51
|
Knatko EV, Higgins M, Fahey JW, Dinkova-Kostova AT. Loss of Nrf2 abrogates the protective effect of Keap1 downregulation in a preclinical model of cutaneous squamous cell carcinoma. Sci Rep 2016; 6:25804. [PMID: 27216826 PMCID: PMC4877584 DOI: 10.1038/srep25804] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/22/2016] [Indexed: 12/30/2022] Open
Abstract
Cutaneous squamous cell carcinomas (cSCC) are the most common and highly mutated human malignancies, challenging identification of driver mutations and targeted therapies. Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates a cytoprotective inducible program, which counteracts the damaging effects of solar UV radiation, the main etiological factor in cSCC development. Downregulation of Kelch-like ECH-associated protein 1 (Keap1), a Cullin-3/Rbx1 ubiquitin ligase substrate adaptor protein, which mediates the ubiquitination and proteasomal degradation of Nrf2, has a strong protective effect in a preclinical model of cSCC. However, in addition to Nrf2, Keap1 affects ubiquitination of other proteins in the carcinogenesis process, including proteins involved in inflammation and DNA damage repair. Here, we generated Keap1(flox/flox) SKH-1 hairless mice in which Nrf2 is disrupted (Keap1(flox/flox)/Nrf2(-/-)) and subjected them chronically to solar-simulated UV radiation. We found that the incidence, multiplicity and burden of cSCC that form in Keap1(flox/flox)/Nrf2(-/-) mice are much greater than in their Keap1(flox/flox)/Nrf2(+/+) counterparts, establishing Nrf2 activation as the protection mediator. Our findings further imply that inhibition of Nrf2 globally, a strategy proposed for cancer treatment, is unlikely to be beneficial.
Collapse
Affiliation(s)
- Elena V. Knatko
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Jed W. Fahey
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
52
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|
53
|
Zeferino C, Wells K, Moura A, Murarolli R, Rottinghaus G, Ledoux D. Gene expression in the kidneys of broilers fed ochratoxin A for different time periods. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2014.1873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumption of ochratoxin A (OTA) contaminated diets by broilers results in economic losses to the poultry industry. This experiment evaluated the effects of quantity and time of exposure to dietary OTA on performance, organ weights, serum biochemistry, and renal gene expression of chicks. Determination of genes expressed in response to OTA will allow for the identification of pathways that are influenced by OTA. 180-day old male broiler chicks were randomly assigned to a 3×3 factorial arrangement of treatments (3 levels of OTA; 0, 1 and 2 mg OTA/kg diet and 3 time periods; 7, 14 and 21 days) with 4 replicate pens of 5 birds each per treatment. For RNA-sequencing analysis (RNA-Seq), kidney samples were collected weekly from 3 controls and 3 chicks fed 1 mg OTA/kg. NextGENe software was used for read alignment and transcript quantification. Birds fed 2 mg OTA/kg diet had decreased feed intake and body weight gain, and increased serum uric acid on days 14 and 21. Compared to controls, birds fed 2 mg OTA/kg diet also had poorer feed conversion and increased kidney weights. On day 21, birds fed 1 mg OTA/kg diet had decreased albumin, and aspartate aminotransferase concentrations. Genes associated with carbohydrate and amino acid metabolism were downregulated, and genes associated with the immune system were upregulated at days 7 and 14. Genes associated with lipid metabolism and xenobiotic biodegradation were also downregulated on day 14. These changes disappeared on day 21 suggesting that the kidney and other related organs were repaired or the damage was contained. In conclusion, decreased performance and increased kidney weight and serum uric acid in birds fed 2 mg OTA/kg confirmed the effects of OTA. Supplementation of 1 mg OTA/kg diet caused time-dependent alterations in renal gene expression in chicks.
Collapse
Affiliation(s)
- C.P. Zeferino
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - K.D. Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - A.S.A.M.T. Moura
- Department of Animal Production, São Paulo State University, Botucatu, SP 18618-970, Brazil
| | - R.A. Murarolli
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - G.E. Rottinghaus
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO 65211, USA
| | - D.R. Ledoux
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
54
|
Wu TS, Yang JJ, Wang YW, Yu FY, Liu BH. Mycotoxin ochratoxin A disrupts renal development via a miR-731/prolactin receptor axis in zebrafish. Toxicol Res (Camb) 2016; 5:519-529. [PMID: 30090366 PMCID: PMC6062247 DOI: 10.1039/c5tx00360a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin ochratoxin A (OTA) frequently contaminates various food and feed products, including cereals, coffee and wine. While the nephrotoxicity and teratogenicity of OTA have been extensively documented, the molecular mechanisms associated with OTA toxicity remained poorly understood in a developing organism. We showed that zebrafish embryos exposed to OTA demonstrated incorrect heart looping and small heart chambers. OTA also impaired the renal morphology and reduced the glomerular filtration rate of the embryonic zebrafish. The treatment of embryos with OTA attenuated the expression of the prolactin receptor, a gene (PRLRa) that has a key role in organogenesis and osmoregulation in vertebrates. OTA not only inhibited the phosphorylation of STAT5 and AKT, but also down-regulated the level of serpina1 mRNA in a dose-dependent manner. On the other hand, the microRNA profiling based on RNA sequencing revealed the up-regulation of microRNA-731 (miR-731) in the OTA-treated embryos. Further in silico analysis predicted that PRLRa was a target gene of miR-731. AntagomiR-731 restored PRLRa levels that had been reduced by OTA and also recovered the pronephros morphology that was damaged by OTA. These observations suggest that the exposure to OTA adversely affected the organogenesis of zebrafish, and the modulation of miR-731 and the PRLR signaling cascade contributed to the abnormal renal development mediated by OTA.
