51
|
Holloway MP, DeNardo BD, Phornphutkul C, Nguyen K, Davis C, Jackson C, Richendrfer H, Creton R, Altura RA. An asymptomatic mutation complicating severe chemotherapy-induced peripheral neuropathy (CIPN): a case for personalised medicine and a zebrafish model of CIPN. NPJ Genom Med 2016; 1:16016. [PMID: 29263815 PMCID: PMC5685301 DOI: 10.1038/npjgenmed.2016.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Targeted next-generation sequencing (NGS) identified a novel loss of function mutation in GARS, a gene linked to Charcot-Marie-Tooth disease (CMT), in a paediatric acute lymphoblastic leukaemia patient with severe chemotherapy-induced peripheral neuropathy (CIPN) due to vincristine. The patient was clinically asymptomatic, and lacked a family history of neuropathy. The effect of the mutation was modelled in a zebrafish knockdown system that recapitulated the symptoms of the patient both prior to and after treatment with vincristine. Confocal microscopy of pre- and post-synaptic markers revealed that the GARS knockdown results in changes to peripheral motor neurons, acetylcholine receptors and their co-localisation in neuromuscular junctions (NMJs), whereas a sensitive and reproducible stimulus-response assay demonstrated that the changes correlating with the GARS mutation in themselves fail to produce peripheral neuropathy symptoms. However, with vincristine treatment the GARS knockdown exacerbates decreased stimulus response and NMJ lesions. We propose that there is substantial benefit in the use of a targeted NGS screen of cancer patients who are to be treated with microtubule targeting agents for deleterious mutations in CMT linked genes, and for the screening in zebrafish of reagents that might inhibit CIPN.
Collapse
Affiliation(s)
- Michael P Holloway
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Bradley D DeNardo
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Chanika Phornphutkul
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital and Brown University, Providence, RI, USA
| | - Kevin Nguyen
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Colby Davis
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Cynthia Jackson
- Departments of Pathology and Clinical Molecular Biology, Rhode Island Hospital and Brown University School of Medicine, Providence, RI, USA
| | - Holly Richendrfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Rachel A Altura
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| |
Collapse
|
52
|
Hopkins HL, Duggett NA, Flatters SJ. Chemotherapy-induced painful neuropathy: pain-like behaviours in rodent models and their response to commonly used analgesics. Curr Opin Support Palliat Care 2016; 10:119-128. [PMID: 27054288 PMCID: PMC4982532 DOI: 10.1097/spc.0000000000000204] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy-induced painful neuropathy (CIPN) is a major dose-limiting side-effect of several widely used chemotherapeutics. Rodent models of CIPN have been developed using a range of dosing regimens to reproduce pain-like behaviours akin to patient-reported symptoms. This review aims to connect recent evidence-based suggestions for clinical treatment to preclinical data. RECENT FINDINGS We will discuss CIPN models evoked by systemic administration of taxanes (paclitaxel and docetaxel), platinum-based agents (oxaliplatin and cisplatin), and the proteasome-inhibitor - bortezomib. We present an overview of dosing regimens to produce CIPN models and their phenotype of pain-like behaviours. In addition, we will discuss how potential, clinically available treatments affect pain-like behaviours in these rodent models, relating those effects to clinical trial data wherever possible. We have focussed on antidepressants, opioids, and gabapentinoids given their broad usage. SUMMARY The review outlines the latest description of the most-relevant rodent models of CIPN enabling comparison between chemotherapeutics, dosing regimen, rodent strain, and sex. Preclinical data support many of the recent suggestions for clinical management of established CIPN and provides evidence for potential treatments warranting clinical investigation. Continued research using rodent CIPN models will provide much needed understanding of the causal mechanisms of CIPN, leading to new treatments for this major clinical problem.
Collapse
Affiliation(s)
- Holly L. Hopkins
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Sarah J.L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| |
Collapse
|
53
|
Hertz DL, Owzar K, Lessans S, Wing C, Jiang C, Kelly WK, Patel J, Halabi S, Furukawa Y, Wheeler HE, Sibley AB, Lassiter C, Weisman L, Watson D, Krens SD, Mulkey F, Renn CL, Small EJ, Febbo PG, Shterev I, Kroetz DL, Friedman PN, Mahoney JF, Carducci MA, Kelley MJ, Nakamura Y, Kubo M, Dorsey SG, Dolan ME, Morris MJ, Ratain MJ, McLeod HL. Pharmacogenetic Discovery in CALGB (Alliance) 90401 and Mechanistic Validation of a VAC14 Polymorphism that Increases Risk of Docetaxel-Induced Neuropathy. Clin Cancer Res 2016; 22:4890-4900. [PMID: 27143689 DOI: 10.1158/1078-0432.ccr-15-2823] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Discovery of SNPs that predict a patient's risk of docetaxel-induced neuropathy would enable treatment individualization to maximize efficacy and avoid unnecessary toxicity. The objectives of this analysis were to discover SNPs associated with docetaxel-induced neuropathy and mechanistically validate these associations in preclinical models of drug-induced neuropathy. EXPERIMENTAL DESIGN A genome-wide association study was conducted in metastatic castrate-resistant prostate cancer patients treated with docetaxel, prednisone and randomized to bevacizumab or placebo on CALGB 90401. SNPs were genotyped on the Illumina HumanHap610-Quad platform followed by rigorous quality control. The inference was conducted on the cumulative dose at occurrence of grade 3+ sensory neuropathy using a cause-specific hazard model that accounted for early treatment discontinuation. Genes with SNPs significantly associated with neuropathy were knocked down in cellular and mouse models of drug-induced neuropathy. RESULTS A total of 498,081 SNPs were analyzed in 623 Caucasian patients, 50 (8%) of whom experienced grade 3+ neuropathy. The 1,000 SNPs most associated with neuropathy clustered in relevant pathways including neuropathic pain and axonal guidance. An SNP in VAC14 (rs875858) surpassed genome-wide significance (P = 2.12 × 10-8, adjusted P = 5.88 × 10-7). siRNA knockdown of VAC14 in stem cell-derived peripheral neuronal cells increased docetaxel sensitivity as measured by decreased neurite processes (P = 0.0015) and branches (P < 0.0001). Prior to docetaxel treatment, VAC14 heterozygous mice had greater nociceptive sensitivity than wild-type litter mate controls (P = 0.001). CONCLUSIONS VAC14 should be prioritized for further validation of its potential role as a predictor of docetaxel-induced neuropathy and biomarker for treatment individualization. Clin Cancer Res; 22(19); 4890-900. ©2016 AACR.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan. UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kouros Owzar
- Duke Cancer Institute, Durham, North Carolina. Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Sherrie Lessans
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Claudia Wing
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Chen Jiang
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | | | - Jai Patel
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | - Susan Halabi
- Duke Cancer Institute, Durham, North Carolina. Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Cameron Lassiter
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Lois Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Dorothy Watson
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Stefanie D Krens
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Flora Mulkey
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Cynthia L Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Eric J Small
- Department of Medicine, UCSF, San Francisco, California
| | | | - Ivo Shterev
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Paula N Friedman
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - John F Mahoney
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | - Michael A Carducci
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Michael J Kelley
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, Illinois. Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- Lab for Genotyping Development, Riken Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Mark J Ratain
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Howard L McLeod
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
54
|
Pittman SK, Gracias NG, Fehrenbacher JC. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons. Exp Neurol 2016; 279:104-115. [PMID: 26883566 DOI: 10.1016/j.expneurol.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/25/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity.
Collapse
Affiliation(s)
- Sherry K Pittman
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States.
| | - Neilia G Gracias
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States; Indiana University School of Medicine, Stark Neuroscience Research Institute, United States.
| | - Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States; Indiana University School of Medicine, Stark Neuroscience Research Institute, United States; Indiana University School of Medicine, Department of Anesthesiology, United States.
| |
Collapse
|
55
|
Yeo JH, Yoon SY, Kim SJ, Oh SB, Lee JH, Beitz AJ, Roh DH. Clonidine, an alpha-2 adrenoceptor agonist relieves mechanical allodynia in oxaliplatin-induced neuropathic mice; potentiation by spinal p38 MAPK inhibition without motor dysfunction and hypotension. Int J Cancer 2016; 138:2466-76. [PMID: 26704560 DOI: 10.1002/ijc.29980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 01/18/2023]
Abstract
Cancer chemotherapy with platinum-based antineoplastic agents including oxaliplatin frequently results in a debilitating and painful peripheral neuropathy. We evaluated the antinociceptive effects of the alpha-2 adrenoceptor agonist, clonidine on oxaliplatin-induced neuropathic pain. Specifically, we determined if (i) the intraperitoneal (i.p.) injection of clonidine reduces mechanical allodynia in mice with an oxaliplatin-induced neuropathy and (ii) concurrent inhibition of p38 mitogen-activated protein kinase (MAPK) activity by the p38 MAPK inhibitor SB203580 enhances clonidine's antiallodynic effect. Clonidine (0.01-0.1 mg kg(-1), i.p.), with or without SB203580(1-10 nmol, intrathecal) was administered two weeks after oxaliplatin injection(10 mg kg(-1), i.p.) to mice. Mechanical withdrawal threshold, motor coordination and blood pressure were measured. Postmortem expression of p38 MAPK and ERK as well as their phosphorylated forms(p-p38 and p-ERK) were quantified 30 min or 4 hr after drug injection in the spinal cord dorsal horn of treated and control mice. Clonidine dose-dependently reduced oxaliplatin-induced mechanical allodynia and spinal p-p38 MAPK expression, but not p-ERK. At 0.1 mg kg(-1), clonidine also impaired motor coordination and decreased blood pressure. A 10 nmol dose of SB203580 alone significantly reduced mechanical allodynia and p-p38 MAPK expression, while a subeffective dose(3 nmol) potentiated the antiallodynic effect of 0.03 mg kg(-1) clonidine and reduced the increased p-p38 MAPK. Coadministration of SB203580 and 0.03 mg kg(-1) clonidine decreased allodynia similar to that of 0.10 mg kg(-1) clonidine, but without significant motor or vascular effects. These findings demonstrate that clonidine treatment reduces oxaliplatin-induced mechanical allodynia. The concurrent administration of SB203580 reduces the dosage requirements for clonidine, thereby alleviating allodynia without producing undesirable motor or cardiovascular effects.
