51
|
Smith OK, Aladjem MI. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J Mol Biol 2014; 426:3330-41. [PMID: 24905010 DOI: 10.1016/j.jmb.2014.05.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 12/29/2022]
Abstract
The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review, we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome's three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication.
Collapse
Affiliation(s)
- Owen K Smith
- DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
52
|
Raynaud C, Mallory AC, Latrasse D, Jégu T, Bruggeman Q, Delarue M, Bergounioux C, Benhamed M. Chromatin meets the cell cycle. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2677-89. [PMID: 24497647 DOI: 10.1093/jxb/ert433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The cell cycle is one of the most comprehensively studied biological processes, due primarily to its significance in growth and development, and its deregulation in many human disorders. Studies using a diverse set of model organisms, including yeast, worms, flies, frogs, mammals, and plants, have greatly expanded our knowledge of the cell cycle and have contributed to the universally accepted view of how the basic cell cycle machinery is regulated. In addition to the oscillating activity of various cyclin-dependent kinase (CDK)-cyclin complexes, a plethora of proteins affecting various aspects of chromatin dynamics has been shown to be essential for cell proliferation during plant development. Furthermore, it was reported recently that core cell cycle regulators control gene expression by modifying histone patterns. This review focuses on the intimate relationship between the cell cycle and chromatin. It describes the dynamics and functions of chromatin structures throughout cell cycle progression and discusses the role of heterochromatin as a barrier against re-replication and endoreduplication. It also proposes that core plant cell cycle regulators control gene expression in a manner similar to that described in mammals. At present, our challenge in plants is to define the complete set of effectors and actors that coordinate cell cycle progression and chromatin structure and to understand better the functional interplay between these two processes.
Collapse
Affiliation(s)
- Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Allison C Mallory
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Quentin Bruggeman
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| |
Collapse
|
53
|
Temporal and spatial regulation of eukaryotic DNA replication: From regulated initiation to genome-scale timing program. Semin Cell Dev Biol 2014; 30:110-20. [DOI: 10.1016/j.semcdb.2014.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
|
54
|
Gindin Y, Valenzuela MS, Aladjem MI, Meltzer PS, Bilke S. A chromatin structure-based model accurately predicts DNA replication timing in human cells. Mol Syst Biol 2014; 10:722. [PMID: 24682507 PMCID: PMC4017678 DOI: 10.1002/msb.134859] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metazoan genome is replicated in precise cell lineage‐specific temporal order. However, the mechanism controlling this orchestrated process is poorly understood as no molecular mechanisms have been identified that actively regulate the firing sequence of genome replication. Here, we develop a mechanistic model of genome replication capable of predicting, with accuracy rivaling experimental repeats, observed empirical replication timing program in humans. In our model, replication is initiated in an uncoordinated (time‐stochastic) manner at well‐defined sites. The model contains, in addition to the choice of the genomic landmark that localizes initiation, only a single adjustable parameter of direct biological relevance: the number of replication forks. We find that DNase‐hypersensitive sites are optimal and independent determinants of DNA replication initiation. We demonstrate that the DNA replication timing program in human cells is a robust emergent phenomenon that, by its very nature, does not require a regulatory mechanism determining a proper replication initiation firing sequence.
Collapse
Affiliation(s)
- Yevgeniy Gindin
- Genetics Branch Center for Cancer Research, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
55
|
Cheutin T, Cavalli G. Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr Opin Genet Dev 2014; 25:30-7. [PMID: 24434548 DOI: 10.1016/j.gde.2013.11.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022]
Abstract
Polycomb group (PcG) proteins are conserved chromatin factors that regulate key developmental genes. Genome wide studies have shown that PcG proteins and their associated H3K27me3 histone mark cover long genomic domains. PcG proteins and H3K27me3 accumulate in Pc nuclear foci, which are the cellular counterparts of genomic domains silenced by PcG proteins. One explanation for how large genomic domains form nuclear foci may rely on loops occurring between specific elements located within domains. However, recent improvement of the chromosome conformation capture (3C) technology, which allowed monitoring genome wide contacts depicts a more complex picture in which chromosomes are composed of many topologically associating domains (TADs). Chromatin regions marked with H3K27me3 correspond to one class of TADs and PcG proteins participate in long-range interactions of H3K27me3 TADs, whereas insulator proteins seem to be important for separating TADs and may also participate in the regulation of intra TAD architecture. Recent data converge to suggest that this hierarchical organization of chromosome domains plays an important role in genome function during cell proliferation and differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
56
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
57
|
Hyrien O, Rappailles A, Guilbaud G, Baker A, Chen CL, Goldar A, Petryk N, Kahli M, Ma E, d'Aubenton-Carafa Y, Audit B, Thermes C, Arneodo A. From simple bacterial and archaeal replicons to replication N/U-domains. J Mol Biol 2013; 425:4673-89. [PMID: 24095859 DOI: 10.1016/j.jmb.2013.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Replicon Theory proposed 50 years ago has proven to apply for replicons of the three domains of life. Here, we review our knowledge of genome organization into single and multiple replicons in bacteria, archaea and eukarya. Bacterial and archaeal replicator/initiator systems are quite specific and efficient, whereas eukaryotic replicons show degenerate specificity and efficiency, allowing for complex regulation of origin firing time. We expand on recent evidence that ~50% of the human genome is organized as ~1,500 megabase-sized replication domains with a characteristic parabolic (U-shaped) replication timing profile and linear (N-shaped) gradient of replication fork polarity. These N/U-domains correspond to self-interacting segments of the chromatin fiber bordered by open chromatin zones and replicate by cascades of origin firing initiating at their borders and propagating to their center, possibly by fork-stimulated initiation. The conserved occurrence of this replication pattern in the germline of mammals has resulted over evolutionary times in the formation of megabase-sized domains with an N-shaped nucleotide compositional skew profile due to replication-associated mutational asymmetries. Overall, these results reveal an evolutionarily conserved but developmentally plastic organization of replication that is driving mammalian genome evolution.