Collapse
Affiliation(s)
- Ting-Shuan Wu
- Graduate Institute of Toxicology , College of Medicine , National Taiwan University , Taipei , Taiwan . ; ; Tel: +886-2-23123456, ext 88602
| | - Jiann-Jou Yang
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
| | - Yan-Wei Wang
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
| | - Feng-Yih Yu
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
- Department of Medical Research , Chung Shan Medical University Hospital , Taichung , Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology , College of Medicine , National Taiwan University , Taipei , Taiwan . ; ; Tel: +886-2-23123456, ext 88602
| |
Collapse
|
55
|
Zhu L, Yu T, Qi X, Yang B, Shi L, Luo H, He X, Huang K, Xu W. miR-122 plays an important role in ochratoxin A-induced hepatocyte apoptosis in vitro and in vivo. Toxicol Res (Camb) 2016; 5:160-167. [PMID: 30090334 PMCID: PMC6060723 DOI: 10.1039/c5tx00104h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
OTA can induce hepatotoxicity. Our previous research has shown that miRNAs play important roles in the OTA-induced hepatotoxicity. And miR-122 is the most abundant miRNA in the liver and is involved in diverse biological processes. This study was performed to clarify the role of miR-122 in OTA-induced hepatotoxicity. The expression levels of miR-122 and the target genes were quantified by real-time PCR. The OTA-induced apoptosis of hepatocyte and HepG2 cells was evaluated using a TUNEL kit, a CCK-8 kit, a flow cytometer and Hoechst 33342. miR-122 was inhibited in HepG2 cells. The results revealed that OTA affected rat hepatocyte apoptosis. miR-122 decreased at 4 weeks but increased at 13 weeks in the OTA-treated livers, and increased in the OTA-treated HepG2 cells; and the mRNA levels of CCNG1 and Bcl-w increased at 4 weeks and decreased at 13 weeks in the high-dose OTA-treatment groups and decreased in HepG2 cells. The apoptosis of HepG2 cells displayed a dose-related increase with OTA. However, the inhibition of miR-122 greatly reduced OTA-induced apoptosis. p53 decreased in vivo and in vitro. miR-122 is a primary effector of OTA-induced hepatocyte apoptosis through the CCNG1/p53 pathway and Bcl-w/caspase-3 pathway in vivo and in vitro. And miR-122 plays an important role in OTA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Liye Zhu
- College of Food Science and Nutritional Engineering , China Agricultural University , 100083 , Beijing , China
| | - Tao Yu
- College of Food Science and Nutritional Engineering , China Agricultural University , 100083 , Beijing , China
| | - Xiaozhe Qi
- College of Food Science and Nutritional Engineering , China Agricultural University , 100083 , Beijing , China
| | - Bo Yang
- College of Food Science and Nutritional Engineering , China Agricultural University , 100083 , Beijing , China
| | - Lei Shi
- College of Food Science and Nutritional Engineering , China Agricultural University , 100083 , Beijing , China
| | - Haoshu Luo
- College of Biological Sciences , China Agricultural University , Beijing , 100083 , China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering , China Agricultural University , 100083 , Beijing , China
- The Supervision , Inspection and Testing Center of Genetically Modified Organisms , Ministry of Agriculture , Beijing , 100083 , China . ; ; Tel: +(8610)62738793
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering , China Agricultural University , 100083 , Beijing , China
- The Supervision , Inspection and Testing Center of Genetically Modified Organisms , Ministry of Agriculture , Beijing , 100083 , China . ; ; Tel: +(8610)62738793
| | - Wentao Xu
- College of Food Science and Nutritional Engineering , China Agricultural University , 100083 , Beijing , China
- The Supervision , Inspection and Testing Center of Genetically Modified Organisms , Ministry of Agriculture , Beijing , 100083 , China . ; ; Tel: +(8610)62738793
| |
Collapse
|
56
|
Abdel-Wahhab MA, Aljawish A, Kenawy AM, El-Nekeety AA, Hamed HS, Abdel-Aziem SH. Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:279-288. [PMID: 26774075 DOI: 10.1016/j.etap.2015.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to prepare and characterize enzymatic modified chitosan nanoparticles (CSNPs) with gallic acid (GA) or octyl gallate (OG) to optimize its potential in human application and to evaluate their protective role against ochrtoxin A (OTA) toxicity in catfish. The modified CSNPs have average size around 90 nm with positive charge and high scavenging activity especially GA-CSNPs. In the in vivo study, catfish were divided into 8 groups and treated for 3 weeks as follow: the control group, OTA-treated group (1 mg/kg b.w.), the groups treated with CSNPs, GA-CSNPs or OG-CSNPs (280 mg/kg b.w.) anole or in combination with OTA. Blood, liver and kidney samples were collected for different analyses. OTA induced a significant biochemical disturbances accompanied with oxidative stress in liver and kidney, histological changes and increase DNA fragmentation in the kidney. Co-treatment with OTA plus the different CSNPs resulted in a significant improvement in all tested parameters and histological picture of the kidney. This improvement was more pronounced in the group treated with GA-CSNPs. It could be concluded that grafting of GA or its ester improved the properties of CSNPs. Moreover, GA-CSNPs showed strong scavenging properties than OG-CSNPs due to the blocking of carboxyl groups responsible of the scavenging activity in OG.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, 12622 Cairo, Egypt.
| | - Abdulhadi Aljawish
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules (LIBio), 2 avenue de la Forêt de Haye, TSA40602-F-54518 Vandœuvre-lès-Nancy, France
| | - Amany M Kenawy
- Hydrobiology Department, National Research Center, Dokki, 12622 Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, 12622 Cairo, Egypt
| | - Heba S Hamed
- Zoology Department, Faculty of Women for Arts, Science & Education, Ain shams University, Cairo, Egypt
| | | |
Collapse
|
57
|
Modulation of the xenobiotic transformation system and inflammatory response by ochratoxin A exposure using a co-culture system of Caco-2 and HepG2 cells. Food Chem Toxicol 2015; 86:245-52. [PMID: 26505656 DOI: 10.1016/j.fct.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/21/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022]
Abstract
Cytotoxicity of ochratoxin A (OTA) was evaluated using the MTS assay, and membrane integrity was measured using transepithelial electrical resistance (TEER). A transwell system was used to investigate the effect of OTA on the expression of the CYP450 (1A1, 2A6, 2B6, 3A4 and 3A5), NAT2, COX-2, LOX-5, and MRP2 genes in Caco-2 and HepG2 cells. TEER decreased by a mean of 63.2% after 24 h in Caco-2 differentiated cells without inducing cell detachment; revealing damage to the intestinal epithelial cell tight junction proteins and an increase in cell permeability. Gene expression analysis showed that modulation of gene expression by OTA was higher in Caco-2 cells than in HepG2 cells, and generally, the duration of exposure to OTA had a more significant effect than the OTA dose. A general OTA down-regulation effect was observed in Caco-2 cells, in contrast with the down- and up-regulation observed in HepG2 cells. In Caco-2 cells, CYP1A1 was the gene with the highest regulation, followed by CYP3A4 and CYP3A5. Conversely, in HepG2 cells, CYP2B6 was highly regulated at 3 and 12 h compared to the other cytochromes; CYP1A1 was slightly modulated during the first 12 h, but an overexpression was observed at 24 h. Our data support the involvement of the COX-2 and 5-LOX genes in liver metabolism of OTA. On the basis of the gene expression analysis, the results suggest a possible impairment in OTA secretion at the intestinal and hepatic level due to MRP2 repression. In addition, we provide evidence of the effect of OTA on NAT2 gene expression, which had not been reported before.