Collapse
Affiliation(s)
- Ji-Hee Yeo
- Department of Oral Physiology and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seo-Yeon Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Neurobiology and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sol-Ji Kim
- Department of Oral Physiology and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seog-Bae Oh
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Neurobiology and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN
| | - Dae-Hyun Roh
- Department of Oral Physiology and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
56
|
Yeo JH, Yoon SY, Kwon SK, Kim SJ, Lee JH, Beitz AJ, Roh DH. Repetitive Acupuncture Point Treatment with Diluted Bee Venom Relieves Mechanical Allodynia and Restores Intraepidermal Nerve Fiber Loss in Oxaliplatin-Induced Neuropathic Mice. THE JOURNAL OF PAIN 2015; 17:298-309. [PMID: 26604098 DOI: 10.1016/j.jpain.2015.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 01/11/2023]
Abstract
UNLABELLED The chemotherapeutic agent, oxaliplatin, produces a robust painful neuropathy that results in the loss of intraepidermal nerve fibers (IENFs). We have previously reported that an acupuncture point (acupoint) injection of diluted bee venom (DBV) produces a temporary antiallodynic effect in oxaliplatin-induced neuropathic mice. Herein we show a significant long-lasting antinociceptive effect of repetitive DBV acupoint treatment on oxaliplatin-induced mechanical allodynia and a significant reduction in the loss of IENFs. DBV (0.1 mg/kg, subcutaneous) was administered once a day for 18 days beginning on day 15 after oxaliplatin injection. Immunohistochemistry for IENF was performed on the glabrous skin of the hind paw footpad using the pan-neuronal marker, protein gene product 9.5. A temporary increase in mechanical threshold was observed 60 minutes after a single DBV injection into the Zusanli acupoint, and this effect was enhanced over time with repetitive DBV treatments. The basal mechanical threshold before daily DBV injection also increased from day 7 after DBV injections, and peaked at day 14 after DBV treatment. Moreover, the oxaliplatin-induced loss of IENFs was significantly reduced in mice treated repetitively with DBV. Repetitive pretreatment with the α-2 adrenoceptor antagonist, yohimbine, (5 mg/kg, subcutaneous) completely prevented the antiallodynic effects and the increase in IENFs observed in mice treated repetitively with DBV. PERSPECTIVE We showed that repetitive acupoint stimulation with DBV gradually and significantly reduced oxaliplatin-induced mechanical allodynia and restored the loss of IENFs in neuropathic mice via an α-2 adrenoceptor mechanism. Collectively, results of this study suggest that repetitive acupoint treatment with DBV can be a potential strategy for the management of chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Ji-Hee Yeo
- Department of Oral Physiology and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seo-Yeon Yoon
- Department of Brain and Cognitive Sciences College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Soon-Keun Kwon
- Department of Oral Physiology and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Sol-Ji Kim
- Department of Oral Physiology and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Dae-Hyun Roh
- Department of Oral Physiology and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
57
|
Boehmerle W, Huehnchen P, Endres M. [Chemotherapy-induced neuropathy]. DER NERVENARZT 2015; 86:156-60. [PMID: 25586233 DOI: 10.1007/s00115-014-4126-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Neurological sequelae of cytostatic chemotherapy are a growing medical problem as the number of patients suffering from malignant diseases is steadily increasing. OBJECTIVES Chemotherapy-induced neuropathies (CIN) are among the most common side effects of many cytostatic drugs. Awareness of symptoms, diagnosis and treatment of these conditions are therefore highly relevant. METHODS A review of the primary and secondary literature was carried out. RESULTS This article reviews the literature on neuropathies induced by frequently used cytostatic drugs and discusses diagnostic, preventive and therapeutic strategies. Specifically, this review focuses on antibody-drug conjugates, platinum-based antineoplastic drugs, proteasome inhibitors, taxanes and vinca alkaloids. The lack of well-established preventive and therapeutic strategies complicates the management of CINs. The most successful approaches to CIN prevention are modifications of the treatment regime including single and cumulative doses, frequency and mode of infusion. Current evidence favors duloxetine as a symptomatic treatment of platinum-induced neuropathies. CONCLUSION The CINs are an unsolved medical problem. Knowledge of symptoms as well as preventive, diagnostic and therapeutic strategies is important when patients present in clinical practice with neurological symptoms following chemotherapy.
Collapse
Affiliation(s)
- W Boehmerle
- Klinik und Hochschulambulanz für Neurologie mit Lehrstuhl für Experimentelle Neurologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland,
| | | | | |
Collapse
|
58
|
Griffiths LA, Flatters SJL. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy. THE JOURNAL OF PAIN 2015; 16:981-94. [PMID: 26142652 PMCID: PMC4596251 DOI: 10.1016/j.jpain.2015.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/27/2015] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. PERSPECTIVE This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain.
Collapse
Affiliation(s)
- Lisa A Griffiths
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sarah J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
59
|
Lee MY, Apellániz-Ruiz M, Johansson I, Vikingsson S, Bergmann TK, Brøsen K, Green H, Rodríguez-Antona C, Ingelman-Sundberg M. Role of cytochrome P450 2C8*3 (CYP2C8*3) in paclitaxel metabolism and paclitaxel-induced neurotoxicity. Pharmacogenomics 2015; 16:929-37. [PMID: 26115084 DOI: 10.2217/pgs.15.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM The CYP2C8*3 allele has been suggested as a risk factor for paclitaxel-induced neuropathy but the data hitherto published are conflicting. MATERIALS & METHODS In total 435 patients were investigated with respect to maximum neuropathy grade and accumulated paclitaxel dose. The enzymatic properties of CYP2C8.3 variant were analyzed using heterologous mammalian HEK293 cell expression system. RESULTS No significant association between CYP2C8*3 allele and neuropathy was found, although a trend was observed. The paclitaxel and amodiaquine metabolism by CYP2C8.3 were found similar to CYP2C8.1, whereas CYP2C8.3 was more efficient in the metabolism of rosiglitazone. CONCLUSION These results indicate a difference in substrate specificity between CYP2C8.1 and CYP2C8.3; however, the CYP2C8*3 allele has no major impact on paclitaxel metabolism in vitro or of paclitaxel-induced neuropathy in vivo. Original submitted on 6 February 2015; revision submitted on 9 April 2015.
Collapse
Affiliation(s)
- Mi-Young Lee
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - María Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Inger Johansson
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Svante Vikingsson
- Clinical Pharmacology, Division of Drug Research, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Troels K Bergmann
- Research Unit of Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kim Brøsen
- Research Unit of Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Henrik Green
- Clinical Pharmacology, Division of Drug Research, Faculty of Health Sciences, Linköping University, Linköping, Sweden.,Department of Forensic Genetics & Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| |
Collapse
|
60
|
Nociceptor beta II, delta, and epsilon isoforms of PKC differentially mediate paclitaxel-induced spontaneous and evoked pain. J Neurosci 2015; 35:4614-25. [PMID: 25788678 DOI: 10.1523/jneurosci.1580-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As one of the most effective and frequently used chemotherapeutic agents, paclitaxel produces peripheral neuropathy (paclitaxel-induced peripheral neuropathy or PIPN) that negatively affects chemotherapy and persists after cancer therapy. The mechanisms underlying this dose-limiting side effect remain to be fully elucidated. This study aimed to investigate the role of nociceptor protein kinase C (PKC) isoforms in PIPN. Employing multiple complementary approaches, we have identified a subset of PKC isoforms, namely βII, δ, and ϵ, were activated by paclitaxel in the isolated primary afferent sensory neurons. Persistent activation of PKCβII, PKCδ, and PKCϵ was also observed in the dorsal root ganglion neurons after chronic treatment with paclitaxel in a mouse model of PIPN. Isoform-selective inhibitors of PKCβII, PKCδ, and PKCϵ given intrathecally dose-dependently attenuated paclitaxel-induced mechanical allodynia and heat hyperalgesia. Surprisingly, spinal inhibition of PKCβII and PKCδ, but not PKCϵ, blocked the spontaneous pain induced by paclitaxel. These data suggest that a subset of nociceptor PKC isoforms differentially contribute to spontaneous and evoked pain in PIPN, although it is not clear whether PKCϵ in other regions regulates spontaneous pain in PIPN. The findings can potentially offer new selective targets for pharmacological intervention of PIPN.
