51
|
Tang JCY, Szikra T, Kozorovitskiy Y, Teixiera M, Sabatini BL, Roska B, Cepko CL. A nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell 2013; 154:928-39. [PMID: 23953120 PMCID: PMC4096992 DOI: 10.1016/j.cell.2013.07.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 05/31/2013] [Accepted: 07/15/2013] [Indexed: 01/22/2023]
Abstract
Fluorescent proteins are commonly used to label cells across organisms, but the unmodified forms cannot control biological activities. Using GFP-binding proteins derived from Camelid antibodies, we co-opted GFP as a scaffold for inducing formation of biologically active complexes, developing a library of hybrid transcription factors that control gene expression only in the presence of GFP or its derivatives. The modular design allows for variation in key properties such as DNA specificity, transcriptional potency, and drug dependency. Production of GFP controlled cell-specific gene expression and facilitated functional perturbations in the mouse retina and brain. Further, retrofitting existing transgenic GFP mouse and zebrafish lines for GFP-dependent transcription enabled applications such as optogenetic probing of neural circuits. This work establishes GFP as a multifunctional scaffold and opens the door to selective manipulation of diverse GFP-labeled cells across transgenic lines. This approach may also be extended to exploit other intracellular products as cell-specific scaffolds in multicellular organisms.
Collapse
Affiliation(s)
- Jonathan C Y Tang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Delerue F, White M, Ittner LM. Inducible, tightly regulated and non-leaky neuronal gene expression in mice. Transgenic Res 2013; 23:225-33. [PMID: 24214494 DOI: 10.1007/s11248-013-9767-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
Abstract
The Tetracycline (Tet)-controlled inducible system is the most widely used reversible system for transgene expression in mice with over 500 lines created to date. Although this system has been optimized over the years, it still has limitations such as residual transgene expression when turned off, referred to as leakiness. Here, we present a series of new Tet-OFF transgenic mice based on the second generation tetracycline-responsive transactivator system. The tTA-Advanced (tTA2(S)) is expressed under control of the neuron-specific Thy1.2 promoter (Thy-OFF), to regulate expression in the mouse brain. In addition, we generated a lacZ reporter line, utilizing the P tight Tet-responsive promoter (P(tight)-lacZ), to test our system. Two Thy-OFF transgenic lines displaying two distinct patterns of expression were selected. Oral doxycycline treatment of Thy-OFF/P tight-lacZ mice demonstrated tight transgene regulation with no leak expression. These new Thy-OFF mice are valuable for studies in a broad range of neurodegenerative diseases such as Alzheimer's disease and related forms of dementia, where control of transgene expression is critical to understanding mechanisms underlying the disease. Furthermore, P tight-lacZ reporter mice may be widely applicable.
Collapse
Affiliation(s)
- Fabien Delerue
- Transgenic Animal Unit, School of Medical Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
53
|
Chtarto A, Bockstael O, Tshibangu T, Dewitte O, Levivier M, Tenenbaum L. A next step in adeno-associated virus-mediated gene therapy for neurological diseases: regulation and targeting. Br J Clin Pharmacol 2013; 76:217-32. [PMID: 23331189 DOI: 10.1111/bcp.12065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/07/2012] [Indexed: 02/04/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described.
Collapse
Affiliation(s)
- Abdelwahed Chtarto
- Laboratory of Experimental Neurosurgery, Free University of Brussels (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
54
|
Ang J, Harris E, Hussey BJ, Kil R, McMillen DR. Tuning response curves for synthetic biology. ACS Synth Biol 2013; 2:547-67. [PMID: 23905721 PMCID: PMC3805330 DOI: 10.1021/sb4000564] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 01/07/2023]
Abstract
Synthetic biology may be viewed as an effort to establish, formalize, and develop an engineering discipline in the context of biological systems. The ability to tune the properties of individual components is central to the process of system design in all fields of engineering, and synthetic biology is no exception. A large and growing number of approaches have been developed for tuning the responses of cellular systems, and here we address specifically the issue of tuning the rate of response of a system: given a system where an input affects the rate of change of an output, how can the shape of the response curve be altered experimentally? This affects a system's dynamics as well as its steady-state properties, both of which are critical in the design of systems in synthetic biology, particularly those with multiple components. We begin by reviewing a mathematical formulation that captures a broad class of biological response curves and use this to define a standard set of varieties of tuning: vertical shifting, horizontal scaling, and the like. We then survey the experimental literature, classifying the results into our defined categories, and organizing them by regulatory level: transcriptional, post-transcriptional, and post-translational.
Collapse
Affiliation(s)
- Jordan Ang
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Edouard Harris
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Brendan J. Hussey
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Richard Kil
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - David R. McMillen
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
55
|
Weber T, Köster R. Genetic tools for multicolor imaging in zebrafish larvae. Methods 2013; 62:279-91. [DOI: 10.1016/j.ymeth.2013.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/08/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023] Open
|
56
|
Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence. J Microbiol 2013; 51:345-51. [PMID: 23812815 DOI: 10.1007/s12275-013-2577-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/16/2013] [Indexed: 10/26/2022]
Abstract
We previously showed that the expression of ENO1 (enolase) in the fungal pathogen Candida albicans is critical for cell growth. In this study, we investigate the contribution of the ENO1 gene to virulence. We conducted our functional study of ENO1 in C. albicans by constructing an eno1/eno1 null mutant strain in which both ENO1 alleles in the genome were knockouted with the SAT1 flipper cassette that contains the nourseothricin-resistance marker. Although the null mutant failed to grow on synthetic media containing glucose, it was capable of growth on media containing yeast extract, peptone, and non-fermentable carbon sources. The null mutant was more susceptible to certain antifungal drugs. It also exhibited defective hyphal formation, and was avirulent in BALB/c mice.
Collapse
|
57
|
|
58
|
Wimmer C, Platzer S, Hillen W, Klotzsche M. A novel method to analyze nucleocytoplasmic transport in vivo by using short peptide tags. J Mol Biol 2013; 425:1839-45. [PMID: 23416199 DOI: 10.1016/j.jmb.2013.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 01/14/2023]
Abstract
Regulated nucleocytoplasmic transport is of vital importance for maintaining the physiology of the cell, and disturbed nucleocytoplasmic shuttling of certain proteins has been found in a variety of diseases including cancer. The most frequently used procedure to analyze those processes is to fuse the protein of interest to a fluorescent protein such as GFP (green fluorescent protein)--a technique that is prone to impair normal protein function and subcellular localization. We report a novel approach to monitor nucleocytoplasmic transport processes in vivo by combining short TetR inducing peptide tags (TIP) with a TetR-controlled reporter gene in a human cell line. The technology is exemplified by demonstrating nucleocytoplasmic shuttling of the glucocorticoid receptor and activity of two further TIP fusions to cancer-related proteins. The technology presented provides the basis for efficient screening systems to isolate compounds altering the nucleocytoplasmic distribution of a protein of interest.