Collapse
|
58
|
Mantle P, Kilic MA, Mor F, Ozmen O. Contribution of organ vasculature in rat renal analysis for ochratoxin a: relevance to toxicology of nephrotoxins. Toxins (Basel) 2015; 7:1005-17. [PMID: 25811304 PMCID: PMC4417951 DOI: 10.3390/toxins7041005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/12/2014] [Accepted: 03/17/2015] [Indexed: 02/02/2023] Open
Abstract
Assumptions surrounding the kidney as a target for accumulation of ochratoxin A (OTA) are addressed because the contribution of the toxin in blood seems invariably to have been ignored. Adult rats were maintained for several weeks on toxin-contaminated feed. Using standard perfusion techniques, animals were anaesthetised, a blood sample was taken, one kidney was ligated, and the other kidney perfused with physiological saline in situ under normal blood pressure. Comparative analysis of OTA in pairs of kidneys showed marked reduction in the perfused organ in the range 37%-98% (mean 75%), demonstrating the general efficiency of perfusion supported also by histology, and implying a major role of blood in the total OTA content of kidney. Translation of OTA values in plasma to whole blood, and its predicted contribution as a 25% vascular compartment in kidney gave values similar to those in non-perfused kidneys. Thus, apparent 'accumulation' of OTA in kidney is due to binding to plasma proteins and long half-life in plasma. Attention should be re-focused on whole animal pharmacokinetics during chronic OTA exposure. Similar principles may be applied to DNA-OTA adducts which are now recognised as occurring in blood; application could also extend to other nephrotoxins such as aristolochic acid. Thus, at least, quantitative reassessment in urological tissues seems necessary in attributing adducts specifically as markers of potentially-tumourigenic exposure.
Collapse
Affiliation(s)
- Peter Mantle
- Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK.
| | - Mehmet A Kilic
- Molecular Biology Section, Department of Biology, Science Faculty, Akdeniz University, Antalya 07058, Turkey.
| | - Firdevs Mor
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur 15030, Turkey.
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur 15030, Turkey.
| |
Collapse
|
59
|
Bondy GS, Caldwell DS, Aziz SA, Coady LC, Armstrong CL, Curran IHA, Koffman RL, Kapal K, Lefebvre DE, Mehta R. Effects of Chronic Ochratoxin A Exposure on p53 Heterozygous and p53 Homozygous Mice. Toxicol Pathol 2015; 43:715-29. [DOI: 10.1177/0192623314568391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exposure to the mycotoxin ochratoxin A (OTA) causes nephropathy in domestic animals and rodents and renal tumors in rodents and poultry. Humans are exposed to OTA by consuming foods made with contaminated cereal grains and other commodities. Management of human health risks due to OTA exposure depends, in part, on establishing a mode of action (MOA) for OTA carcinogenesis. To further investigate OTA’s MOA, p53 heterozygous (p53+/−) and p53 homozygous (p53+/+) mice were exposed to OTA in diet for 26 weeks. The former are susceptible to tumorigenesis upon chronic exposure to genotoxic carcinogens. OTA-induced renal damage but no tumors were observed in either strain, indicating that p53 heterozygosity conferred little additional sensitivity to OTA. Renal changes included dose-dependent increases in cellular proliferation, apoptosis, karyomegaly, and tubular degeneration in proximal tubules, which were consistent with ochratoxicosis. The lowest observed effect level for renal changes in p53+/− and p53+/+ mice was 200 μg OTA/kg bw/day. Based on the lack of tumors and the severity of renal and body weight changes at a maximum tolerated dose, the results were interpreted as suggestive of a primarily nongenotoxic (epigenetic) MOA for OTA carcinogenesis in this mouse model.
Collapse
Affiliation(s)
- Genevieve S. Bondy
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Donald S. Caldwell
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Syed A. Aziz
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Laurie C. Coady
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Cheryl L. Armstrong
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Ivan H. A. Curran
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | | | - Kamla Kapal
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - David E. Lefebvre
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Rekha Mehta
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
60
|
Corcuera LA, Vettorazzi A, Arbillaga L, Pérez N, Gil AG, Azqueta A, González-Peñas E, García-Jalón JA, López de Cerain A. Genotoxicity of Aflatoxin B1 and Ochratoxin A after simultaneous application of the in vivo micronucleus and comet assay. Food Chem Toxicol 2014; 76:116-24. [PMID: 25530104 DOI: 10.1016/j.fct.2014.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are genotoxic mycotoxins that can contaminate a variety of foodstuffs, the liver and the kidney being their target organs, respectively. The micronucleus (MN) assay (bone marrow) and the comet assay (liver and kidney) were performed simultaneously in F344 rats, treated with AFB1 (0.25 mg/kg b.w.), OTA (0.5 mg/kg b.w.) or both mycotoxins. After AFB1 treatment, histopathology and biochemistry analysis showed liver necrosis, focal inflammation and an increase in Alanine Aminotransferase and Aspartate Aminotransferase. OTA alone did not cause any alteration. The acute hepatotoxic effects caused by AFB1 were less pronounced in animals treated with both mycotoxins. With regard to the MN assay, after 24 h, positive results were obtained for AFB1 and negative results were obtained for OTA, although both toxins caused bone marrow toxicity. In the combined treatment, OTA reduced the toxicity and the number of MN produced by AFB1. In the comet assay, after 3 h, positive results were obtained for AFB1 in the liver and for OTA in the kidney. The combined treatment reduced DNA damage in the liver and had no influence in the kidney. Altogether, these results may be indicative of an antagonistic relationship regarding the genotoxicity of both mycotoxins.
