51
|
Balestrini R, Salvioli A, Dal Molin A, Novero M, Gabelli G, Paparelli E, Marroni F, Bonfante P. Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. MYCORRHIZA 2017; 27:417-430. [PMID: 28101667 DOI: 10.1007/s00572-016-0754-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/29/2016] [Indexed: 05/20/2023]
Abstract
Grapevine, cultivated for both fruit and beverage production, represents one of the most economically important fruit crops worldwide. With the aim of better understanding how grape roots respond to beneficial microbes, a transcriptome sequencing experiment has been performed to evaluate the impact of a single arbuscular mycorrhizal (AM) fungal species (Funneliformis mosseae) versus a mixed inoculum containing a bacterial and fungal consortium, including different AM species, on Richter 110 rootstock. Results showed that the impact of a single AM fungus and of a complex microbial inoculum on the grapevine transcriptome differed. After 3 months, roots exclusively were colonized after the F. mosseae treatment and several AM marker genes were found to be upregulated. The mixed inoculum led only to traces of colonization by AM fungi, but elicited an important transcriptional regulation. Additionally, the expression of genes belonging to categories such as nutrient transport, transcription factors, and cell wall-related genes was significantly altered in both treatments, but the exact genes affected differed in the two conditions. These findings advance our understanding about the impact of soil beneficial microbes on the root system of a woody plant, also offering the basis for novel approaches in grapevine cultivation.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Istituto per la Protezione Sostenibile delle Piante del CNR, SS Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy.
| | - Alessandra Salvioli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Alessandra Dal Molin
- Centro di Genomica Funzionale dell'Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Mara Novero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Giovanni Gabelli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Eleonora Paparelli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali (DI4A), Università degli Studi di Udine, Viale delle Scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata (IGA), Via J. Linussio 51, 33100, Udine, Italy
| | - Fabio Marroni
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali (DI4A), Università degli Studi di Udine, Viale delle Scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata (IGA), Via J. Linussio 51, 33100, Udine, Italy
| | - Paola Bonfante
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| |
Collapse
|
52
|
Nogales-Bueno J, Baca-Bocanegra B, Rooney A, Miguel Hernández-Hierro J, José Heredia F, Byrne HJ. Linking ATR-FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta 2017; 167:44-50. [DOI: 10.1016/j.talanta.2017.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
|
53
|
Nogales-Bueno J, Baca-Bocanegra B, Rooney A, Hernández-Hierro JM, Byrne HJ, Heredia FJ. Study of phenolic extractability in grape seeds by means of ATR-FTIR and Raman spectroscopy. Food Chem 2017; 232:602-609. [PMID: 28490118 DOI: 10.1016/j.foodchem.2017.04.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 11/30/2022]
Abstract
Near infrared hyperspectral imaging has been applied to grape seeds in order to select a representative subset of samples according to their spectral features in the 900-1700nm range. Afterwards, selected grape seeds have been classified according to their total phenol and flavanol extractabilities. In this way, samples were sorted in three different groups identified as low, medium and high extractability levels. In order to establish the chemical structures which can be responsible for the different extractabilities, vibrational spectroscopy has been applied to the non-extracted material after seed extractions. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Raman spectra of non-extracted seed material have been recorded and their main spectral features have been linked to extractabilities of flavanolic and total phenolic compounds. The vibrational spectroscopic analysis confirms that grape seed phenolic extractability is influenced by the cell wall composition (polysaccharides, lignins, pectins) and by the degree of esterification of pectins.
Collapse
Affiliation(s)
- Julio Nogales-Bueno
- Food Colour and Quality Laboratory, Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Berta Baca-Bocanegra
- Food Colour and Quality Laboratory, Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Abigail Rooney
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - José Miguel Hernández-Hierro
- Food Colour and Quality Laboratory, Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Francisco José Heredia
- Food Colour and Quality Laboratory, Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
54
|
Brahem M, Renard CM, Gouble B, Bureau S, Le Bourvellec C. Characterization of tissue specific differences in cell wall polysaccharides of ripe and overripe pear fruit. Carbohydr Polym 2017; 156:152-164. [DOI: 10.1016/j.carbpol.2016.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|