Collapse
Affiliation(s)
- Cornelius Wimmer
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
59
|
Volzing K, Biliouris K, Smadbeck P, Kaznessis Y. Computer-Aided Design of Synthetic Biological Constructs with the Synthetic Biology Software Suite. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
60
|
Bargielowski I, Kaufmann C, Alphey L, Reiter P, Koella J. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti. Vector Borne Zoonotic Dis 2012; 12:1053-8. [PMID: 22835152 PMCID: PMC3525892 DOI: 10.1089/vbz.2012.0994] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability of sterile males to survive, disperse, find, and mate with wild females is key to the success of sterile insect technique (SIT). The Release of Insects carrying a Dominant Lethal (RIDL) system is a genetics-based SIT strategy for Aedes aegypti. We examine two aspects of insect performance, flight potential (dispersal ability) and teneral energy reserves, by comparing wild-type (WT) males with genetically-modified lines carrying the tetracycline-repressible constructs OX513A and OX3604C. Our results show significant differences in the flight capacity of the modified lines. OX513A males bred with tetracycline covered 38% less distance, while OX3604C males reared without tetracycline spent 21% less time in flight than their WT counterparts. Such differences in flight performance should be considered when designing release programs (e.g., by placing release sites sufficiently close together to achieve adequate coverage). All mosquito lines had similar teneral carbohydrate contents, though males of the OX3604C line contained more lipids. The addition of tetracycline to the larval diet did not influence the flight potential of the males; however, it did change the teneral sugar reserves of the WT and the lipid reserves of both the WT and the OX3604C lines.
Collapse
Affiliation(s)
- Irka Bargielowski
- Division of Biology, Faculty of Natural Sciences, Imperial College London , London, United Kingdom.
| | | | | | | | | |
Collapse
|
61
|
Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene 2012; 32:4806-13. [PMID: 23128394 DOI: 10.1038/onc.2012.495] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) from the gene cluster miR-143-145 are diminished in cells of colorectal tumor origin when compared with normal colon epithelia. Until now, no report has addressed the coordinate action of these miRNAs in colorectal cancer (CRC). In this study, we performed a comprehensive molecular and functional analysis of the miRNA cluster regulatory network. First, we evaluated proliferation, migration, anchorage-independent growth and chemoresistance in the colon tumor cell lines after miR-143 and miR-145 restoration. Then, we assessed the contribution of single genes targeted by miR-143 and miR-145 by reinforcing their expression and checking functional recovery. Restoring miR-143 and miR-145 in colon cancer cells decreases proliferation, migration and chemoresistance. We identified cluster of differentiation 44 (CD44), Kruppel-like factor 5 (KLF5), Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) as proteins targeted by miR-143 and miR-145. Their re-expression can partially revert a decrease in transformation properties caused by the overexpression of miR-143 and miR-145. In addition, we determined a set of mRNAs that are diminished after reinforcing miR-143 and miR-145 expression. The whole transcriptome analysis ascertained that downregulated transcripts are enriched in predicted target genes in a statistically significant manner. A number of additional genes, whose expression decreases as a direct or indirect consequence of miR-143 and miR-145, reveals a complex regulatory network that affects cell signaling pathways involved in transformation. In conclusion, we identified a coordinated program of gene repression by miR-143 and miR-145, in CRC, where either of the two miRNAs share a target transcript, or where the target transcripts share a common signaling pathway. Major mediators of the oncosuppression by miR-143 and miR-145 are genes belonging to the growth factor receptor-mitogen-activated protein kinase network and to the p53 signaling pathway.
Collapse
|
62
|
Ya-Feng Z, Gang S, Xiao-Tong Z, Zhi-Qi Z, Xia-Jing L, Song-Bo W, Li-Na W, Yong-Liang Z, Qing-Yan J. Identification of an intestine-specific promoter and inducible expression of bacterial α-galactosidase in mammalian cells by a lac operon system. J Anim Sci Biotechnol 2012; 3:32. [PMID: 23111091 PMCID: PMC3527164 DOI: 10.1186/2049-1891-3-32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 10/15/2012] [Indexed: 12/04/2022] Open
Abstract
Background α-galactosidase has been widely used in animal husbandry to reduce anti-nutritional factors (such as α-galactoside) in feed. Intestine-specific and substrate inducible expression of α-galactosidase would be highly beneficial for transgenic animal production. Methods To achieve the intestine-specific and substrate inducible expression of α-galactosidase, we first identified intestine-specific promoters by comparing the transcriptional activity and tissue specificity of four intestine-specific promoters from human intestinal fatty acid binding protein, rat intestinal fatty acid binding protein, human mucin-2 and human lysozyme. We made two chimeric constructs combining the promoter and enhancer of human mucin-2, rat intestinal trefoil factor and human sucrase-isomaltase. Then a modified lac operon system was constructed to investigate the induction of α-galactosidase expression and enzyme activity by isopropyl β-D-1-thiogalactopyranoside (IPTG) and an α-galactosidase substrate, α-lactose. We declared that the research carried out on human (Zhai Yafeng) was in compliance with the Helsinki Declaration, and experimental research on animals also followed internationally recognized guidelines. Results The activity of the human mucin-2 promoter was about 2 to 3 times higher than that of other intestine-specific promoters. In the lac operon system, the repressor significantly decreased (P < 0.05) luciferase activity by approximately 6.5-fold and reduced the percentage of cells expressing green fluorescent protein (GFP) by approximately 2-fold. In addition, the expression level of α-galactosidase mRNA was decreased by 6-fold and α-galactosidase activity was reduced by 8-fold. In line with our expectations, IPTG and α-lactose supplementation reversed (P < 0.05) the inhibition and produced a 5-fold increase of luciferase activity, an 11-fold enhancement in the percentage of cells with GFP expression and an increase in α-galactosidase mRNA abundance (by about 5-fold) and α-galactosidase activity (by about 7-fold). Conclusions We have successfully constructed a high specificity inducible lac operon system in an intestine-derived cell line, which could be of great value for gene therapy applications and transgenic animal production.