Collapse
Affiliation(s)
- Laura-Ana Corcuera
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Leire Arbillaga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Noemí Pérez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Ana Gloria Gil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Jose Antonio García-Jalón
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|
61
|
Repeated exposure to Ochratoxin A generates a neuroinflammatory response, characterized by neurodegenerative M1 microglial phenotype. Neurotoxicology 2014; 44:61-70. [DOI: 10.1016/j.neuro.2014.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 01/28/2023]
|
62
|
Yang Q, Shi L, Huang K, Xu W. Protective effect of N-acetylcysteine against DNA damage and S-phase arrest induced by ochratoxin A in human embryonic kidney cells (HEK-293). Food Chem Toxicol 2014; 70:40-7. [DOI: 10.1016/j.fct.2014.04.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/30/2014] [Accepted: 04/25/2014] [Indexed: 12/29/2022]
|
63
|
Shen XL, Zhang B, Liang R, Cheng WH, Xu W, Luo Y, Zhao C, Huang K. Central role of Nix in the autophagic response to ochratoxin A. Food Chem Toxicol 2014; 69:202-9. [DOI: 10.1016/j.fct.2014.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/23/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
|
64
|
Ochratoxin A induced early hepatotoxicity: new mechanistic insights from microRNA, mRNA and proteomic profiling studies. Sci Rep 2014. [DOI: 10.1038/srep05163] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
65
|
Yang Q, He X, Li X, Xu W, Luo Y, Yang X, Wang Y, Li Y, Huang K. DNA damage and S phase arrest induced by Ochratoxin A in human embryonic kidney cells (HEK 293). Mutat Res 2014; 765:22-31. [PMID: 25847125 DOI: 10.1016/j.mrfmmm.2014.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 12/29/2022]
Abstract
Ochratoxin A (OTA) is a ubiquitous mycotoxin with potential nephrotoxic, hepatotoxic and immunotoxic effects. The mechanisms underlying the nephrotoxicity of OTA remain obscure. To investigate DNA damage and the changes of the cell cycle distribution induced by OTA, human embryonic kidney cells (HEK 293 cells) were incubated with various concentrations of OTA for 24h in vitro. The results indicated that OTA treatment led to the production of reactive oxygen species (ROS) and to a decrease of the mitochondrial membrane potential (ΔΨm). OTA-induced DNA damage in HEK 293 cells was evidenced by DNA comet tails formation and increased expression of γ-H2AX. In addition, OTA could induce cell cycle arrest at the S phase in HEK 293 cells. The expression of key cell cycle regulatory factors that were critical to the S phase, including cyclin A2, cyclin E1, and CDK2, were further detected. The expression of cyclin A2, cyclin E1, and CDK2 were significantly decreased by OTA treatment at both the mRNA and protein levels. The apoptosis of HEK 293 cells after OTA treatment was observed using Hoechst 33342 staining. The results confirmed that OTA did induce apoptosis in HEK 293 cells. In conclusion, our results provided new insights into the molecular mechanisms by which OTA might promote nephrotoxicity.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiaoyun He
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Xiaohong Li
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Yunbo Luo
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xuan Yang
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Yan Wang
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Yingcong Li
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
66
|
Dai Q, Zhao J, Qi X, Xu W, He X, Guo M, Dweep H, Cheng WH, Luo Y, Xia K, Gretz N, Huang K. MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genomics 2014; 15:333. [PMID: 24885635 PMCID: PMC4035064 DOI: 10.1186/1471-2164-15-333] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 12/31/2022] Open
Abstract
Background Nephrotoxicity is the most prominent one among the various toxicities of ochratoxin A (OTA). MicroRNAs (miRNAs) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level or protein systhesis level. The objective of this study is to analyze miRNA profiling in the kidneys of rats gavaged with OTA. Results To profile miRNAs in the kidneys of rats with OTA nephrotoxicity, high-throughput sequencing and bioinformatics approaches were applied to analyze the miRNAs in the kidney of rats following OTA treatment. A total of 409 known miRNAs and 8 novel miRNAs were identified in the kidney and the levels of the novel miRNAs were varied in response to different doses of OTA. Expression of miR-129, miR-130a, miR-130b, miR-141, miR-218b and miR-3588 were uniquely suppressed in mid dose but then elevated in high dose, with opposite expression to their target genes. The expression pattern was closely related with the “MAPK signaling pathway”. Dicer1 and Drosha were significantly suppressed, indicating an impairment of miRNA biogenesis in response to OTA. Conclusions The abrogation of miRNA maturation process suggests a new target of OTA toxicity. Moreover, the identification of the differentially expressed miRNAs provides us a molecular insight into the nephrtoxicity of OTA. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-333) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Wentao Xu
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, 302 box, No,17, Qinghua East Rd, Beijing, Haidian District 100083, P R China.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Analysis of individual and combined effects of ochratoxin A and zearalenone on HepG2 and KK-1 cells with mathematical models. Toxins (Basel) 2014; 6:1177-92. [PMID: 24674935 PMCID: PMC4014727 DOI: 10.3390/toxins6041177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 12/24/2022] Open
Abstract
Ochratoxin A (OTA) and Zearalenone (ZEA) are widespread mycotoxins that contaminate foodstuffs simultaneously, but sufficient data regarding their mixed toxicities are lacking. This study aims to analyze the style of combined effects of OTA and ZEA on cells of their target organs. For this purpose, cytotoxicity was determined in HepG2 and KK-1 cells treated with single and combined forms of OTA and ZEA. Furthermore, we have analyzed the data using two mathematical models based on the concepts of concentration addition (CA) and independent addition (IA). By analyzing data with nonlinear regression, toxins applied singly showed classic sigmoid dose-response curves in HepG2 cells whereas in KK-1 cells hormetic responses were observed. Exposure to equieffective mixtures of OTA and ZEA showed additive effects, irrespective of different nonlinear regression models used. Our results demonstrate that IA is an appropriate concept to account for mixture effects of OTA and ZEA. The results in ROS generation indicate a departure from additivity to antagonism or synergism at different concentrations, probably due to potential interaction during ROS production. This study shows that a risk assessment of mycotoxins should account for mixture effects, and prediction models are valuable tools for mixture assessment.
Collapse
|
68
|
Deficient glutathione in the pathophysiology of mycotoxin-related illness. Toxins (Basel) 2014; 6:608-23. [PMID: 24517907 PMCID: PMC3942754 DOI: 10.3390/toxins6020608] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/27/2022] Open
Abstract
Evidence for the role of oxidative stress in the pathophysiology of mycotoxin-related illness is increasing. The glutathione antioxidant and detoxification systems play a major role in the antioxidant function of cells. Exposure to mycotoxins in humans requires the production of glutathione on an “as needed” basis. Research suggests that mycotoxins can decrease the formation of glutathione due to decreased gene expression of the enzymes needed to form glutathione. Mycotoxin-related compromise of glutathione production can result in an excess of oxidative stress that leads to tissue damage and systemic illness. The review discusses the mechanisms by which mycotoxin-related deficiency of glutathione may lead to both acute and chronic illnesses.