Collapse
Affiliation(s)
- Olivier Hyrien
- Ecole Normale Supérieure, IBENS UMR8197 U1024, Paris 75005, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Boulos RE, Arneodo A, Jensen P, Audit B. Revealing long-range interconnected hubs in human chromatin interaction data using graph theory. PHYSICAL REVIEW LETTERS 2013; 111:118102. [PMID: 24074120 DOI: 10.1103/physrevlett.111.118102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Indexed: 06/02/2023]
Abstract
We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome--"master" replication origins--corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.
Collapse
Affiliation(s)
- R E Boulos
- Université de Lyon, F-69000 Lyon, France and Laboratoire de Physique, ENS de Lyon, CNRS UMR5672, F-69007 Lyon, France
| | | | | | | |
Collapse
|
59
|
Hu M, Deng K, Qin Z, Liu JS. Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data. QUANTITATIVE BIOLOGY 2013; 1:156-174. [PMID: 26124977 DOI: 10.1007/s40484-013-0016-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research.
Collapse
Affiliation(s)
- Ming Hu
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Ke Deng
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA ; Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
60
|
Julienne H, Zoufir A, Audit B, Arneodo A. Epigenetic regulation of the human genome: coherence between promoter activity and large-scale chromatin environment. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.832706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
61
|
Pope BD, Gilbert DM. The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture. J Mol Biol 2013; 425:4690-5. [PMID: 23603017 DOI: 10.1016/j.jmb.2013.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 01/12/2023]
Abstract
The "Replicon Theory" of Jacob, Brenner, and Cuzin has reliably served as the paradigm for regulating the sites where individual replicons initiate replication. Concurrent with the replicon model was Taylor's demonstration that plant and animal chromosomes replicate segmentally in a defined temporal sequence, via cytologically defined units too large to be accounted for by a single replicon. Instead, there seemed to be a program to choreograph when chromosome units replicate during S phase, executed by initiation at clusters of individual replicons within each segment. Here, we summarize recent molecular evidence for the existence of such units, now known as "replication domains", and discuss how the organization of large chromosomes into structural units has added additional layers of regulation to the original replicon model.
Collapse
Affiliation(s)
- Benjamin D Pope
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | | |
Collapse
|
62
|
Chambers EV, Bickmore WA, Semple CA. Divergence of mammalian higher order chromatin structure is associated with developmental loci. PLoS Comput Biol 2013; 9:e1003017. [PMID: 23592965 PMCID: PMC3617018 DOI: 10.1371/journal.pcbi.1003017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/18/2013] [Indexed: 02/03/2023] Open
Abstract
Several recent studies have examined different aspects of mammalian higher order chromatin structure - replication timing, lamina association and Hi-C inter-locus interactions - and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution.
Collapse
Affiliation(s)
- Emily V. Chambers
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Colin A. Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol 2013; 20:290-9. [PMID: 23463314 PMCID: PMC6320674 DOI: 10.1038/nsmb.2474] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/20/2012] [Indexed: 01/21/2023]
Abstract
Although genomes are defined by their sequence, the linear arrangement of nucleotides is only their most basic feature. A fundamental property of genomes is their topological organization in three-dimensional space in the intact cell nucleus. The application of imaging methods and genome-wide biochemical approaches, combined with functional data, is revealing the precise nature of genome topology and its regulatory functions in gene expression and genome maintenance. The emerging picture is one of extensive self-enforcing feedback between activity and spatial organization of the genome, suggestive of a self-organizing and self-perpetuating system that uses epigenetic dynamics to regulate genome function in response to regulatory cues and to propagate cell-fate memory.
Collapse
Affiliation(s)
- Giacomo Cavalli
- Institut de Génétique Humaine, UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France.
| | | |
Collapse
|