Collapse
|
61
|
Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). TOXICS 2015; 3:198-223. [PMID: 29056658 PMCID: PMC5634687 DOI: 10.3390/toxics3020198] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy.
Collapse
|
62
|
Fehrenbacher JC. Chemotherapy-Induced Peripheral Neuropathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:471-508. [DOI: 10.1016/bs.pmbts.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
63
|
Apellániz-Ruiz M, Lee MY, Sánchez-Barroso L, Gutiérrez-Gutiérrez G, Calvo I, García-Estévez L, Sereno M, García-Donás J, Castelo B, Guerra E, Leandro-García LJ, Cascón A, Johansson I, Robledo M, Ingelman-Sundberg M, Rodríguez-Antona C. Whole-exome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy. Clin Cancer Res 2014; 21:322-8. [PMID: 25398452 DOI: 10.1158/1078-0432.ccr-14-1758] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Paclitaxel, a widely used chemotherapeutic drug, can cause peripheral neuropathies leading to dose reductions and treatment suspensions and decreasing the quality of life of patients. It has been suggested that genetic variants altering paclitaxel pharmacokinetics increase neuropathy risk, but the major causes of interindividual differences in susceptibility to paclitaxel toxicity remain unexplained. We carried out a whole-exome sequencing (WES) study to identify genetic susceptibility variants associated with paclitaxel neuropathy. EXPERIMENTAL DESIGN Blood samples from 8 patients with severe paclitaxel-induced peripheral neuropathy were selected for WES. An independent cohort of 228 cancer patients with complete paclitaxel neuropathy data was used for variant screening by DHPLC and association analysis. HEK293 cells were used for heterologous expression and characterization of two novel CYP3A4 enzymes. RESULTS WES revealed 2 patients with rare CYP3A4 variants, a premature stop codon (CYP3A4*20 allele) and a novel missense variant (CYP3A4*25, p.P389S) causing reduced enzyme expression. Screening for CYP3A4 variants in the independent cohort revealed three additional CYP3A4*20 carriers, and two patients with missense variants exhibiting diminished enzyme activity (CYP3A4*8 and the novel CYP3A4*27 allele, p.L475V). Relative to CYP3A4 wild-type patients, those carrying CYP3A4 defective variants had more severe neuropathy (2- and 1.3-fold higher risk of neuropathy for loss-of-function and missense variants, respectively, P = 0.045) and higher probability of neuropathy-induced paclitaxel treatment modifications (7- and 3-fold higher risk for loss-of-function and missense variants, respectively, P = 5.9 × 10(-5)). CONCLUSION This is the first description of a genetic marker associated with paclitaxel treatment modifications caused by neuropathy. CYP3A4 defective variants may provide a basis for paclitaxel treatment individualization.
Collapse
Affiliation(s)
- María Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mi-Young Lee
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lara Sánchez-Barroso
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Isabel Calvo
- Medical Oncology Department, Hospital Montepríncipe, Madrid, Spain. Medical Oncology Department, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Laura García-Estévez
- Medical Oncology Department, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - Jesús García-Donás
- Gynecological and Genitourinary Tumors Programme Centro Integral Oncologico Clara Campal CIOCC, Madrid, Spain
| | - Beatriz Castelo
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Eva Guerra
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Luis J Leandro-García
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Inger Johansson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
64
|
Ng T, Chan M, Khor CC, Ho HK, Chan A. The genetic variants underlying breast cancer treatment-induced chronic and late toxicities: a systematic review. Cancer Treat Rev 2014; 40:1199-214. [PMID: 25458605 DOI: 10.1016/j.ctrv.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023]
Abstract
A systematic review was performed to describe the findings from 19 genetic association studies that have examined the genetic variants underlying four common treatment-induced chronic and late toxicities in breast cancer patients, and to evaluate the quality of reporting. Three out of 5 studies found an association between HER2 lle655Val polymorphisms and trastuzumab-induced cardiotoxicity. Two studies found a positive association between cognitive impairment and the Val allele of the COMT gene and the ε4 allele of the apolipoprotein E gene. Genetic associations were established between fatigue and the G/G genotype of IL6-174 and TNF-308, and the Met allele of the COMT gene in 4 studies. Among studies (N=8) that evaluated the genetic associations underlying peripheral neuropathy, CYP2C8∗3 variant is commonly reported as the associated gene. Most studies failed to conform to the major criteria listed in the STREGA guidelines, with a lack of transparent reporting of methods and results.
Collapse
Affiliation(s)
- Terence Ng
- Department of Pharmacy, National University of Singapore, Singapore
| | - Mint Chan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Han Kiat Ho
- Department of Pharmacy, National University of Singapore, Singapore
| | - Alexandre Chan
- Department of Pharmacy, National University of Singapore, Singapore; Department of Pharmacy, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
65
|
Chemotherapy-induced neuropathy: A comprehensive survey. Cancer Treat Rev 2014; 40:872-82. [DOI: 10.1016/j.ctrv.2014.04.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
|
66
|
Vaz-Luis I, Ottesen RA, Hughes ME, Mamet R, Burstein HJ, Edge SB, Gonzalez-Angulo AM, Moy B, Rugo HS, Theriault RL, Weeks JC, Winer EP, Lin NU. Outcomes by tumor subtype and treatment pattern in women with small, node-negative breast cancer: a multi-institutional study. J Clin Oncol 2014; 32:2142-50. [PMID: 24888816 DOI: 10.1200/jco.2013.53.1608] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Treatment decisions for patients with T1a,bN0M0 breast cancer are challenging. We studied the time trends in use of adjuvant chemotherapy and survival outcomes among these patients. PATIENTS AND METHODS This was a prospective cohort study within the National Comprehensive Cancer Network Database that included 4,113 women with T1a,bN0M0 breast cancer treated between 2000 and 2009. Tumors were grouped by size (T1a, T1b), biologic subtype defined by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status, and receipt of chemotherapy with or without trastuzumab. RESULTS Median follow-up time was 5.5 years. Eight percent of patients with HR-positive/HER2-negative tumors were treated with chemotherapy. Fifty-two percent of those with HER2-positive or HR-negative/HER2-negative breast cancers received chemotherapy, with an increase over the last decade. Survival outcomes diverged by subtype and size, but the 5-year distant relapse-free survival (DRFS) did not exceed 10% in any subgroup. The 5-year DRFS for patients with T1a tumors untreated with chemotherapy ranged from 93% to 98% (n = 49 to 972), and for patients with T1b tumors, it ranged from 90% to 96% (n = 17 to 2,005). Patients with HR-positive/HER2-negative disease had the best DRFS estimates, and patients with HR-negative/HER2-negative tumors had the lowest. In this observational, nonrandomized cohort study, the 5-year DRFS for treated patients with T1a tumors was 100% for all subgroups (n = 12 to 33), and for patients with T1b tumors, it ranged from 94% to 96% (n = 88 to 241). CONCLUSION Women with T1a,b tumors have an excellent prognosis without chemotherapy. Size and tumor subtype may identify patients in whom the rate of recurrence justifies consideration of chemotherapy. These patients represent an optimal group for evaluating less toxic adjuvant regimens to maintain efficacy while minimizing short- and long-term risks.
Collapse
Affiliation(s)
- Ines Vaz-Luis
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rebecca A Ottesen
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Melissa E Hughes
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rizvan Mamet
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Harold J Burstein
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephen B Edge
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ana M Gonzalez-Angulo
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Beverly Moy
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hope S Rugo
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard L Theriault
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jane C Weeks
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eric P Winer
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nancy U Lin
- Ines Vaz-Luis, Melissa E. Hughes, Harold J. Burstein, Jane C. Weeks, Eric P. Winer, and Nancy U. Lin, Dana-Farber Cancer Institute; Beverly Moy, Massachusetts General Hospital, Boston, MA; Ines Vaz-Luis, Instituto de Medicina Molecular, Lisbon, Portugal; Rebecca A. Ottesen and Rizvan Mamet, City of Hope, Duarte; Hope S. Rugo, University of California, San Francisco, San Francisco, CA; Stephen B. Edge, Roswell Park Cancer Institute, Buffalo, NY; Stephen B. Edge, Baptist Cancer Center, Memphis, TN; and Ana M. Gonzalez-Angulo and Richard L. Theriault, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
67
|
Polygenic inheritance of paclitaxel-induced sensory peripheral neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance). THE PHARMACOGENOMICS JOURNAL 2014; 14:336-42. [PMID: 24513692 PMCID: PMC4111770 DOI: 10.1038/tpj.2014.2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/28/2013] [Accepted: 01/06/2014] [Indexed: 01/15/2023]
Abstract
Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For most individuals there are no known risk factors that predispose patients to the adverse event, and pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there is a heritable component to paclitaxel induced peripheral neuropathy would be valuable in guiding clinical decisions and may provide insight into treatment of and mechanisms for the toxicity. Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients.
