafin RN. Functional Dualism of Transposon Transcripts in Evolution of Eukaryotic Genomes. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418070019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
68
|
McDougall C. Comparative De Novo transcriptome analysis of the Australian black-lip and Sydney rock oysters reveals expansion of repetitive elements in Saccostrea genomes. PLoS One 2018; 13:e0206417. [PMID: 30359422 PMCID: PMC6201952 DOI: 10.1371/journal.pone.0206417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 11/18/2022] Open
Abstract
Ostreid oysters (the 'true oysters') represent a large and commercially important family of bivalve molluscs. Several species, such as the Pacific oyster (Magallana gigas), the American oyster (Crassostrea virginica), the European oyster (Ostrea edulis) and the Sydney rock oyster (Saccostrea glomerata), are currently farmed at a large scale. However a number of other species may also be suitable for commercial-scale aquaculture. One such species is the 'black-lip oyster', a large Saccostrea species of uncertain taxonomic affinity found in northern Australia. Here, phylogenetic analysis of the COI gene places this oyster within a clade identified in a previous study of Japanese Saccostrea species, 'Saccostrea lineage J'. To facilitate comparisons between this oyster and the better-studied S. glomerata, de novo transcriptomes were generated from larval stages and adult tissues of both species. Patterns of orthology indicated an expansion of repetitive elements within Saccostrea genomes when compared to M. gigas and C. virginica, which may be reflected in increased evolutionary rates and/or genome sizes. The generation of high-quality transcriptomes for these two commercially relevant oysters provides a valuable resource for gene identification and comparison of molecular processes in these and other mollusc species.
Collapse
Affiliation(s)
- Carmel McDougall
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
- * E-mail:
| |
Collapse
|