Collapse
|
69
|
Limonciel A, Jennings P. A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins (Basel) 2014; 6:371-9. [PMID: 24448208 PMCID: PMC3920267 DOI: 10.3390/toxins6010371] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 01/14/2023] Open
Abstract
Several studies have demonstrated that ochratoxin A (OTA) inhibits the nuclear factor, erythroid 2-like 2 (Nrf2) oxidative stress response pathway. At the cellular level this would attenuate (i) glutathione synthesis; (ii) recycling of oxidised glutathione; (iii) activity of oxidoreductases; and (iv) phase II metabolism inducibility. The effects combined would render the cell and tissue more vulnerable to oxidative stress. Indeed, Nrf2 knock out animals exhibit increased susceptibility to various types of chemical-induced injury. Several studies have shown that OTA exposure can inhibit Nrf2 responses. Such an action would initially lead to increased susceptibility to both physiological and chemical-induced cell stress. However, chronic exposure to OTA may also act as a selective pressure for somatic mutations in Nrf2 or its inhibitor Keap-1, leading to constitutive Nrf2 activation. Nrf2 overexpression confers a survival advantage and is often associated with cancer cell survival. Here we review the evidence for OTA’s role as an Nrf2 inhibitor and discuss the implications of this mechanism in nephrotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Alice Limonciel
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck A6020, Austria.
| | - Paul Jennings
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck A6020, Austria.
| |
Collapse
|
70
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Novotna E. Ochratoxin A: developmental and reproductive toxicity-an overview. ACTA ACUST UNITED AC 2014; 98:493-502. [PMID: 24395216 DOI: 10.1002/bdrb.21091] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022]
Abstract
Ochratoxin A (OTA) is nephrotoxic, hepatotoxic, reprotoxic, embryotoxic, teratogenic, neurotoxic, immunotoxic, and carcinogenic for laboratory and farm animals. Male and female reproductive health has deteriorated in many countries during the last few decades. A number of toxins in environment are suspected to affect reproductive system in male and female. OTA is one of them. OTA has been found to be teratogenic in several animal models including rat, mouse, hamster, quail, and chick, with reduced birth weight and craniofacial abnormalities being the most common signs. The presence of OTA also results in congenital defects in the fetus. Neither the potential of OTA to cause malformations in human nor its teratogenic mode of action is known. Exposure to OTA leads to increased embryo lethality manifested as resorptions or dead fetuses. The mechanism of OTA transfer across human placenta (e.g., which transporters are involved in the transfer mechanism) is not fully understood. Some of the toxic effects of OTA are potentiated by other mycotoxins or other contaminants. Therefore, OTA exposure of pregnant women should be minimized. OTA has been shown to be an endocrine disruptor and a reproductive toxicant, with abilities of altering sperm quality. Other studies have shown that OTA is a testicular toxin in animals. Thus, OTA is a biologically plausible cause of testicular cancer in man.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | | | | | |
Collapse
|
71
|
Taniai E, Yafune A, Nakajima M, Hayashi SM, Nakane F, Itahashi M, Shibutani M. Ochratoxin A induces karyomegaly and cell cycle aberrations in renal tubular cells without relation to induction of oxidative stress responses in rats. Toxicol Lett 2014; 224:64-72. [DOI: 10.1016/j.toxlet.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 12/28/2022]
|
72
|
Shelton LM, Kevin Park B, Copple IM. Role of Nrf2 in protection against acute kidney injury. Kidney Int 2013; 84:1090-5. [DOI: 10.1038/ki.2013.248] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022]
|
73
|
Fuchs TC, Mally A, Wool A, Beiman M, Hewitt P. An Exploratory Evaluation of the Utility of Transcriptional and Urinary Kidney Injury Biomarkers for the Prediction of Aristolochic Acid–Induced Renal Injury in Male Rats. Vet Pathol 2013; 51:680-94. [DOI: 10.1177/0300985813498779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The predictive value of different urinary and transcriptional biomarkers was evaluated in a proof-of-principle toxicology study in rats using aristolochic acid (AA), a known nephrotoxic agent. Male Wistar rats were orally dosed with 0.1, 1, or 10 mg/kg for 12 days. Urine was collected on days 1, 5, and 12 over 24 hours. Gene expression analysis was also conducted using quantitative real-time polymerase chain reaction and Illumina whole-genome chips. Protein biomarkers (Kim-1, Timp-1, vascular endothelial growth factor, osteopontin, clusterin, cystatin C, calbindin D-28K, β2-microglobulin, α–glutathione S-transferase, GSTY1b, RPA-1, and neutrophil gelatinase-associated lipocalin) were measured in these urine samples. Treatment with AA resulted in a slight dose- and/or time-dependent increase in urinary β2-microglobulin, lipocalin 2, and osteopontin before an increase in serum creatinine or serum urea nitrogen was observed. A strong decrease in urinary calbindin D-28K was also detected. The Compugen Ltd. prediction model scored both the 1- and 10-mg/kg AA dose groups as positive for nephrotoxicity despite the absence of renal histopathological changes. In addition, several previously described transcriptional biomarkers were identified as early predictors of renal toxicity as they were detected before morphological alterations had occurred. Altogether, these findings demonstrated the predictive values of renal biomarkers approved by the Food and Drug Administration, European Medicines Agency, and Pharmaceuticals & Medical Devices Agency in AA-induced renal injury in rats and confirmed the utility of renal transcriptional biomarkers for detecting progression of compound-induced renal injury in rats. In addition, several transcriptional biomarkers identified in this exploratory study could present early predictors of renal tubular epithelium injury in rats.