Collapse
|
68
|
Soffietti R, Trevisan E, Rudà R. Neurologic complications of chemotherapy and other newer and experimental approaches. HANDBOOK OF CLINICAL NEUROLOGY 2014; 121:1199-218. [PMID: 24365412 DOI: 10.1016/b978-0-7020-4088-7.00080-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurologic complications of conventional cytototxic agents as well as those from monoclonal antibodies and targeted therapies are increasingly observed in patients with cancer. The major categories are represented by alkylating agents (platinum compounds, ifosfamide, procarbazine, thiotepa), mitotic spindle inhibitors (vinca alkaloids, taxanes, etoposide, teniposide), proteasome inhibitors (bortezomib), antibiotics, antimetabolites, thalidomide, lenalidomide, topoisomerase inhibitors, interferon-α, hormones, bevacizumab, trastuzumab, and small tyrosine kinase inhibitors. Peripheral neuropathy is a common adverse effect of a number of chemotherapeutic drugs and often represents a critical factor limiting an adequate dose-intensity of chemotherapy. Regarding the central nervous system (CNS), it is vulnerable to many forms of toxicity from chemotherapeutic agents, including encephalopathy syndromes and confusional states, seizures, headache, cerebrovascular complications, visual loss, cerebellar syndromes, and myelopathy. For a given drug, the occurrence of CNS toxicity depends on several factors, including the total dose, route of administration, presence of structural brain lesions, exposure to prior or concurrent irradiation, and interactions with other drugs. However, many of the neurotoxic reactions are rare and idiosyncratic, and remain unpredictable. Several forms of neuroprotection and rehabilitation are being investigated. Last, the so-called "chemobrain" is an emerging issue, as it is a model of a subtle of and long-lasting damage to neuronal structures from some antineoplastic agents.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University and San Giovanni Battista Hospital, Turin, Italy.
| | - Elisa Trevisan
- Division of Neuro-Oncology, Department of Neuroscience, University and San Giovanni Battista Hospital, Turin, Italy
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University and San Giovanni Battista Hospital, Turin, Italy
| |
Collapse
|
69
|
Han Y, Smith MT. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front Pharmacol 2013; 4:156. [PMID: 24385965 PMCID: PMC3866393 DOI: 10.3389/fphar.2013.00156] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/28/2013] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a type of neuropathic pain that is a major dose-limiting side-effect of potentially curative cancer chemotherapy treatment regimens that develops in a "stocking and glove" distribution. When pain is severe, a change to less effective chemotherapy agents may be required, or patients may choose to discontinue treatment. Medications used to alleviate CIPN often lack efficacy and/or have unacceptable side-effects. Hence the unmet medical need for novel analgesics for relief of this painful condition has driven establishment of rodent models of CIPN. New insights on the pathobiology of CIPN gained using these models are discussed in this review. These include mitochondrial dysfunction and oxidative stress that are implicated as key mechanisms in the development of CIPN. Associated structural changes in peripheral nerves include neuronopathy, axonopathy and/or myelinopathy, especially intra-epidermal nerve fiber (IENF) degeneration. In patients with CIPN, loss of heat sensitivity is a hallmark symptom due to preferential damage to myelinated primary afferent sensory nerve fibers in the presence or absence of demyelination. The pathobiology of CIPN is complex as cancer chemotherapy treatment regimens frequently involve drug combinations. Adding to this complexity, there are also subtle differences in the pathobiological consequences of commonly used cancer chemotherapy drugs, viz platinum compounds, taxanes, vincristine, bortezomib, thalidomide and ixabepilone, on peripheral nerves.
Collapse
Affiliation(s)
- Yaqin Han
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
- School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
- School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
70
|
Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG. Neurosteroid 3α-androstanediol efficiently counteracts paclitaxel-induced peripheral neuropathy and painful symptoms. PLoS One 2013; 8:e80915. [PMID: 24260511 PMCID: PMC3829913 DOI: 10.1371/journal.pone.0080915] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022] Open
Abstract
Painful peripheral neuropathy belongs to major side-effects limiting cancer chemotherapy. Paclitaxel, widely used to treat several cancers, induces neurological symptoms including burning pain, allodynia, hyperalgesia and numbness. Therefore, identification of drugs that may effectively counteract paclitaxel-induced neuropathic symptoms is crucial. Here, we combined histopathological, neurochemical, behavioral and electrophysiological methods to investigate the natural neurosteroid 3α-androstanediol (3α-DIOL) ability to counteract paclitaxel-evoked peripheral nerve tissue damages and neurological symptoms. Prophylactic or corrective 3α-DIOL treatment (4 mg/kg/2days) prevented or suppressed PAC-evoked heat-thermal hyperalgesia, cold-allodynia and mechanical allodynia/hyperalgesia, by reversing to normal, decreased thermal and mechanical pain thresholds of PAC-treated rats. Electrophysiological studies demonstrated that 3α-DIOL restored control values of nerve conduction velocity and action potential peak amplitude significantly altered by PAC-treatment. 3α-DIOL also repaired PAC-induced nerve damages by restoring normal neurofilament-200 level in peripheral axons and control amount of 2’,3’-cyclic-nucleotide-3’-phosphodiesterase in myelin sheaths. Decreased density of intraepidermal nerve fibers evoked by PAC-therapy was also counteracted by 3α-DIOL treatment. More importantly, 3α-DIOL beneficial effects were not sedation-dependent but resulted from its neuroprotective ability, nerve tissue repairing capacity and long-term analgesic action. Altogether, our results showing that 3α-DIOL efficiently counteracted PAC-evoked painful symptoms, also offer interesting possibilities to develop neurosteroid-based strategies against chemotherapy-induced peripheral neuropathy. This article shows that the prophylactic or corrective treatment with 3α-androstanediol prevents or suppresses PAC-evoked painful symptoms and peripheral nerve dysfunctions in rats. The data suggest that 3α-androstanediol-based therapy may constitute an efficient strategy to explore in humans for the eradication of chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Laurence Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Ayikoe Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de Médecine, Strasbourg, France
- * E-mail:
| |
Collapse
|
71
|
Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol 2013; 14 Suppl 4:iv45-54. [PMID: 23095830 DOI: 10.1093/neuonc/nos203] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral neuropathies induced by chemotherapy (CIPN) are an increasingly frequent problem. Contrary to hematologic adverse effects, which can be treated with hematopoetic growth factors, neither prophylaxis nor specific treatment is available, and only symptomatic treatment can be offered. Neurotoxic drugs are becoming a major dose-limiting factor. The epidemiology is still unclear. Several drug-dependent pathogenetic mechanisms exist. CIPN are predominately sensory, length-dependent neuropathies that develop after a typical cumulative dose. Usually, the appearance of CIPN is dose dependent, although in at least 2 drugs (oxaliplatin and taxanes), immediate toxic effects occur. The most frequent substances causing CIPN are platin compounds, vinka alkaloids, taxanes, and bortezomib and thalidomide. The role of synergistic neurotoxicity caused by previously given chemo-therapies and concomitant chemotherapies and the role pre-existent neuropathy on the development of a CIPN is not clear. As the number of long-term cancer survivors increases and a new focus on long-term effects of chemotherapy-induced neuropathies emerge, concepts of rehabilitation need to be implemented to improve the patients' functions and quality of life.
Collapse
Affiliation(s)
- Wolfgang Grisold
- Department of Neurology, Kaiser Franz Josef Hospital, Vienna, Austria.
| | | | | |
Collapse
|
72
|
Moore RJ, Groninger H. Chemotherapy-Induced Peripheral Neuropathy in Pediatric Cancer Patients. Cureus 2013; 5:e124. [PMID: 25144779 PMCID: PMC4094363 DOI: 10.7759/cureus.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathies (CIPNs) are an increasingly common neuropathic and pain syndrome in adult and pediatric cancer patients and survivors [1-69]. However, symptoms associated with CIPNs are often undiagnosed, under-assessed, and communications problems between clinicians, family members, and patients have been observed [70-73]. Less is known about the prevalence and impact of CIPNs on pediatric cancer populations [70-71]. This article aims to provide a brief understanding of CIPNs in pediatric populations, and to review the evidence for both its prevention and treatment.