Collapse
Affiliation(s)
- Zhai Ya-Feng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Expanding the Repertoire of Optogenetically Targeted Cells with an Enhanced Gene Expression System. Cell Rep 2012; 2:397-406. [DOI: 10.1016/j.celrep.2012.06.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/19/2012] [Accepted: 06/11/2012] [Indexed: 02/04/2023] Open
|
64
|
Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balázsi G. Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput Biol 2012; 8:e1002480. [PMID: 22511863 PMCID: PMC3325171 DOI: 10.1371/journal.pcbi.1002480] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/05/2012] [Indexed: 11/30/2022] Open
Abstract
Gene expression actualizes the organismal phenotypes encoded within the genome in an environment-dependent manner. Among all encoded phenotypes, cell population growth rate (fitness) is perhaps the most important, since it determines how well-adapted a genotype is in various environments. Traditional biological measurement techniques have revealed the connection between the environment and fitness based on the gene expression mean. Yet, recently it became clear that cells with identical genomes exposed to the same environment can differ dramatically from the population average in their gene expression and division rate (individual fitness). For cell populations with bimodal gene expression, this difference is particularly pronounced, and may involve stochastic transitions between two cellular states that form distinct sub-populations. Currently it remains unclear how a cell population's growth rate and its subpopulation fractions emerge from the molecular-level kinetics of gene networks and the division rates of single cells. To address this question we developed and quantitatively characterized an inducible, bistable synthetic gene circuit controlling the expression of a bifunctional antibiotic resistance gene in Saccharomyces cerevisiae. Following fitness and fluorescence measurements in two distinct environments (inducer alone and antibiotic alone), we applied a computational approach to predict cell population fitness and subpopulation fractions in the combination of these environments based on stochastic cellular movement in gene expression space and fitness space. We found that knowing the fitness and nongenetic (cellular) memory associated with specific gene expression states were necessary for predicting the overall fitness of cell populations in combined environments. We validated these predictions experimentally and identified environmental conditions that defined a “sweet spot” of drug resistance. These findings may provide a roadmap for connecting the molecular-level kinetics of gene networks to cell population fitness in well-defined environments, and may have important implications for phenotypic variability of drug resistance in natural settings. It is common belief that the properties of cells depend on their environment and on the genes they carry. Yet, many cases exist where individual cells in the same environment behave very differently, despite sharing the same genes. This creates a problem when we try to explain the behavior of a cell population based on the genes these cells carry. For example, it is difficult to predict how fast the overall number of cells increases based on the genes they all carry if some cells divide much faster than others. We addressed this problem using a synthetic gene circuit that could randomly allocate cells into drug resistant and drug sensitive states. We could control the fractions of cells and the time they resided in these states by adding an inducer to the growth solution. After measuring how fast cells transitioned between these two states, and how fast they grew in inducer and drug alone, we predicted computationally how fast they should grow when both inducer and drug are present. We validated experimentally these predictions and found a “sweet spot” of drug resistance where cells grew fastest in the presence of drugs.
Collapse
Affiliation(s)
- Dmitry Nevozhay
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rhys M. Adams
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Elizabeth Van Itallie
- Department of Biochemistry and Cell Biology and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas, United States of America
| | - Matthew R. Bennett
- Department of Biochemistry and Cell Biology and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas, United States of America
| | - Gábor Balázsi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
65
|
Hammachi F, Morrison G, Sharov A, Livigni A, Narayan S, Papapetrou E, O'Malley J, Kaji K, Ko M, Ptashne M, Brickman J. Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency. Cell Rep 2012; 1:99-109. [PMID: 22832160 PMCID: PMC3778438 DOI: 10.1016/j.celrep.2011.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/19/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022] Open
Abstract
Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these functions. Here, we show that fusion proteins containing the coding sequence of Oct4 or Xlpou91 (the Xenopus homolog of Oct4) fused to activating regions, but not those fused to repressing regions, behave as Oct4, suppressing differentiation and promoting maintenance of undifferentiated phenotypes in vivo and in vitro. An Oct4 activation domain fusion supported embryonic stem cell self-renewal in vitro at lower concentrations than that required for Oct4 while alleviating the ordinary requirement for the cytokine LIF. At still lower levels of the fusion, LIF dependence was restored. We conclude that the necessary and sufficient function of Oct4 in promoting pluripotency is to activate specific target genes.
Collapse
Affiliation(s)
- Fella Hammachi
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, EH16 4UU Edinburgh, UK
| | - Gillian M. Morrison
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, EH16 4UU Edinburgh, UK
| | - Alexei A. Sharov
- Laboratory of Genetics, National Institute on Aging, NIH Biomedical Research Centre, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Alessandra Livigni
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, EH16 4UU Edinburgh, UK
| | - Santosh Narayan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430E 67th St, New York, NY 10065, USA
| | - Eirini P. Papapetrou
- Center for Cell Engineering, Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - James O'Malley
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, EH16 4UU Edinburgh, UK
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, EH16 4UU Edinburgh, UK
| | - Minoru S.H. Ko
- Laboratory of Genetics, National Institute on Aging, NIH Biomedical Research Centre, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Mark Ptashne
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430E 67th St, New York, NY 10065, USA
| | - Joshua M. Brickman
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, EH16 4UU Edinburgh, UK
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N
| |
Collapse
|
66
|
Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K, Earnshaw WC, Choo KHA, Hudson DF. Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 2012; 125:1591-604. [PMID: 22344259 DOI: 10.1242/jcs.097790] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, two condensin complexes exist, condensin I and condensin II, which have differing but unresolved roles in organizing mitotic chromosomes. To dissect accurately the role of each complex in mitosis, we have made and studied the first vertebrate conditional knockouts of the genes encoding condensin I subunit CAP-H and condensin II subunit CAP-D3 in chicken DT40 cells. Live-cell imaging reveals highly distinct segregation defects. CAP-D3 (condensin II) knockout results in masses of chromatin-containing anaphase bridges. CAP-H (condensin I)-knockout anaphases have a more subtle defect, with chromatids showing fine chromatin fibres that are associated with failure of cytokinesis and cell death. Super-resolution microscopy reveals that condensin-I-depleted mitotic chromosomes are wider and shorter, with a diffuse chromosome scaffold, whereas condensin-II-depleted chromosomes retain a more defined scaffold, with chromosomes more stretched and seemingly lacking in axial rigidity. We conclude that condensin II is required primarily to provide rigidity by establishing an initial chromosome axis around which condensin I can arrange loops of chromatin.
Collapse
Affiliation(s)
- Lydia C Green
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Botezatu L, Sievers S, Gama-Norton L, Schucht R, Hauser H, Wirth D. Genetic aspects of cell line development from a synthetic biology perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:251-284. [PMID: 22068842 DOI: 10.1007/10_2011_117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Animal cells can be regarded as factories for the production of relevant proteins. The advances described in this chapter towards the development of cell lines with higher productivity capacities, certain metabolic and proliferation properties, reduced apoptosis and other features must be regarded in an integrative perspective. The systematic application of systems biology approaches in combination with a synthetic arsenal for targeted modification of endogenous networks are proposed to lead towards the achievement of a predictable and technologically advanced cell system with high biotechnological impact.