Collapse
Affiliation(s)
- T. C. Fuchs
- Merck Serono, Non-Clinical Safety, Darmstadt, Germany
| | - A. Mally
- Department of Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - A. Wool
- Compugen Ltd., Tel Aviv, Israel
| | | | - P. Hewitt
- Merck Serono, Non-Clinical Safety, Darmstadt, Germany
| |
Collapse
|
74
|
Hibi D, Kijima A, Kuroda K, Suzuki Y, Ishii Y, Jin M, Nakajima M, Sugita-Konishi Y, Yanai T, Nohmi T, Nishikawa A, Umemura T. Molecular mechanisms underlying ochratoxin A-induced genotoxicity: global gene expression analysis suggests induction of DNA double-strand breaks and cell cycle progression. J Toxicol Sci 2013; 38:57-69. [PMID: 23358140 DOI: 10.2131/jts.38.57] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ochratoxin A (OTA) is a renal carcinogen primarily affecting the S3 segment of proximal tubules in rodents. In our previous study, we reported that OTA induces reporter gene mutations, primarily deletion mutations, in the renal outer medulla (OM), specifically in the S3 segment. In the present study, to identify genes involved in OTA-induced genotoxicity, we conducted a comparative analysis of global gene expression in the renal cortex (COR) and OM of kidneys from gpt delta rats administered OTA at a carcinogenic dose for 4 weeks. Genes associated with DNA damage and DNA damage repair, and cell cycle regulation were site-specifically changed in the OM. Interestingly, genes that were deregulated in the OM possessed molecular functions such as DNA double-strand break (DSB) repair (Rad18, Brip1, and Brcc3), cell cycle progression (Cyce1, Ccna2, and Ccnb1), G(2)/M arrest in response to DNA damage (Chek1 and Wee1), and p53-associated factors (Phlda3 and Ccng1). Significant increases in the mRNA levels of many of these genes were observed in the OM using real-time RT-PCR. However, genes related to oxidative stress exhibited no differences in either the number or function of altered genes in both the OM and COR. These results suggested that OTA induced DSB and cell cycle progression at the target site. These events other than oxidative stress could trigger genotoxicity leading to OTA-induced renal tumorigenicity.
Collapse
Affiliation(s)
- Daisuke Hibi
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wang Y, Hao J, Zhao W, Yang Z, Wu W, Zhang Y, Xu W, Luo Y, Huang K. Comparative proteomics and physiological characterization of Arabidopsis thaliana seedlings in responses to Ochratoxin A. PLANT MOLECULAR BIOLOGY 2013; 82:321-337. [PMID: 23625346 DOI: 10.1007/s11103-013-0064-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin that is primarily produced by Aspergillus ochraceus and Penicillium verrucosum. This mycotoxin is a contaminant of food and feedstock worldwide and may induce cell death in plants. To investigate the dynamic growth process of Arabidopsis seedlings in response to OTA stress and to obtain a better understanding of the mechanism of OTA toxicity towards Arabidopsis, a comparative proteomics study using 2-DE and MALDI-TOF/TOF MS/MS was performed. Mass spectrometry analysis identified 59 and 51 differentially expressed proteins in seedlings exposed to 25 and 45 μM OTA for 7 days, respectively. OTA treatment decreased root elongation and leaf area, increased anthocyanin accumulation, damaged the photosynthetic apparatus and inhibited photosynthesis. Treatment of the seedlings with 25 μM OTA enhanced energy metabolism, whereas higher concentration of OTA (45 μM) inhibited energy metabolism in the seedlings. OTA treatment caused an increase of ROS, an enhancement of antioxidant enzyme defense responses, disturbance of redox homeostasis and activation of lipid oxidation. Glutamine and S-adenosylmethionine metabolism may also play important roles in the response to OTA. In conclusion, our study provided novel insights regarding the response of Arabidopsis to OTA at the level of the proteome. These results are expected to be highly useful for understanding the physiological responses and dissecting the OTA response pathways in higher plants.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
A review on ochratoxin A transcriptomic studies. Food Chem Toxicol 2013; 59:766-83. [PMID: 23747715 DOI: 10.1016/j.fct.2013.05.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
The mycotoxin Ochratoxin A (OTA) is a potent renal carcinogen in male rats. Transcriptomic studies on OTA (4 in vitro, 6 in vivo, 2 in vitro/in vivo) have been reviewed. The aim of 6 of them was mainly mechanistic whereas the rest had mostly predictive (1) or evaluation (5) purposes. An overall tendency towards gene expression downregulation was observed, probably as a result of protein synthesis inhibition. DNA damage response genes were not deregulated in most of the studies. Genes involved in acute renal injury, cell survival and cell proliferation were upregulated in several in vivo studies. Apoptosis genes were deregulated in vitro but less affected in vivo; activation of several MAPKs has been observed. Many genes related to oxidative stress or involved in cell-to-cell interaction pathways (Wnt) or cytoskeleton structure appeared to be deregulated either in vitro or in vivo. Regucalcin was highly downregulated in vivo and other calcium homeostasis genes were significantly deregulated in vitro. Genes related to OTA transport (OATs) and metabolism (CYPs) appeared downregulated in vivo. Overall, the mechanism of action of OTA remains unclear, however transcriptomic data have contributed to new mechanistic hypothesis generation and to in vitro-in vivo comparison.
Collapse
|
77
|
|
78
|
An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK 293 cells. J Proteomics 2013; 78:398-415. [DOI: 10.1016/j.jprot.2012.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/28/2012] [Accepted: 10/11/2012] [Indexed: 01/05/2023]
|
79
|
Abstract
In cultures of primary rat hepatocytes, apoptosis occurred after application of 20 ng/mL tumor necrosis factor alpha (TNF-α). However, this was only in the presence of 200 ng/mL of the transcriptional inhibitor actinomycin D (ActD). This toxic effect was completely prevented in the presence of 25 µg/mL soluble TNF-α receptor I (sTNFR I) in the supernatant of hepatocyte cell cultures. Apoptosis also occurred after application of 12.5 µmol/L ochratoxin A (OTA). However, that was not prevented by up to 500 µg/mL sTNFR I, indicating that TNF-α/TNFR I is not involved in OTA mediated apoptosis in hepatocytes. The antioxidative flavanolignan silibinin in doses from 130 to 260 µmol/L prevented chromatin condensation, caspase-3 activation, and apoptotic DNA fragmentation that were induced by OTA, by 10 mmol/L hydrogen peroxide (H2O2) and by ultraviolet (UV-C) light (50 mJ/cm2), respectively. To achieve protection by silibinin, the drug was applied to the cell cultures for 2 h in advance. OTA stimulated lipid peroxidation on cultured immortalized rat liver HPCT cells, as was revealed by malondialdehyde (MDA) production. Lipid peroxidation occurred further by H2O2 and ActD/TNF-α incubation. These reactions were also suppressed by silibinin pretreatment. We conclude that the anti-apoptotic activity of silibinin against OTA, H2O2 and ActD/ TNF-α is caused in vitro by the antioxidative effects of the flavanolignan. Furthermore, cytotoxicity of the pro-apoptotic toxins was revealed by MTT-test. When applied separately, ActD and TNF-α showed no cytotoxic effects after 24 h, but were cytotoxic if applied in combination. The used concentrations of OTA, H2O2 and the dose of UV-C caused a substantial decrease in viability within 36 h that was prevented mostly by silibinin. We conclude that silibinin is a potent protective compound against apoptosis and cytotoxicity caused by OTA and the investigated compounds.