Collapse
Affiliation(s)
- Rhonda J Moore
- FDA, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Hunter Groninger
- FDA, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
73
|
Palumbo MO, Kavan P, Miller WH, Panasci L, Assouline S, Johnson N, Cohen V, Patenaude F, Pollak M, Jagoe RT, Batist G. Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol 2013; 4:57. [PMID: 23675348 PMCID: PMC3646247 DOI: 10.3389/fphar.2013.00057] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022] Open
Abstract
In the last half of the century, advances in the systemic therapy of cancer, including chemotherapy, hormonal therapy, targeted therapy, and immunotherapy have been responsible for improvements in cancer related mortality in developed countries even as the population continues to age. Although such advancements have yet to benefit all cancer types, systemic therapies have led to an improvement in overall survival in both the adjuvant and metastatic setting for many cancers. With the pressure to make therapies available as soon as possible, the side-effects of systemic therapies, in particular long-term side-effects are not very well characterized and understood. Increasingly, a number of cancer types are requiring long-term and even lifelong systemic therapy. This is true for both younger and older patients with cancer and has important implications for each subset. Younger patients have an overall greater expected life-span, and as a result may suffer a greater variety of treatment related complications in the long-term, whereas older patients may develop earlier side-effects as a result of their frailty. Because the incidence of cancer in the world will increase over the next several decades and there will be more people living with cancer, it is important to have an understanding of the potential side-effects of new systemic therapies. As an introductory article, in this review series, we begin by describing some of the major advances made in systemic cancer therapy along with some of their known side-effects and we also make an attempt to describe the future of systemic cancer therapy.
Collapse
Affiliation(s)
- Michael O Palumbo
- Department of Medicine and Oncology, Sir Mortimer B. Davis Jewish General Hospital, Segal Cancer Centre, McGill University Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
de Graan AJM, Elens L, Sprowl JA, Sparreboom A, Friberg LE, van der Holt B, de Raaf PJ, de Bruijn P, Engels FK, Eskens FALM, Wiemer EAC, Verweij J, Mathijssen RHJ, van Schaik RHN. CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res 2013; 19:3316-24. [PMID: 23640974 DOI: 10.1158/1078-0432.ccr-12-3786] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Paclitaxel is used for the treatment of several solid tumors and displays a high interindividual variation in exposure and toxicity. Neurotoxicity is one of the most prominent side effects of paclitaxel. This study explores potential predictive pharmacokinetic and pharmacogenetic determinants for the onset and severity of neurotoxicity. EXPERIMENTAL DESIGN In an exploratory cohort of patients (n = 261) treated with paclitaxel, neurotoxicity incidence, and severity, pharmacokinetic parameters and pharmacogenetic variants were determined. Paclitaxel plasma concentrations were measured by high-performance liquid chromatography or liquid chromatography/tandem mass spectrometry, and individual pharmacokinetic parameters were estimated from previously developed population pharmacokinetic models by nonlinear mixed effects modeling. Genetic variants of paclitaxel pharmacokinetics tested were CYP3A4*22, CYP2C8*3, CYP2C8*4, and ABCB1 3435 C>T. The association between CYP3A4*22 and neurotoxicity observed in the exploratory cohort was validated in an independent patient cohort (n = 239). RESULTS Exposure to paclitaxel (logAUC) was correlated with severity of neurotoxicity (P < 0.00001). Female CYP3A4*22 carriers were at increased risk of developing neurotoxicity (P = 0.043) in the exploratory cohort. CYP3A4*22 carrier status itself was not associated with pharmacokinetic parameters (CL, AUC, Cmax, or T>0.05) of paclitaxel in males or females. Other genetic variants displayed no association with neurotoxicity. In the subsequent independent validation cohort, CYP3A4*22 carriers were at risk of developing grade 3 neurotoxicity (OR = 19.1; P = 0.001). CONCLUSIONS Paclitaxel exposure showed a relationship with the severity of paclitaxel-induced neurotoxicity. In this study, female CYP3A4*22 carriers had increased risk of developing severe neurotoxicity during paclitaxel therapy. These observations may guide future individualization of paclitaxel treatment.
Collapse
Affiliation(s)
- Anne-Joy M de Graan
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Choi SS, Koh WU, Nam JS, Shin JW, Leem JG, Suh JH. Effect of ethyl pyruvate on Paclitaxel-induced neuropathic pain in rats. Korean J Pain 2013; 26:135-41. [PMID: 23614074 PMCID: PMC3629339 DOI: 10.3344/kjp.2013.26.2.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023] Open
Abstract
Background Although paclitaxel is a widely used chemotherapeutic agent for the treatment of solid cancers, side effects such as neuropathic pain lead to poor compliance and discontinuation of the therapy. Ethyl pyruvate (EP) is known to have analgesic effects in several pain models and may inhibit apoptosis. The present study was designed to investigate the analgesic effects of EP on mechanical allodynia and apoptosis in dorsal root ganglion (DRG) cells after paclitaxel administration. Methods Rats were randomly divided into 3 groups: 1) a control group, which received only vehicle; 2) a paclitaxel group, which received paclitaxel; and 3) an EP group, which received EP after paclitaxel administration. Mechanical allodynia was tested before and at 7 and 14 days after final paclitaxel administration. Fourteen days after paclitaxel treatment, DRG apoptosis was determined by activated caspase-3 immunoreactivity (IR). Results Post-treatment with EP did not significantly affect paclitaxel-induced allodynia, although it tended to slightly reduce sensitivities to mechanical stimuli after paclitaxel administration. After paclitaxel administration, an increase in caspase-3 IR in DRG cells was observed, which was co-localized with NF200-positive myelinated neurons. Post-treatment with EP decreased the paclitaxel-induced caspase-3 IR. Paclitaxel administration or post-treatment with EP did not alter the glial fibrillary acidic protein IRs in DRG cells. Conclusions Inhibition of apoptosis in DRG neurons by EP may not be critical in paclitaxel-induced mechanical allodynia.
Collapse
Affiliation(s)
- Seong Soo Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
76
|
Hertz DL, Roy S, Motsinger-Reif AA, Drobish A, Clark LS, McLeod HL, Carey LA, Dees EC. CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann Oncol 2013; 24:1472-8. [PMID: 23413280 DOI: 10.1093/annonc/mdt018] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Paclitaxel-induced neuropathy is an adverse event that often leads to therapeutic disruption and patient discomfort. We attempted to replicate a previously reported association between increased neuropathy risk and CYP2C8*3 genotype. PATIENTS AND METHODS Demographic, treatment, and toxicity data were collected for paclitaxel-treated breast cancer patients who were genotyped for the CYP2C8*3 K399R (rs10509681) variant. A log-rank test was used in the primary analysis of European-American patients. An additional independent replication was then attempted in a cohort of African-American patients, followed by modeling of the entire patient cohort with relevant covariates. RESULTS In the primary analysis of 209 European patients, there was an increased risk of paclitaxel-induced neuropathy related to CYP2C8*3 status [HR (per allele) = 1.93 (95% CI: 1.05-3.55), overall log-rank P = 0.006]. The association was replicated in direction and magnitude of effect in 107 African-American patients (P = 0.043). In the Cox model using the entire mixed-race cohort (n = 411), each CYP2C8*3 allele approximately doubled the patient's risk of grade 2+ neuropathy (P = 0.004), and non-Europeans were at higher neuropathy risk than Europeans of similar genotype (P = 0.030). CONCLUSIONS The increased risk of paclitaxel-induced neuropathy in patients who carry the CYP2C8*3 variant was replicated in two racially distinct patient cohorts.
Collapse
Affiliation(s)
- D L Hertz
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Vahdat LT, Thomas ES, Roché HH, Hortobagyi GN, Sparano JA, Yelle L, Fornier MN, Martín M, Bunnell CA, Mukhopadhyay P, Peck RA, Perez EA. Ixabepilone-associated peripheral neuropathy: data from across the phase II and III clinical trials. Support Care Cancer 2012; 20:2661-8. [PMID: 22382588 PMCID: PMC3461204 DOI: 10.1007/s00520-012-1384-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/08/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE Dose-limiting neuropathy is a major adverse event associated with most of the microtubule-stabilizing agent-based chemotherapy regimens. Ixabepilone, a semisynthetic analogue of the natural epothilone B, has activity against a wide range of tumor types. Peripheral neuropathy (PN), associated with ixabepilone treatment, is usually mild to moderate, predominantly sensory and cumulative. Preclinical studies demonstrate that ixabepilone and taxanes produce a similar neurotoxicity profile. METHODS We searched databases of phase II/III clinical trials involving patients receiving ixabepilone as a monotherapy or in combination with capecitabine for incidences of neuropathy. Potential risk factors for grade 3/4 PN were identified by a Cox regression analysis on a dataset of 1,540 patients with different tumor types across multiple studies. RESULTS Rates for incidence of ixabepilone-induced severe PN (Common Terminology Criteria for Adverse Events grade 3/4) ranged from 1% in early untreated breast cancer up to 24% in heavily pretreated metastatic breast cancer; grade 4 PN was rare (≤ 1%). Common symptoms included numbness, paresthesias, and sometimes dysesthesias. Cox regression analysis identified only preexisting neuropathy as a risk factor for increased ixabepilone-associated PN. The management of PN has been primarily through dose adjustments (dose delays and/or dose reduction). Patients had resolution of their neuropathy within a median time of 5 to 6 weeks. CONCLUSIONS PN is a dose-limiting toxicity associated with ixabepilone treatment, is reversible in most patients, and can be managed with dose reduction and delays.