Collapse
Affiliation(s)
- L Botezatu
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Lynd A, Lycett GJ. Optimization of the Gal4-UAS system in an Anopheles gambiae cell line. INSECT MOLECULAR BIOLOGY 2011; 20:599-608. [PMID: 21699594 DOI: 10.1111/j.1365-2583.2011.01090.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The development of the bipartite Gal4-UAS system in Anopheles gambiae would improve the functional characterization of genes in this important malaria vector. Towards this aim, we used Gal4 driver plasmids to successfully activate expression of the reporter gene, luciferase, from UAS responder plasmids when cotransfected into an An. gambiae cell line. To optimize Gal4-regulated gene expression in mosquitoes, we compared the efficiency of a series of alternative Gal4 transactivators to drive reporter gene expression from responder plasmids incorporating different numbers of tandemly arrayed Gal4 binding sites or upstream activation sequences (UAS). The results indicated that the native Gal4 is only weakly active in these cells. Modified forms of Gal4, including those carrying minimal VP16 activation domains, as well as a deleted form of Gal4, give up to 20-fold greater activity than the native protein, when used in conjunction with a responder plasmid having 14 UAS repeats. The identification of Gal4-UAS vectors that are efficiently expressed in a mosquito cell line should facilitate the transfer of this versatile expression system to An. gambiae, and potentially to other insects of medical importance.
Collapse
Affiliation(s)
- A Lynd
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | | |
Collapse
|
69
|
Karlsson M, Weber W, Fussenegger M. De novo design and construction of an inducible gene expression system in mammalian cells. Methods Enzymol 2011; 497:239-53. [PMID: 21601090 DOI: 10.1016/b978-0-12-385075-1.00011-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inducible expression systems represent the founding technology for the emergence of synthetic biology in mammalian cells. The core molecules in these systems are bacterial regulator proteins that bind to or dissociate from a cognate DNA operator sequence in response to an exogenous stimulus like a small-molecule inducer. In this chapter, we describe a generic protocol of how bacterial regulator proteins can be applied to the design, construction, and optimization of an inducible expression system in mammalian cells. By choosing regulator proteins with an appropriate small-molecule inducer, this protocol provides a straightforward approach for establishing biosensors, cell-to-cell communication systems, or tools to control gene expression in vivo.
Collapse
Affiliation(s)
- Maria Karlsson
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
70
|
Reichenstein M, Rauner G, Barash I. Conditional repression of STAT5 expression during lactation reveals its exclusive roles in mammary gland morphology, milk-protein gene expression, and neonate growth. Mol Reprod Dev 2011; 78:585-96. [PMID: 21688337 DOI: 10.1002/mrd.21345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/29/2011] [Indexed: 11/07/2022]
Abstract
The role of Stat5 in maintaining adequate lactation was studied in Stat5a(-/-) mice expressing a conditionally suppressed transgenic STAT5 in their mammary glands. This system enables distinguishing STAT5's effects on lactation from its contribution to mammary development during gestation. Females were allowed to express STAT5 during their first pregnancy. After delivery, STAT5 levels were manipulated by doxycycline administration and withdrawal. In two lines of genetically modified mice, the absence of STAT5 expression during the first 10 days of lactation resulted in a decrease of 29% or 41% in newborn weight gain. The STAT5-dependent decrease in growth was recoverable, but not completely reversible, particularly when STAT5 expression was omitted for the first 4 days of lactation. Within the first 10 days of STAT5-omitted lactation, alveolar occupancy regressed by 50% compared to that measured at delivery. By Day 10, only 18% of the fat-pad area was involved in milk production. The alveolar regression caused by 4 days of STAT5 deficiency was reversible, but neonate growth remained delayed. STAT5 deficiency resulted in reduced estrogen receptor α and connexin 32 gene expression, accompanied by delayed induction of both anti- and pro-apoptotic Bcl-2 family members. An increase in Gata-3 expression may reflect an attempt to maintain alveolar progenitors. A decrease of 39% and 23% in WAP and α-lactalbumin expression, respectively, with no associated effects on β-casein, also resulted from lack of STAT5 expression in the first 10 days of lactation. This deficiency enhances the major effect of alveolar regression on delayed weight gain in newborns.
Collapse
|
71
|
König N, Åkesson E, Telorack M, Vasylovska S, Ngamjariyawat A, Sundström E, Oster A, Trolle C, Berens C, Aldskogius H, Seiger Å, Kozlova EN. Forced Runx1 expression in human neural stem/progenitor cells transplanted to the rat dorsal root ganglion cavity results in extensive axonal growth specifically from spinal cord-derived neurospheres. Stem Cells Dev 2011; 20:1847-57. [PMID: 21322790 DOI: 10.1089/scd.2010.0555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy holds great promise for treating a wide range of human disorders. However, ensuring the predictable differentiation of transplanted stem cells, eliminating their risk of tumor formation, and generating fully functional cells after transplantation remain major challenges in regenerative medicine. Here, we explore the potential of human neural stem/progenitor cells isolated from the embryonic forebrain (hfNSPCs) or the spinal cord (hscNSPCs) to differentiate to projection neurons when transplanted into the dorsal root ganglion cavity of adult recipient rats. To stimulate axonal growth, we transfected hfNSPC- and hscNSPC-derived neurospheres, prior to their transplantation, with a Tet-Off Runx1-overexpressing plasmid to maintain Runx1 expression in vivo after transplantation. Although pronounced cell differentiation was found in the Runx1-expressing transplants from both cell sources, we observed extensive, long-distance growth of axons exclusively from hscNSPC-derived transplants. These axons ultimately reached the dorsal root transitional zone, the boundary separating peripheral and central nervous systems. Our data show that hscNSPCs have the potential to differentiate to projection neurons with long-distance axonal outgrowth and that Runx1 overexpression is a useful approach to induce such outgrowth in specific sources of NSPCs.
Collapse
Affiliation(s)
- Niclas König
- Department of Neuroscience, Neuroanatomy, Uppsala University Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abe G, Suster ML, Kawakami K. Tol2-mediated Transgenesis, Gene Trapping, Enhancer Trapping, and the Gal4-UAS System. Methods Cell Biol 2011; 104:23-49. [DOI: 10.1016/b978-0-12-374814-0.00002-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
73
|
Heinz N, Schambach A, Galla M, Maetzig T, Baum C, Loew R, Schiedlmeier B. Retroviral and transposon-based tet-regulated all-in-one vectors with reduced background expression and improved dynamic range. Hum Gene Ther 2010; 22:166-76. [PMID: 20825282 DOI: 10.1089/hum.2010.099] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The regulated expression of therapeutic genes may become crucial in gene therapy when their constitutive expression interferes with cell fate in vivo. The efficient regulation of transgene expression requires tightly controlled inducible promoters, as shown for the tetracycline regulatory system (tet-system). However, its application requires the introduction of two components into the target cell genome: the tet-responsive transactivator and the regulated expression cassette. In order to facilitate the usage of the tet-system for approaches in gene therapy, both components have to be transferred by a single vector, thus eliminating the preselection of transactivator positive cells. Published "all-in-one" vectors for regulated transgene expression display a relatively low signal-to-noise ratio, resulting in regulatory windows of around 500-fold even in selected clones. In this study, we show that a modified vector architecture combined with the introduction of new tet-responsive promoters, Ptet, improved the dynamic range of such all-in-one vectors to levels up to 14,000-fold for viral and 25,000-fold for nonviral transfer vectors in nonclonal human cell lines, and up to 2,800-fold in murine hematopoietic cell lines. This improved regulation was the result of a strong reduction of background expression in the off-state, even if cells were transduced at high multiplicity of infection, while induction remained at high levels. In addition, the results indicated that successful regulation of gene expression in different target cells depended on vector architecture as well as the choice of the Ptet-promoter.