Collapse
|
80
|
Li Z, Zhang X, Cui J, Kang W. Assessment on pollution of ochratoxin a in grain in China and its apoptosis effect on vitro-cultured human tubular kidney cells. J Biochem Mol Toxicol 2012; 26:139-46. [DOI: 10.1002/jbt.20420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
81
|
Mally A. Ochratoxin a and mitotic disruption: mode of action analysis of renal tumor formation by ochratoxin A. Toxicol Sci 2012; 127:315-30. [PMID: 22403158 DOI: 10.1093/toxsci/kfs105] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mycotoxin and food contaminant ochratoxin A (OTA) is a potent renal carcinogen in rodents, but its mode of action (MoA) is still poorly defined. In 2006, the European Food Safety Authority concluded that there is a "lack of evidence for the existence of OTA-DNA adducts" and thus insufficient evidence to establish DNA reactivity as a MoA for tumor formation by OTA. In reviewing the available database on OTA toxicity, a MoA for renal carcinogenicity of OTA is developed that involves a combination of genetic instability and increased proliferative drive as consequences of OTA-mediated disruption of mitosis, whereby the organ- and site-specificity of tumor formation by OTA is determined by selective renal uptake of OTA into the proximal tubule epithelium. The proposed MoA is critically assessed with respect to concordance of dose-response of the suggested key events and tumor formation, their temporal association, consistency, and biological plausibility. Uncertainties, data gaps and needs for further research are highlighted.
Collapse
Affiliation(s)
- Angela Mally
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
82
|
Haighton LA, Lynch BS, Magnuson BA, Nestmann ER. A reassessment of risk associated with dietary intake of ochratoxin A based on a lifetime exposure model. Crit Rev Toxicol 2012; 42:147-68. [PMID: 22276591 PMCID: PMC3310481 DOI: 10.3109/10408444.2011.636342] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 12/23/2022]
Abstract
Mycotoxins, such as ochratoxin A (OTA), can occur from fungal growth on foods. OTA is considered a possible risk factor for adverse renal effects in humans based on renal tumors in male rats. For risk mitigation, Health Canada proposed maximum limits (MLs) for OTA based largely on a comparative risk assessment conducted by Health Canada (Kuiper-Goodman et al., 2010), in which analytical data of OTA in foods were used to determine the possible impact adopting MLs may have on OTA risks. The EU MLs were used for comparison and resultant risk was determined based on age-sex strata groups. These data were reevaluated here to determine comparative risk on a lifetime basis instead of age strata. Also, as there is scientific disagreement over the mechanism of OTA-induced renal tumors, mechanistic data were revisited. On a lifetime basis, risks associated with dietary exposure were found to be negligible, even without MLs, with dietary exposures to OTA three to four orders of magnitude below the pivotal animal LOAEL and the TD(05). Our review of the mechanistic data supported a threshold-based mechanism as the most plausible. In particular, OTA was negative in genotoxicity assays with the highest specificity and levels of DNA adducts were very low and not typical of genotoxic carcinogens. In conclusion, OTA exposures from Canadian foods do not present a significant cancer risk.
Collapse
Affiliation(s)
- Lois A Haighton
- Cantox Health Sciences International, An Intertek Company, Mississauga, Ontario, Canada.
| | | | | | | |
Collapse
|
83
|
Jennings P, Weiland C, Limonciel A, Bloch KM, Radford R, Aschauer L, McMorrow T, Wilmes A, Pfaller W, Ahr HJ, Slattery C, Lock EA, Ryan MP, Ellinger-Ziegelbauer H. Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol 2011; 86:571-89. [DOI: 10.1007/s00204-011-0780-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/07/2011] [Indexed: 12/15/2022]
|
84
|
Pfohl-Leszkowicz A, Manderville RA. An update on direct genotoxicity as a molecular mechanism of ochratoxin a carcinogenicity. Chem Res Toxicol 2011; 25:252-62. [PMID: 22054007 DOI: 10.1021/tx200430f] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring chlorophenolic fungal toxin that contaminates a wide range of food products and poses a cancer threat to humans. The mechanism of action (MOA) for OTA renal carcinogenicity is a controversial issue. In 2005, direct genotoxicity (covalent DNA adduct formation) was proposed as a MOA for OTA-mediated carcinogenicity [ Manderville , R. A. ( 2005 ) Chem. Res. Toxicol. 18 , 1091 - 1097 ]. At that time, inconsistent results had been published on OTA genotoxicity/mutagenicity, and conclusive evidence for OTA-mediated DNA adduction had been lacking. In this update, published data from the past 6-7 years are presented that provide new hypotheses for the MOA of OTA-mediated carcinogenicity. While direct genotoxicity remains a controversial issue for OTA, new findings from the Umemura and Nohmi laboratories provide definitive results for the mutagenicity of OTA in the target tissue (outer medulla) of male rat kidney that rules out oxidative DNA damage. These findings, coupled with our own efforts that provide new structural evidence for DNA adduction by OTA, has strengthened the argument for involvement of direct genotoxicity in OTA-mediated renal carcinogenesis. This MOA should be taken into consideration for OTA human risk assessment.