Collapse
Affiliation(s)
- Linda T Vahdat
- Weill Cornell Breast Center, Weill Cornell Medical College, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
The glial modulatory drug AV411 attenuates mechanical allodynia in rat models of neuropathic pain. ACTA ACUST UNITED AC 2012; 2:279-91. [PMID: 18176632 DOI: 10.1017/s1740925x0700035x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlling neuropathic pain is an unmet medical need and we set out to identify new therapeutic candidates. AV411 (ibudilast) is a relatively nonselective phosphodiesterase inhibitor that also suppresses glial-cell activation and can partition into the CNS. Recent data strongly implicate activated glial cells in the spinal cord in the development and maintenance of neuropathic pain. We hypothesized that AV411 might be effective in the treatment of neuropathic pain and, hence, tested whether it attenuates the mechanical allodynia induced in rats by chronic constriction injury (CCI) of the sciatic nerve, spinal nerve ligation (SNL) and the chemotherapeutic paclitaxel (Taxol). Twice-daily systemic administration of AV411 for multiple days resulted in a sustained attenuation of CCI-induced allodynia. Reversal of allodynia was of similar magnitude to that observed with gabapentin and enhanced efficacy was observed in combination. We further show that multi-day AV411 reduces SNL-induced allodynia, and reverses and prevents paclitaxel-induced allodynia. Also, AV411 cotreatment attenuates tolerance to morphine in nerve-injured rats. Safety pharmacology, pharmacokinetic and initial mechanistic analyses were also performed. Overall, the results indicate that AV411 is effective in diverse models of neuropathic pain and support further exploration of its potential as a therapeutic agent for the treatment of neuropathic pain.
Collapse
|
79
|
Postma TJ, Heimans JJ. Neurological complications of chemotherapy to the peripheral nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2012; 105:917-36. [PMID: 22230542 DOI: 10.1016/b978-0-444-53502-3.00032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- T J Postma
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
80
|
Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012; 59:3-9. [PMID: 22537849 DOI: 10.1016/j.cyto.2012.03.027] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/07/2012] [Accepted: 03/29/2012] [Indexed: 11/23/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), a dose-limiting neurotoxic effect of chemotherapy, is the most common reason for early cessation of cancer treatment. This can result in an increased risk of recurrence and decreased survival rate. Inflammatory cascade activation, proinflammatory cytokine upregulation, and neuro-immune communication pathways play essential roles in the initiation and progression of CIPN. Most notably, TNF-α, IL-1β, IL-6, and CCL2 are involved in neuropathic pain. Further elucidation of the role of these cytokines could lead to their development and use as biomarkers for predicting the onset of painful peripheral neuropathy and early axonal damage. In this review, we provide evidence for the involvement of cytokines in CIPN, the possible underlying mechanisms, and their use as potential therapeutic targets and biomarkers to prevent and improve the painful peripheral neuropathy related to chemotherapeutic agents.
Collapse
|
81
|
Imai A, Matsunami K, Takagi H, Ichigo S. Proposed medications for taxane-induced myalgia and arthralgia (Review). Oncol Lett 2012; 3:1181-1185. [PMID: 22783414 DOI: 10.3892/ol.2012.651] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 03/20/2012] [Indexed: 11/05/2022] Open
Abstract
Taxanes inhibit the disassembly of microtubules, which are involved in mitosis and axoplasmatic transport, and may cause the degeneration of peripheral, mainly small, sensory nerves. Peripheral neurotoxicity is a dose-limiting side-effect of taxanes. Neuroprotective agents may aid in the reduction of neurotoxicity, thus allowing the intensification of cytostatic therapy in patients. An increasing number of medications for the prevention of taxane-induced arthralgia and myalgia are becoming available to oncology teams. The most widely studied medications include so-called analgesics such as Shakuyaku-kanzo-to (a herbal medicine), corticosteroids and antihistamines. Arthralgias and myalgias (muscle spasms, fasciculations and prolonged contractions) may be extremely distressing for patients. New anti-epileptic drugs, particularly gabapentin and pregabalin, have proven to be safe and effective in the treatment of taxane-induced neurotoxicity. The aim of this review was to examine the topical choices available for the protective management of taxane-induced neurotoxicity monitored in preliminary case studies and clinical trials. At present, there is no standard of care for the prevention of taxane-induced arthralgia and myalgia. In combination with taxane-based chemotherapeutic regimens, these medical agents may be crucial in the treatment of a variety of types of cancer.
Collapse
Affiliation(s)
- Atsushi Imai
- Department of Obstetrics and Gynecology, Matsunami General Hospital, Gifu 501-6062, Japan
| | | | | | | |
Collapse
|
82
|
Naguib M, Xu JJ, Diaz P, Brown DL, Cogdell D, Bie B, Hu J, Craig S, Hittelman WN. Prevention of paclitaxel-induced neuropathy through activation of the central cannabinoid type 2 receptor system. Anesth Analg 2012; 114:1104-20. [PMID: 22392969 DOI: 10.1213/ane.0b013e31824b0191] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB(2)) receptors are expressed in the microglia in neurodegenerative disease models. METHODS To explore the potential of CB(2) agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB(2)-selective agonist, namely, MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB(2)(+/+) and CB(2)(-/-) mice. We hypothesized that the CB(2) receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. RESULTS We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB(2)(-/-) mice and was blocked by CB(2) antagonists, suggesting that MDA7's action directly involves CB(2) receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced toll-like receptor and CB(2) expression in the lumbar spinal cord, reduced levels of extracellular signal-regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. CONCLUSIONS Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae.
Collapse
Affiliation(s)
- Mohamed Naguib
- Institute of Anesthesiology, Cleveland Clinic, 9500 Euclid Ave., NE6-306, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Chemotherapy-induced polyneuropathy. Part I. Pathophysiology. Contemp Oncol (Pozn) 2012; 16:72-8. [PMID: 23788859 PMCID: PMC3687382 DOI: 10.5114/wo.2012.27341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/05/2012] [Accepted: 02/15/2012] [Indexed: 01/02/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a toxic neuropathy, a syndrome consisting of highly distressing symptoms of various degrees of severity. It includes numbness of distal extremities, long-term touch, heat, and cold dysaesthesia and, in more severe cases, motor impairment affecting daily functioning. Each form of the syndrome may be accompanied by symptoms of neuropathic stinging, burning, and tingling pain. In the case of most chemotherapeutic agents, the incidence and severity of CIPN are dependent on the cumulative dose of the drug. The syndrome described is caused by damage to the axons and/or cells of the peripheral nervous system. Chemotherapeutic agents have distinct mechanisms of action in both neoplastic tissue and the peripheral nervous system; therefore, CIPN should not be regarded as a homogeneous disease entity. The present article is an attempt to systematize the knowledge about the toxic effects of chemotherapy on the peripheral nervous system.
Collapse
|
84
|
Cannabinoid agonist WIN 55,212-2 prevents the development of paclitaxel-induced peripheral neuropathy in rats. Possible involvement of spinal glial cells. Eur J Pharmacol 2012; 682:62-72. [PMID: 22374260 DOI: 10.1016/j.ejphar.2012.02.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 02/07/2023]
Abstract
Spinal glial activation contributes to the development and maintenance of chronic pain states, including neuropathic pain of diverse etiologies. Cannabinoid compounds have shown antinociceptive properties in a variety of neuropathic pain models and are emerging as a promising class of drugs to treat neuropathic pain. Thus, the effects of repeated treatment with WIN 55,212-2, a synthetic cannabinoid agonist, were examined throughout the development of paclitaxel-induced peripheral neuropathy. Painful neuropathy was induced in male Wistar rats by intraperitoneal (i.p.) administration of paclitaxel (1mg/kg) on four alternate days. Paclitaxel-treated animals received WIN 55,212-2 (1mg/kg, i.p.) or minocycline (15 mg/kg, i.p.), a microglial inhibitor, daily for 14 days, simultaneous with the antineoplastic. The development of hypersensitive behaviors was assessed on days 1, 7, 14, 21 and 28 following the initial administration of drugs. Both the activation of glial cells (microglia and astrocytes) at day 29 and the time course of proinflammatory cytokine release within the spinal cord were also determined. Similar to minocycline, repeated administration of WIN 55,212-2 prevented the development of thermal hyperalgesia and mechanical allodynia in paclitaxel-treated rats. WIN 55,212-2 treatment also prevented spinal microglial and astrocytic activation evoked by paclitaxel at day 29 and attenuated the early production of spinal proinflammatory cytokines (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α). Our results confirm changes in the reactivity of glial cells during the development of peripheral neuropathy induced by paclitaxel and support a preventive effect of WIN 55,212-2, probably via glial cells reactivity inactivation, on the development of this neuropathy.
Collapse
|
85
|
Abstract
Sarcomas are a heterogeneous group of relatively rare mesenchymal neoplasms. They can be grouped into two general categories: soft tissue sarcoma (STS) and primary bone sarcoma, which are treated differently. Because sarcomas are relatively rare and complex with a wide variety of different histopathologic subtypes, evaluation by multidisciplinary teams who have expertise in the field is recommended. Treatment guidelines for the use of chemotherapy in patients with STS and bone sarcoma have been published by the National Comprehensive Cancer Network. The role of adjuvant chemotherapy in resected STS remains controversial. Although chemotherapy improves disease-free survival, the long-term overall survival benefit remains unproven. Chemotherapy is typically used as palliative treatment for most subtypes of metastatic STS. In contrast, chemotherapy has a proven role in the treatment of primary bone tumors and Ewing sarcoma, but it has not demonstrated efficacy in the treatment of chondrosarcoma. The standard chemotherapy regimens used in sarcoma are associated with significant toxicity, including long-term complications. Less intense and less toxic regimens are the focus of ongoing clinical research. Newer cytotoxic agents with an improved safety profile, such as trabectedin and palifosfamide, are currently in development. Future research needs to focus on identification of subpopulations of patients that are most likely to benefit from chemotherapy.