Collapse
Affiliation(s)
- Niels Heinz
- Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
74
|
Loew R, Heinz N, Hampf M, Bujard H, Gossen M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 2010; 10:81. [PMID: 21106052 PMCID: PMC3002914 DOI: 10.1186/1472-6750-10-81] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/24/2010] [Indexed: 11/10/2022] Open
Abstract
Background The performance of the tetracycline controlled transcriptional activation system (Tet system) depends critically on the choice of minimal promoters. They are indispensable to warrant low expression levels with the system turned "off". On the other hand, they must support high level of gene expression in the "on"-state. Results In this study, we systematically modified the widely used Cytomegalovirus (CMV) minimal promoter to further minimize background expression, resulting in an improved dynamic expression range. Using both plasmid-based and retroviral gene delivery, our analysis revealed that especially background expression levels could be significantly reduced when compared to previously established "standard" promoter designs. Our results also demonstrate the possibility to fine-tune expression levels in non-clonal cell populations. They also imply differences regarding the requirements for tight regulation and high level induction between transient and stable gene transfer systems. Conclusions Until now, our understanding of mammalian transcriptional regulation including promoter architecture is limited. Nevertheless, the partly empirical modification of cis-elements as shown in this study can lead to the specific improvement of the performance of minimal promoters. The novel composite Ptet promoters introduced here will further expand the utility of the Tet system.
Collapse
|
75
|
Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc Natl Acad Sci U S A 2010; 107:16166-71. [PMID: 20805468 DOI: 10.1073/pnas.1005957107] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of binary transcriptional systems offers many advantages for experimentally manipulating gene activity, as exemplified by the success of the Gal4/UAS system in Drosophila. To expand the number of applications, a second independent transactivator (TA) is desirable. Here, we present the optimization of an additional system based on LexA and show how it can be applied. We developed a series of LexA TAs, selectively suppressible via Gal80, that exhibit high transcriptional activity and low detrimental effects when expressed in vivo. In combination with Gal4, an appropriately selected LexA TA permits to program cells with a distinct balance and independent outputs of the two TAs. We demonstrate how the two systems can be combined for manipulating communicating cell populations, converting transient tissue-specific expression patterns into heritable, constitutive activities, and defining cell territories by intersecting TA expression domains. Finally, we describe a versatile enhancer trap system that allows swapping TA and generating mosaics composed of Gal4 and LexA TA-expressing cells. The optimized LexA system facilitates precise analyses of complex biological phenomena and signaling pathways in Drosophila.
Collapse
|
76
|
Synthetic biology guides biofuel production. J Biomed Biotechnol 2010; 2010. [PMID: 20827393 PMCID: PMC2935196 DOI: 10.1155/2010/541698] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 07/05/2010] [Indexed: 01/26/2023] Open
Abstract
The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.
Collapse
|
77
|
Lochner S, Einsiedel J, Schaefer G, Berens C, Hillen W, Gmeiner P. Anhydrotetracycline–peptide conjugates as representatives for ligand-based transactivating systems. Bioorg Med Chem 2010; 18:6127-33. [DOI: 10.1016/j.bmc.2010.06.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022]
|
78
|
Gou D, Rubalcava M, Sauer S, Mora-Bermúdez F, Erdjument-Bromage H, Tempst P, Kremmer E, Sauer F. SETDB1 is involved in postembryonic DNA methylation and gene silencing in Drosophila. PLoS One 2010; 5:e10581. [PMID: 20498723 PMCID: PMC2871795 DOI: 10.1371/journal.pone.0010581] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/29/2010] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9) by members of the Su(var)3-9 family of histone methyltransferases (HMTs) triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1) can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2) and Su(var)205, the Drosophila ortholog of mammalian "Heterochromatin Protein 1", to target genes for dSETDB1. By enlisting Dnmt2 and Su(var)205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb) in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development.
Collapse
Affiliation(s)
- Dawei Gou
- Department of Biochemistry, University of California Riverside, Riverside, California, United States of America
| | - Monica Rubalcava
- Department of Biochemistry, University of California Riverside, Riverside, California, United States of America
| | - Silvia Sauer
- Department of Biochemistry, University of California Riverside, Riverside, California, United States of America
| | - Felipe Mora-Bermúdez
- Zentrum für Molekulare Biologie der Universität Heidelberg, Universität Heidelberg, Heidelberg, Germany
| | - Hediye Erdjument-Bromage
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Frank Sauer
- Department of Biochemistry, University of California Riverside, Riverside, California, United States of America
- Zentrum für Molekulare Biologie der Universität Heidelberg, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
79
|
Haberl F, Lanig H, Clark T. Induction of the tetracycline repressor: characterization by molecular-dynamics simulations. Proteins 2010; 77:857-66. [PMID: 19626707 DOI: 10.1002/prot.22505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Extensive molecular-dynamics simulations show that the distance between the centers of gravity of the two equivalent helices 3 in the DNA-binding heads of the dimer of the tetracycline-repressor protein (TetR) can be used as a reliable diagnostic of induction. This is not, however, true for X-ray structures, but only for molecular-dynamics simulations. This is suggested to be because TetR is inherently flexible along the coordinate of the allosteric change (as is always likely to be the case for allosteric proteins), so that crystal-packing forces can determine the conformation of the protein. However, the time scale of the allosteric rearrangement in the absence of DNA-complexation is found to be of the order of tens of nanoseconds, so that rearrangements can be observed reproducibly in 100 ns simulations. Metastable (pre-equilibrium) conformations of TetR have been observed for up to 60 ns. The likely equilibrium processes and key features of the TetR system are discussed.
Collapse
Affiliation(s)
- Florian Haberl
- Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr 25, D-91052 Erlangen, Germany
| | | | | |
Collapse
|
80
|
Abstract
Mouse models of human cancer have played a vital role in understanding tumorigenesis and answering experimental questions that other systems cannot address. Advances continue to be made that allow better understanding of the mechanisms of tumor development, and therefore the identification of better therapeutic and diagnostic strategies. We review major advances that have been made in modeling cancer in the mouse and specific areas of research that have been explored with mouse models. For example, although there are differences between mice and humans, new models are able to more accurately model sporadic human cancers by specifically controlling timing and location of mutations, even within single cells. As hypotheses are developed in human and cell culture systems, engineered mice provide the most tractable and accurate test of their validity in vivo. For example, largely through the use of these models, the microenvironment has been established to play a critical role in tumorigenesis, since tumor development and the interaction with surrounding stroma can be studied as both evolve. These mouse models have specifically fueled our understanding of cancer initiation, immune system roles, tumor angiogenesis, invasion, and metastasis, and the relevance of molecular diversity observed among human cancers. Currently, these models are being designed to facilitate in vivo imaging to track both primary and metastatic tumor development from much earlier stages than previously possible. Finally, the approaches developed in this field to achieve basic understanding are emerging as effective tools to guide much needed development of treatment strategies, diagnostic strategies, and patient stratification strategies in clinical research.