Collapse
Affiliation(s)
- David R D'Adamo
- Sarcoma and Bone Cancer Treatment Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
86
|
Chew DJ, Fawcett JW, Andrews MR. The challenges of long-distance axon regeneration in the injured CNS. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186719 DOI: 10.1016/b978-0-444-59544-7.00013-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | | | | |
Collapse
|
87
|
Myelin structure is unaltered in chemotherapy-induced peripheral neuropathy. Neurotoxicology 2012; 33:1-7. [DOI: 10.1016/j.neuro.2011.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 09/06/2011] [Accepted: 10/26/2011] [Indexed: 01/26/2023]
|
88
|
Abstract
While oxidative stress has been implicated in small-fiber painful peripheral neuropathies, antioxidants are only partially effective to treat patients. We have tested the hypothesis that Drp1 (dynamin-related protein 1), a GTPase that catalyzes the process of mitochondrial fission, which is a mechanism central for the effect and production of reactive oxygen species (ROS), plays a central role in these neuropathic pain syndromes. Intrathecal administration of oligodeoxynucleotide antisense against Drp1 produced a decrease in its expression in peripheral nerve and markedly attenuated neuropathic mechanical hyperalgesia caused by HIV/AIDS antiretroviral [ddC (2',3'-dideoxycytidine)] and anticancer (oxaliplatin) chemotherapy in male Sprague Dawley rats. To confirm the role of Drp1 in these models of neuropathic pain, as well as to demonstrate its contribution at the site of sensory transduction, we injected a highly selective Drp1 inhibitor, mdivi-1, at the site of nociceptive testing on the dorsum of the rat's hindpaw. mdivi-1 attenuated both forms of neuropathic pain. To evaluate the role of Drp1 in hyperalgesia induced by ROS, we demonstrated that intradermal hydrogen peroxide produced dose-dependent hyperalgesia that was inhibited by mdivi-1. Finally, mechanical hyperalgesia induced by diverse pronociceptive mediators involved in inflammatory and neuropathic pain-tumor necrosis factor α, glial-derived neurotrophic factor, and nitric oxide-was also inhibited by mdivi-1. These studies provide support for a substantial role of mitochondrial fission in preclinical models of inflammatory and neuropathic pain.
Collapse
|
89
|
Fractionated administration of carboplatin/paclitaxel reduces neurotoxicity in patients with advanced non-small cell lung cancer. Anticancer Drugs 2011; 22:926-32. [DOI: 10.1097/cad.0b013e328349313d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
90
|
Fidanboylu M, Griffiths LA, Flatters SJL. Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy. PLoS One 2011; 6:e25212. [PMID: 21966458 PMCID: PMC3180385 DOI: 10.1371/journal.pone.0025212] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/30/2011] [Indexed: 12/03/2022] Open
Abstract
Paclitaxel (Taxol®) is a widely used chemotherapeutic agent that has a major dose limiting side-effect of painful peripheral neuropathy. Currently there is no effective therapy for the prevention or treatment of chemotherapy-induced painful peripheral neuropathies. Evidence for mitochondrial dysfunction during paclitaxel-induced pain was previously indicated with the presence of swollen and vacuolated neuronal mitochondria. As mitochondria are a major source of reactive oxygen species (ROS), the aim of this study was to examine whether pharmacological inhibition of ROS could reverse established paclitaxel-induced pain or prevent the development of paclitaxel-induced pain. Using a rat model of paclitaxel-induced pain (intraperitoneal 2 mg/kg paclitaxel on days 0, 2, 4 & 6), the effects of a non-specific ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN) and a superoxide selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) were compared. Systemic 100 mg/kg PBN administration markedly inhibited established paclitaxel-induced mechanical hypersensitivity to von Frey 8 g and 15 g stimulation and cold hypersensitivity to plantar acetone application. Daily systemic administration of 50 mg/kg PBN (days −1 to 13) completely prevented mechanical hypersensitivity to von Frey 4 g and 8 g stimulation and significantly attenuated mechanical hypersensitivity to von Frey 15 g. Systemic 100 mg/kg TEMPOL had no effect on established paclitaxel-induced mechanical or cold hypersensitivity. High dose (250 mg/kg) systemic TEMPOL significantly inhibited mechanical hypersensitivity to von Frey 8 g & 15 g, but to a lesser extent than PBN. Daily systemic administration of 100 mg/kg TEMPOL (day −1 to 12) did not affect the development of paclitaxel-induced mechanical hypersensitivity. These data suggest that ROS play a causal role in the development and maintenance of paclitaxel-induced pain, but such effects cannot be attributed to superoxide radicals alone.
Collapse
Affiliation(s)
- Mehmet Fidanboylu
- Wolfson Centre for Age-Related Diseases, Centre for Integrative Biomedicine, King's College London, London, United Kingdom
| | | | | |
Collapse
|
91
|
Noh GO, Hwang MS, Cho KS, Lim JA, Kang MK, Kim HJ, Kim JY. Effect of Music Therapy as Intervention on Peripheral Neuropathic Pain and Anxiety of Gynecologic Cancer Patients Undergoing Paclitaxel Chemotherapy. KOREAN JOURNAL OF WOMEN HEALTH NURSING 2011; 17:215-224. [PMID: 37697550 DOI: 10.4069/kjwhn.2011.17.3.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
PURPOSE This study was to investigate the effect of music therapy as intervention on peripheral neuropathic pain and anxiety of gynecologic cancer patients who were undergoing paclitaxel chemotherapy. METHODS Hospitalized 62 patients were assigned to an experimental group (n=30) and a control group (n=33) in this quasi-experimental study. The experimental group participated in music therapy that includes listening, singing and song writing during 1 hour. The peripheral neuropathic pain, anxiety and depression were examined as pre-intervention evaluation by using pain scale, anxiety scale (20 questions) and depression scale (20 questions) in both groups. There were no further treatments for the control group while the experimental group involved in music therapy. The peripheral neuropathic pain and anxiety were evaluated in both groups as post-intervention evaluation. RESULTS Outcomes were verified through hypothesis testing. The level of peripheral neuropathic pain and anxiety in the experimental group was decreased, compared to the control group. CONCLUSION According to the study, music therapy is a beneficial intervention that reduces peripheral neuropathic pain and anxiety in gynecologic cancer patients. These findings are encouraging and suggest that music therapy can be applied as an effective intervention for minimizing chemotherapy related symptoms.
Collapse
|
92
|
Campos-Arroyo D, Martínez-Lazcano JC, Melendez-Zajgla J. Probenecid is a chemosensitizer in cancer cell lines. Cancer Chemother Pharmacol 2011; 69:495-504. [DOI: 10.1007/s00280-011-1725-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/08/2011] [Indexed: 02/08/2023]
|
93
|
Meng X, Zhang Y, Li A, Xin J, Lao L, Ren K, Berman BM, Tan M, Zhang RX. The effects of opioid receptor antagonists on electroacupuncture-produced anti-allodynia/hyperalgesia in rats with paclitaxel-evoked peripheral neuropathy. Brain Res 2011; 1414:58-65. [PMID: 21872220 DOI: 10.1016/j.brainres.2011.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/20/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022]
Abstract
Research supports the effectiveness of acupuncture for conditions such as chronic low back and knee pain. In a five-patient pilot study the modality also improved the symptoms of chemotherapy-induced neuropathic pain. Using an established rat model of paclitaxel-induced peripheral neuropathy, we evaluated the effect of electroacupuncture (EA) on paclitaxel-induced hyperalgesia and allodynia that has not been studied in an animal model. We hypothesize that EA would relieve the paclitaxel-induced mechanical allodynia and hyperalgesia, which was assessed 30 min after EA using von Frey filaments. Beginning on day 13, the response frequency to von Frey filaments (4-15 g) was significantly increased in paclitaxel-injected rats compared to those injected with vehicle. EA at 10 Hz significantly (P<0.05) decreased response frequency at 4-15 g compared to sham EA; EA at 100 Hz only decreased response frequency at 15 g stimulation. Compared to sham EA plus vehicle, EA at 10 Hz plus either a μ, δ, or κ opioid receptor antagonist did not significantly decrease mechanical response frequency, indicating that all three antagonists blocked EA inhibition of allodynia and hyperalgesia. Since we previously demonstrated that μ and δ but not κ opioid receptors affect EA anti-hyperalgesia in an inflammatory pain model, these data show that EA inhibits pain through different opioid receptors under varying conditions. Our data indicate that EA at 10 Hz inhibits mechanical allodynia/hyperalgesia more potently than does EA at 100 Hz. Thus, EA significantly inhibits paclitaxel-induced allodynia/hyperalgesia through spinal opioid receptors, and EA may be a useful complementary treatment for neuropathic pain patients.