Collapse
Affiliation(s)
- Jessica C Walrath
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | |
Collapse
|
81
|
Zhu P, Narita Y, Bundschuh ST, Fajardo O, Schärer YPZ, Chattopadhyaya B, Bouldoires EA, Stepien AE, Deisseroth K, Arber S, Sprengel R, Rijli FM, Friedrich RW. Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System. Front Neural Circuits 2009; 3:21. [PMID: 20126518 PMCID: PMC2805431 DOI: 10.3389/neuro.04.021.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/27/2009] [Indexed: 01/07/2023] Open
Abstract
The conditional expression of transgenes at high levels in sparse and specific populations of neurons is important for high-resolution optogenetic analyses of neuronal circuits. We explored two complementary methods, viral gene delivery and the iTet-Off system, to express transgenes in the brain of zebrafish. High-level gene expression in neurons was achieved by Sindbis and Rabies viruses. The Tet system produced strong and specific gene expression that could be modulated conveniently by doxycycline. Moreover, transgenic lines showed expression in distinct, sparse and stable populations of neurons that appeared to be subsets of the neurons targeted by the promoter driving the Tet-activator. The Tet system therefore provides the opportunity to generate libraries of diverse expression patterns similar to gene trap approaches or the thy-1 promoter in mice, but with the additional possibility to pre-select cell types of interest. In transgenic lines expressing channelrhodopsin-2, action potential firing could be precisely controlled by two-photon stimulation at low laser power, presumably because the expression levels of the Tet-controlled genes were high even in adults. In channelrhodopsin-2-expressing larvae, optical stimulation with a single blue LED evoked distinct swimming behaviors including backward swimming. These approaches provide new opportunities for the optogenetic dissection of neuronal circuit structure and function.
Collapse
Affiliation(s)
- Peixin Zhu
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Manfredsson FP, Burger C, Rising AC, Zuobi-Hasona K, Sullivan LF, Lewin AS, Huang J, Piercefield E, Muzyczka N, Mandel RJ. Tight Long-term dynamic doxycycline responsive nigrostriatal GDNF using a single rAAV vector. Mol Ther 2009; 17:1857-67. [PMID: 19707186 DOI: 10.1038/mt.2009.196] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) gene transfer is being developed as a treatment for Parkinson's disease (PD). Due to the potential for side effects, external transgene regulation should enhance this strategy's safety profile. Here, we demonstrate dynamic control during long-term expression of GDNF using a recombinant adeno-associated virus (rAAV)-based bicistronic tetracycline (tet)-off construct. Nigrostriatal GDNF overexpression induces body weight alterations in rodents, enabling longitudinal in vivo tracking of GDNF expression after nigral vector delivery. Regulated GDNF expression was highly sensitive to dietary doxycycline (DOX), displaying undetectable striatal GDNF levels at serum DOX levels below those required for antimicrobial activity. However, in the absence of DOX, striatal GDNF levels exceeded levels required for efficacy in PD models. We also demonstrate the absence of a series of known GDNF-associated side effects when using direct intrastriatal vector delivery. Therefore, this single rAAV vector system meets most of the requirements for an experimental reagent for treatment of PD.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Neuroscience, Powell Gene Therapy Center, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Distel M, Wullimann MF, Köster RW. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 2009; 106:13365-70. [PMID: 19628697 PMCID: PMC2726396 DOI: 10.1073/pnas.0903060106] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Indexed: 01/08/2023] Open
Abstract
Combinatorial genetics for conditional transgene activation allows studying gene function with temporal and tissue specific control like the Gal4-UAS system, which has enabled sophisticated genetic studies in Drosophila. Recently this system was adapted for zebrafish and promising applications have been introduced. Here, we report a systematic optimization of zebrafish Gal4-UAS genetics by establishing an optimized Gal4-activator (KalTA4). We provide quantitative data for KalTA4-mediated transgene activation in dependence of UAS copy numbers to allow for studying dosage effects of transgene expression. Employing a Tol2 transposon-mediated KalTA4 enhancer trap screen biased for central nervous system expression, we present a collection of self-reporting red fluorescent KalTA4 activator strains. These strains reliably transactivate UAS-dependent transgenes and can be rendered homozygous. Furthermore, we have characterized the transactivation kinetics of tissue-specific KalTA4 activation, which led to the development of a self-maintaining effector strain "Kaloop." This strain relates transient KalTA4 expression during embryogenesis via a KalTA4-mediated autoregulatory mechanism to live adult structures. We demonstrate its use by showing that the secondary octaval nucleus in the adult hindbrain is likely derived from egr2b-expressing cells in rhombomere 5 during stages of early embryogenesis. These data demonstrate prolonged and maintained expression by Kalooping, a technique that can be used for permanent spatiotemporal genetic fate mapping and targeted transgene expression in zebrafish.
Collapse
Affiliation(s)
- Martin Distel
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; and
| | - Mario F. Wullimann
- Ludwig-Maximilians-University Munich, Department of Biology II, Graduate School of Systemic Neurosciences, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Reinhard W. Köster
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; and
| |
Collapse
|
84
|
Weber W, Fussenegger M. The impact of synthetic biology on drug discovery. Drug Discov Today 2009; 14:956-63. [PMID: 19580884 PMCID: PMC7108258 DOI: 10.1016/j.drudis.2009.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022]
Abstract
The emergence of synthetic biology is holding great hopes for providing solutions to the unmet needs of humankind. This review article describes how synthetic biology can deliver on this promise in the field of drug discovery by providing novel opportunities throughout the entire drug discovery process. Synthetic biology tools enable disease mechanisms and target identification to be elucidated and also provide avenues to discover small chemotherapeutic molecules or design novel biopharmaceuticals. Furthermore, synthetic biologists can design cost-effective microbial production processes for complex natural products, which could help overcome global drug shortages. These impressive advances have been achieved in only a few years, and are an indicator for the potential of synthetic biology.
Collapse
Affiliation(s)
- Wilfried Weber
- Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-Universität Freiburg, Engesserstrasse 4b, D-79108 Freiburg, Germany
| | | |
Collapse
|
85
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
86
|
Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nat Methods 2009; 6:527-31. [PMID: 19503080 DOI: 10.1038/nmeth.1340] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 05/15/2009] [Indexed: 11/08/2022]
Abstract
High spatial and temporal resolution of conditional gene expression is typically difficult to achieve in whole tissues or organisms. We synthesized two reversibly inhibited, photoactivatable ('caged') doxycycline derivatives with different membrane permeabilities for precise spatial and temporal light-controlled activation of transgenes based on the 'Tet-on' system. After incubation with caged doxycycline or caged cyanodoxycycline, we induced gene expression by local irradiation with UV light or by two-photon uncaging in diverse biological systems, including mouse organotypic brain cultures, developing mouse embryos and Xenopus laevis tadpoles. The amount of UV light needed for induction was harmless as we detected no signs of toxicity. This method allows high-resolution conditional transgene expression at different spatial scales, ranging from single cells to entire complex organisms.