Collapse
Affiliation(s)
- Xianze Meng
- Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Quintyne KI, Mainstone P, McNamara B, Boers P, Wallis F, Gupta RK. Profound and persistent painful paclitaxel peripheral neuropathy in a premenopausal patient. BMJ Case Rep 2011; 2011:bcr1220103645. [PMID: 22696717 PMCID: PMC3091274 DOI: 10.1136/bcr.12.2010.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The authors herein report the case of a 35-year-old woman undergoing adjuvant therapy for node positive breast cancer, who presented with short and rapidly progressive history of bilateral lower limb symptoms of peripheral neuropathy following therapy with paclitaxel. MRI of her neural axis revealed no leptomeningeal enhancement or focal metastatic lesions. Neurophysiological tests favoured toxic sensory axonal polyneuropathy. She remains symptomatic following discontinuation of therapy 20 months ago, and is under review with pain management.
Collapse
Affiliation(s)
- K I Quintyne
- Department of Medical Oncology, Mid-Western Cancer Centre, Mid-Western Regional Hospital, Limerick, Ireland.
| | | | | | | | | | | |
Collapse
|
95
|
Boyette-Davis J, Dougherty PM. Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline. Exp Neurol 2011; 229:353-7. [PMID: 21385581 DOI: 10.1016/j.expneurol.2011.02.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/27/2023]
Abstract
Treatment with the chemotherapeutic agent oxaliplatin produces a robust painful neuropathy similar to various other neuropathic conditions which result in loss of nerve fibers innervating the skin. This loss of intraepidermal nerve fibers (IENFs) appears to play an important role in neuropathy, but has yet to be investigated in oxaliplatin-induced neuropathic pain. For this study, mechanical hyperalgesia and IENF density were measured in rats receiving oxaliplatin, given at a dosage of 2 mg/kg every other day for four injections. The immunomodulatory agent minocycline (25 mg/kg) was also administered and was given 24 h prior to the first dose of oxaliplatin and continued throughout oxaliplatin treatment. Immunohistochemistry using the pan-neuronal marker PGP9.5 was used to investigate IENF densities in hind paw skin on Day 15 and Day 30. The results show that a robust mechanical sensitivity developed in oxaliplatin treated animals, as did a pronounced decrease in epidermal nerve fibers, and these outcomes were effectively prevented by minocycline treatment. This is the first study to show changes in IENF density in oxaliplatin treated animals, and confirm not only a relationship between IENF loss and hypersensitivity but also prevention of both with minocycline treatment.
Collapse
Affiliation(s)
- J Boyette-Davis
- Department of Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | |
Collapse
|
96
|
Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T. Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 2011; 8:244-50. [PMID: 21283127 DOI: 10.1038/nrclinonc.2010.228] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitosis-specific agents have, to date, not been clinically successful. By contrast, microtubule-targeting agents (MTAs) have a long record of success, usually attributed to the induction of mitotic arrest. Indeed, it was this success that led to the search for mitosis-specific inhibitors. We believe the clinical disappointment of mitosis-specific inhibitors stands as evidence that MTAs have been successful not only by interfering with mitosis but, more importantly, by disrupting essential interphase cellular mechanisms. In this Perspective we will review literature that supports a paradigm shift in how we think about one of our most widely used classes of chemotherapeutics-MTAs. We believe that the steady presence and constant physiological role of microtubules are responsible for the overall success of MTAs. While mitosis-specific inhibitors are effective on only a small fraction of the tumor mass (dividing cells), MTAs target tubulin, a protein that has crucial roles in both mitotic and non-mitotic cells.
Collapse
Affiliation(s)
- Edina Komlodi-Pasztor
- National Cancer Institute, National Institutes of Health, Building 10, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
97
|
Boyette-Davis J, Xin W, Zhang H, Dougherty PM. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 2010; 152:308-313. [PMID: 21145656 DOI: 10.1016/j.pain.2010.10.030] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 01/27/2023]
Abstract
Loss of intraepidermal nerve fibers (IENFs) has been speculated to play a critical role in the development of various neuropathies. In this study, the density of IENFs were studied over time during the induction of Taxol (Bristol-Myers Squibb, NY, USA)-induced chemoneuropathy and compared with the changes in IENFs in animals co-treated with Taxol plus the protective agent minocycline. Rats were injected (intraperitoneally) with 2mg/kg of Taxol every other day for four injections (day 1, 3, 5, and 7). Minocycline (25mg/kg) was given in a separate group of rats 24h prior to the first dose of Taxol and every day for the next 9days (day 0 through 9). Animals were tested for mechanical paw withdrawal thresholds prior to any drug administrations and again on day 7, 14, and 30. Immunohistochemistry using the pan-neuronal marker protein gene product 9.5 was performed on glabrous skin of the hind-paw foot pad to stain for IENFs also on day 7, 14, and 30. The results show that Taxol-treated animals developed mechanical sensitivity and corresponding IENF loss. Animals receiving minocycline plus Taxol showed no hyperalgesia or loss of IENFs. This study confirms, for the first time, that a loss of IENFs occurs as a neuropathy develops, and further shows a protection against both IENF loss and hyperalgesia with minocycline treatment. The progression of Taxol-induced mechanical hypersensitivity coincides with loss of intraepidermal nerve fibers, and the hyperalgesia and nerve fiber loss were prevented with minocycline treatment.
Collapse
Affiliation(s)
- J Boyette-Davis
- Department of Anesthesiology and Pain Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | |
Collapse
|
98
|
Goswami C, Goswami L. Filamentous microtubules in the neuronal spinous process and the role of microtubule regulatory drugs in neuropathic pain. Neurochem Int 2010; 57:497-503. [DOI: 10.1016/j.neuint.2010.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 05/28/2010] [Accepted: 06/30/2010] [Indexed: 11/26/2022]
|
99
|
Parker AR, Petluru PN, Wu M, Zhao M, Kochat H, Hausheer FH. BNP7787-mediated modulation of paclitaxel- and cisplatin-induced aberrant microtubule protein polymerization in vitro. Mol Cancer Ther 2010; 9:2558-67. [PMID: 20807779 DOI: 10.1158/1535-7163.mct-10-0300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Taxane and platinum drugs are important agents in the treatment of cancer and have shown activity against a variety of tumors, including ovarian, breast, and lung cancer, either as single agents or in combination with other chemotherapy drugs. However, a serious and prevalent side effect of taxane (docetaxel and all formulations/derivatives of paclitaxel) and platinum (cisplatin, carboplatin, and oxaliplatin) agents is dose-limiting chemotherapy-induced peripheral neuropathy (CIPN). CIPN can result in treatment delays, dose modifications, and, in severe cases, discontinuation of chemotherapy. Consequently, effective treatments for CIPN are needed. Dimesna (BNP7787; Tavocept; disodium 2,2'-dithio-bis-ethanesulfonate) is an investigational drug that is undergoing international clinical development as a treatment that is coadministered with first-line taxane and platinum combination chemotherapy in patients with inoperable advanced primary adenocarcinoma of the lung. BNP7787 is currently being developed with the objective of increasing the survival of cancer patients receiving taxane- and/or cisplatin-based chemotherapy. Additional data indicate that BNP7787 may also protect against common and serious chemotherapy-induced toxicities, including chemotherapy-induced anemia, nausea, emesis, nephrotoxicity, and neuropathy, without interfering with antitumor activity of the chemotherapeutic agent(s). Studies herein show that BNP7787 prevents aberrant microtubule protein (MTP) polymerization that is caused by exposure of MTP to paclitaxel or cisplatin. BNP7787 modulates paclitaxel-induced hyperpolymerization of MTP in a dose-dependent manner, and mesna, an in vivo metabolite of BNP7787, protects against time-dependent cisplatin-induced inactivation of MTP. We propose that interactions between BNP7787 and MTP may play a role in BNP7787-mediated protection against CIPN.
Collapse
Affiliation(s)
- Aulma R Parker
- BioNumerik Pharmaceuticals, Inc., San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
100
|
Hill A, Bergin P, Hanning F, Thompson P, Findlay M, Damianovich D, McKeage MJ. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability. BMC Cancer 2010; 10:451. [PMID: 20731872 PMCID: PMC2936328 DOI: 10.1186/1471-2407-10-451] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 08/23/2010] [Indexed: 12/22/2022] Open
Abstract
Background Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG) to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Methods Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Results Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6) and 72% of muscles (n = 22) on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8) and 13% of muscles (n = 32) on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14) or muscles (n = 56) tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7) and 32% of muscles (n = 32) on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22) and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6). Conclusions Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve hyperexcitability, detectable on EMG on days 2 to 4 post-treatment. Objective EMG assessment of motor nerve excitability could compliment patient-reported symptomatic endpoints of acute oxaliplatin-induced neurotoxicity in future studies.
Collapse
Affiliation(s)
- Andrew Hill
- Cancer Clinical Pharmacology Research Group, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|