Collapse
|
87
|
Kinch MS, Kohli M, Goldblatt M, Li WB. Function-first approaches to improve target identification in cancer. Future Oncol 2009; 5:617-23. [DOI: 10.2217/fon.09.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Target discovery for cancer is undergoing a sort of revival with an increasing need for improved therapeutics. Likewise, the strategies to discover new and better therapeutic targets have come full circle, with greater emphasis placed upon targets that are functionally relevant to the disease process. In this article, we review the evolution of cancer target discovery and discuss random homozygous gene perturbation, an emerging technology that combines the practicality of screening for new targets by emphasizing function as the primary criterion, with cutting-edge advances in gene-based screening of all potential targets in a cell.
Collapse
Affiliation(s)
- Michael S Kinch
- Functional Genetics, Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Manu Kohli
- Functional Genetics, Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Michael Goldblatt
- Functional Genetics, Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Wu-Bo Li
- Functional Genetics, Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| |
Collapse
|
88
|
Ogura E, Okuda Y, Kondoh H, Kamachi Y. Adaptation of GAL4 activators for GAL4 enhancer trapping in zebrafish. Dev Dyn 2009; 238:641-55. [PMID: 19191223 DOI: 10.1002/dvdy.21863] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An enhancer trap-based GAL4-UAS system in zebrafish requires strong GAL4 activators with minimal adverse effects. However, the activity of yeast GAL4 is too low in zebrafish, while a fusion protein of the GAL4 DNA-binding domain and the VP16 activation domain is toxic to embryonic development, even when expressed at low levels. To alleviate this toxicity, we developed variant GAL4 activators by fusing either multimeric forms of the VP16 minimal activation domain or the NF-kappaB activation domain to the GAL4 DNA-binding domain. These variant GAL4 activators are sufficiently innocuous and yet highly effective transactivators in developing zebrafish. Enhancer-trap vectors containing these GAL4 activators downstream of an appropriate weak promoter were randomly inserted into the zebrafish genome using the Sleeping Beauty transposon system. By the combination of these genetic elements, we have successfully developed enhancer trap lines that activate UAS-dependent reporter genes in a tissue-specific fashion that reflects trapped enhancer activities.
Collapse
Affiliation(s)
- Eri Ogura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
89
|
Reiss Y, Knedla A, Tal AO, Schmidt MHH, Jugold M, Kiessling F, Burger AM, Wolburg H, Deutsch U, Plate KH. Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J Pathol 2009; 217:571-80. [PMID: 19116989 DOI: 10.1002/path.2484] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sustained growth of solid tumours can rely on both the formation of new and the co-option of existing blood vessels. Current models suggest that binding of angiopoietin-2 (Ang-2) to its endothelial Tie2 receptor prevents receptor phosphorylation, destabilizes blood vessels, and promotes vascular permeability. In contrast, binding of angiopoietin-1 (Ang-1) induces Tie2 receptor activation and supports the formation of mature blood vessels covered by pericytes. Despite the intense research to decipher the role of angiopoietins during physiological neovascularization and tumour angiogenesis, a mechanistic understanding of angiopoietin function on vascular integrity and remodelling is still incomplete. We therefore assessed the vascular morphology of two mouse mammary carcinoma xenotransplants (M6378 and M6363) which differ in their natural angiopoietin expression. M6378 displayed Ang-1 in tumour cells but no Ang-2 in tumour endothelial cells in vivo. In contrast, M6363 tumours expressed Ang-2 in the tumour vasculature, whereas no Ang-1 expression was present in tumour cells. We stably transfected M6378 mouse mammary carcinoma cells with human Ang-1 or Ang-2 and investigated the consequences on the host vasculature, including ultrastructural morphology. Interestingly, M6378/Ang-2 and M6363 tumours displayed a similar vascular morphology, with intratumoural haemorrhage and non-functional and abnormal blood vessels. Pericyte loss was prominent in these tumours and was accompanied by increased endothelial cell apoptosis. Thus, overexpression of Ang-2 converted the vascular phenotype of M6378 tumours into a phenotype similar to M6363 tumours. Our results support the hypothesis that Ang-1/Tie2 signalling is essential for vessel stabilization and endothelial cell/pericyte interaction, and suggest that Ang-2 is able to induce a switch of vascular phenotypes within tumours.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology/Edinger Institute, Frankfurt University Medical School, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Thibodeaux GN, Cowmeadow R, Umeda A, Zhang Z. A tetracycline repressor-based mammalian two-hybrid system to detect protein-protein interactions in vivo. Anal Biochem 2009; 386:129-31. [PMID: 19111517 PMCID: PMC2649711 DOI: 10.1016/j.ab.2008.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/26/2008] [Indexed: 11/20/2022]
Abstract
A mammalian two-hybrid system (termed as trM2H) was developed to detect protein-protein interactions in vivo, based on the reconstitution of the functions the of tetracycline repressor (TetR). The system is sensitive enough to detect protein-protein interactions with K(d) up to 55microM in mammalian cells, and the system can be regulated by small molecules. This system can be used as an efficient genetic selection system to map protein-protein interactions in mammalian cells.
Collapse
Affiliation(s)
| | - Roshani Cowmeadow
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin
| | - Aiko Umeda
- Institute Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin
| | - Zhiwen Zhang
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin
| |
Collapse
|
91
|
|
92
|
Asakawa K, Kawakami K. The Tol2-mediated Gal4-UAS method for gene and enhancer trapping in zebrafish. Methods 2009; 49:275-81. [PMID: 19835787 DOI: 10.1016/j.ymeth.2009.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 01/16/2009] [Indexed: 11/30/2022] Open
Abstract
The Gal4-UAS system provides powerful tools to analyze the function of genes and cells in vivo and has been extensively employed in Drosophila. The usefulness of this approach relies on the P element-mediated Gal4 enhancer trapping, which can efficiently generate transgenic fly lines expressing Gal4 in specific cells. Similar approaches, however, had not been developed in vertebrate systems due to the lack of an efficient transgenesis method. We have been developing transposon techniques by using the madaka fish Tol2 element. Taking advantage of its ability to generate genome-wide insertions, we developed the Gal4 gene trap and enhancer trap methods in zebrafish that enabled us to create various transgenic fish expressing Gal4 in specific cells. The Gal4-expressing cells can be visualized and manipulated in vivo by crossing the transgenic Gal4 lines with transgenic lines carrying various reporter and effector genes downstream of UAS (upstream activating sequence). Thus, the Gal4 gene trap and enhancer trap methods together with UAS lines now make detailed analyses of genes and cells in zebrafish feasible. Here, we describe the protocols to perform Gal4 gene trap and enhancer trap screens in zebrafish and their application to the studies of vertebrate neural circuits.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
93
|
Barr AR, Zyss D, Gergely F. Knock-in and knock-out: the use of reverse genetics in somatic cells to dissect mitotic pathways. Methods Mol Biol 2009; 545:1-19. [PMID: 19475379 DOI: 10.1007/978-1-60327-993-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reverse genetic methods, such as homologous gene targeting, have greatly contributed to our understanding of molecular pathways in mitosis, especially in yeast. The chicken B-lymphocyte line, DT40, represents a unique example among vertebrate somatic cells where homologous gene targeting occurs at very high frequency. DT40 cells therefore provide a useful and accessible somatic genetic system for wide-ranging biochemical and cell biological assays. In this chapter, we describe the main principles of homologous gene targeting, the concept of targeting construct design and the detailed experimental protocol of how to achieve successful knockouts. We also mention methods for conditional disruption of essential genes and conclude with specific procedures for the study of mitosis in DT40 cells.
Collapse
Affiliation(s)
- Alexis R Barr
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
94
|
Reboredo M, Kramer MG, Smerdou C, Prieto J, Rivas JDL. Transcriptomic Effects of Tet-On and Mifepristone-Inducible Systems in Mouse Liver. Hum Gene Ther 2008; 19:1233-47. [DOI: 10.1089/hum.2008.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mercedes Reboredo
- Division of Gene Therapy, Center for Applied Medical Research (CIMA) and University Clinic-University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University Clinic, 31008 Pamplona, Spain
| | - Maria Gabriela Kramer
- Division of Gene Therapy, Center for Applied Medical Research (CIMA) and University Clinic-University of Navarra, 31008 Pamplona, Spain
- Peter MacCallum Cancer Research Institute, Cancer Immunology Program, East Melbourne 3001, Australia
| | - Cristian Smerdou
- Division of Gene Therapy, Center for Applied Medical Research (CIMA) and University Clinic-University of Navarra, 31008 Pamplona, Spain
| | - Jesús Prieto
- Division of Gene Therapy, Center for Applied Medical Research (CIMA) and University Clinic-University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University Clinic, 31008 Pamplona, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (IBMCC-CIC), CSIC and University of Salamanca (CSIC/USAL), E37007 Salamanca, Spain
| |
Collapse
|
95
|
Basu A, Persaud SD, Sivaprasad U. Manipulation of PKC isozymes by RNA interference and inducible expression of PKC constructs. Methods Enzymol 2008; 446:141-57. [PMID: 18603120 DOI: 10.1016/s0076-6879(08)01608-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinase C (PKC), a family of serine/threonine kinases, plays an important role in apoptosis. Several members of the PKC family act as substrates for caspases. In addition, PKCs can also regulate caspase activation and cell death by apoptosis. The cleavage of PKCs separates the regulatory domain from the catalytic domain. The full-length, the catalytic domain, and the regulatory domain of PKC family members may have distinct function in apoptosis. Delineating the role of protein kinase C (PKC) isozymes in apoptosis has been challenging because of the lack of selective inhibitors of PKC isozymes and difficulty in generating stable cell lines expressing pro-apoptotic PKC isozymes. In this chapter, we describe the use of RNA interference (siRNA) technology and tetracycline-inducible expression of PKC isozymes to study their function in apoptosis.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | |
Collapse
|
96
|
REBOREDO MERCEDES, Kramer MG, Smerdou C, Prieto J, De Las Rivas J. TRANSCRIPTOMIC EFFECTS OF TET-ON AND MIFEPRISTONE INDUCIBLE SYSTEMS IN MOUSE LIVER. Hum Gene Ther 2008. [DOI: 10.1089/hgt.2008.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
97
|
Greber D, El-Baba MD, Fussenegger M. Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res 2008; 36:e101. [PMID: 18632760 PMCID: PMC2532736 DOI: 10.1093/nar/gkn443] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Applications of conditional gene expression, whether for therapeutic or basic research purposes, are increasingly requiring mammalian gene control systems that exhibit far tighter control properties. While numerous approaches have been used to improve the widely used Tet-regulatory system, many applications, particularly with respect to the engineering of synthetic gene networks, will require a broader range of tightly performing gene control systems. Here, a generically applicable approach is described that utilizes intronically encoded siRNA on the relevant transregulator construct, and siRNA sequence-specific tags on the reporter construct, to minimize basal gene activity in the off-state of a range of common gene control systems. To demonstrate tight control of residual expression the approach was successfully used to conditionally express the toxic proteins RipDD and Linamarase. The intronic siRNA concept was also extended to create a new generation of compact, single-vector, autoinducible siRNA vectors. Finally, using improved regulation systems a mammalian epigenetic toggle switch was engineered that exhibited superior in vitro and in vivo induction characteristics in mice compared to the equivalent non-intronic system.
Collapse
Affiliation(s)
- David Greber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
98
|
Abstract
Targeted gene expression by the Gal4-UAS system is a powerful methodology for analyzing function of genes and cells in vivo and has been extensively used in genetic studies in Drosophila. On the other hand, the Gal4-UAS system had not been applied effectively to vertebrate systems for a long time mainly due to the lack of an efficient transgenesis method. Recently, a highly efficient transgenesis method using the medaka fish Tol2 transposable element was developed in zebrafish. Taking advantage of the Tol2 transposon system, we and other groups developed the Gal4 gene trap and enhancer trap methods and established various transgenic fish expressing Gal4 in specific cells. By crossing such Gal4 lines with transgenic fish lines harboring various reporter genes and effector genes downstream of UAS (upstream activating sequence), specific cells can be visualized and manipulated in vivo by targeted gene expression. Thus, the Gal4 gene trap and enhancer trap approaches together with various UAS lines should be important tools for investigating roles of genes and cells in vertebrates.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
99
|
Inducible endothelial cell-specific gene expression in transgenic mouse embryos and adult mice. Exp Cell Res 2008; 314:1202-16. [DOI: 10.1016/j.yexcr.2007.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 12/23/2007] [Accepted: 12/24/2007] [Indexed: 02/01/2023]
|
100
|
Bockamp E, Sprengel R, Eshkind L, Lehmann T, Braun JM, Emmrich F, Hengstler JG. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen Med 2008; 3:217-35. [DOI: 10.2217/17460751.3.2.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the ‘zoo’ of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, D-69120 Heidelber, Germany
| | - Leonid Eshkind
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Thomas Lehmann
- TRM-Leipzig, Philipp-Rosenthal-Strasse 55, University of Leipzig, 04103 Leipzig, Germany
| | - Jan M Braun
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Frank Emmrich
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Jan G Hengstler
- Dortmund University of Technology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Institute of Legal Medicine and Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|