Collapse
Affiliation(s)
- Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique , UMR CNRS/INPT/UPS 5503, INP/ENSA Toulouse, 1 Avenue Agrobiopole, F-31326 Auzeville-Tolosane, France.
| | | |
Collapse
|
85
|
Doi K, Uetsuka K. Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int J Mol Sci 2011; 12:5213-37. [PMID: 21954354 PMCID: PMC3179161 DOI: 10.3390/ijms12085213] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/21/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Among many mycotoxins, T-2 toxin, macrocyclic trichothecenes, fumonisin B(1) (FB(1)) and ochratochin A (OTA) are known to have the potential to induce neurotoxicity in rodent models. T-2 toxin induces neuronal cell apoptosis in the fetal and adult brain. Macrocyclic trichothecenes bring about neuronal cell apoptosis and inflammation in the olfactory epithelium and olfactory bulb. FB(1) induces neuronal degeneration in the cerebral cortex, concurrent with disruption of de novo ceramide synthesis. OTA causes acute depletion of striatal dopamine and its metabolites, accompanying evidence of neuronal cell apoptosis in the substantia nigra, striatum and hippocampus. This paper reviews the mechanisms of neurotoxicity induced by these mycotoxins especially from the viewpoint of oxidative stress-associated pathways.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, 9-2221-1, Shin-Machi, Ome, Tokyo 198-0024, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-428-33-1086; Fax: +81-428-31-6166
| | - Koji Uetsuka
- Nippon Institute for Biological Science, 9-2221-1, Shin-Machi, Ome, Tokyo 198-0024, Japan
| |
Collapse
|
86
|
Marin-Kuan M, Ehrlich V, Delatour T, Cavin C, Schilter B. Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin a. J Toxicol 2011; 2011:645361. [PMID: 21776264 PMCID: PMC3135259 DOI: 10.1155/2011/645361] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/20/2011] [Indexed: 12/15/2022] Open
Abstract
The in vitro and in vivo evidence compatible with a role for oxidative stress in OTA carcinogenicity has been collected and described. Several potential oxido-reduction mechanisms have been identified in the past. More recently, the possibility of a reduction of cellular antioxidant defense has been raised as an indirect source of oxidative stress. Consequences resulting from the production of oxidative stress are observed at different levels. First, OTA exposure has been associated with increased levels of oxidative DNA, lipid, and protein damage. Second, various biological processes known to be mobilized under oxidative stress were shown to be altered by OTA. These effects have been observed in both in vitro and in vivo test systems. In vivo, active doses were often within doses documented to induce renal tumors in rats. In conclusion, the evidence for the induction of an oxidative stress response resulting from OTA exposure can be considered strong. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Altogether, the data reviewed above support the application of a threshold-based approach to establish safe level of dietary human exposure to OTA.
Collapse
Affiliation(s)
- M. Marin-Kuan
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - V. Ehrlich
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - T. Delatour
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - C. Cavin
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - B. Schilter
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| |
Collapse
|
87
|
Czakai K, Müller K, Mosesso P, Pepe G, Schulze M, Gohla A, Patnaik D, Dekant W, Higgins JMG, Mally A. Perturbation of mitosis through inhibition of histone acetyltransferases: the key to ochratoxin a toxicity and carcinogenicity? Toxicol Sci 2011; 122:317-29. [PMID: 21551354 DOI: 10.1093/toxsci/kfr110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ochratoxin A (OTA) is one of the most potent rodent renal carcinogens studied to date. Although controversial results regarding OTA genotoxicity have been published, it is now widely accepted that OTA is not a mutagenic, DNA-reactive carcinogen. Instead, increasing evidence from both in vivo and in vitro studies suggests that OTA may promote genomic instability and tumorigenesis through interference with cell division. The aim of the present study was to provide further support for disruption of mitosis as a key event in OTA toxicity and to understand how OTA mediates these effects. Immortalized human kidney epithelial cells (IHKE) were treated with OTA and monitored by differential interference contrast microscopy for 15 h. Image analysis confirmed that OTA at concentrations ≥ 5 μM, which correlate with plasma concentrations in rats under conditions of carcinogenesis, causes sustained mitotic arrest and exit from mitosis without nuclear or cellular division. Mitotic chromosomes were characterized by aberrant condensation and premature sister chromatid separation associated with altered phosphorylation and acetylation of core histones. To test if OTA directly interferes with histone acetyltransferases (HATs) which regulate lysine acetylation of histones and nonhistone proteins, a cell-free HAT activity assay was conducted using total nuclear extracts of IHKE cells. In this assay, OTA significantly blocked HAT activity in a concentration-dependent manner Overall, results from this study provide further support for a mechanism of OTA carcinogenicity involving interference with the mitotic machinery and suggest HATs as a primary cellular target of OTA.
Collapse
Affiliation(s)
- Kristin Czakai
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Silibinin pretreatment protects against ochratoxin A-mediated apoptosis in primary rat hepatocytes. Mycotoxin Res 2011; 27:167-76. [PMID: 23605796 DOI: 10.1007/s12550-011-0092-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 12/24/2022]
Abstract
The inhibitory effect of silibinin on ochratoxin A (OTA)-mediated apoptosis on primary rat hepatocytes was investigated. Rat hepatocytes were prepared by two different methods: the classical enzymatic digestion method by collagenase perfusion and a new EDTA-perfusion method. The EDTA-perfusion method yielded hepatocytes, which were stably cultivated without DNA fragmentation for up to 96 h, whereas the collagenase-prepared hepatocytes showed apoptosis events as early as from the start of preparation even in the absence of OTA. Treatment with 12.5 μmol/l OTA of cultured hepatocytes prepared under ETDA perfusion developed DNA-laddering after 24-36 h. Lipopolysaccharide (LPS) of 0.1 up to 12.5 μg/ml showed no apoptotic DNA-effects under these conditions. A low concentration of 26 μmol/l silibinin given prior to OTA slightly prevented OTA-mediated DNA-laddering, whereas a five times higher concentration of silibinin (130 μmol/l) completely inhibited OTA-mediated apoptosis. Under the same conditions, caspase-3 activity in hepatocytes increased in a time-dependent manner under OTA exposure within 12-24 h but was blocked by 130 μmol/l silibinin. In contrast, LPS incubation for 12 and 24 h did not alter caspase-3 activity. To measure viability of OTA-/LPS-treated hepatocytes, the MTT-test and Live/Dead kit were applied. The results demonstrated that the used OTA concentration of 12.5 μmol/l only moderately decreased viability for up to 24 h but showed cytotoxic effects depending on longer incubation times (≥36 h). In contrast, LPS up to 12.5 μg/ml exhibited no cytotoxic effects up to 48 h. In summary, our results showed contrasting effects on apoptosis in primary rat hepatocytes by OTA (produces apoptosis) versus LPS (produces no apoptosis), also depending on the method of hepatocyte preparation. Silibinin at 130 μmol/l showed significant hepatoprotective and antiapoptotic effects against OTA-mediated cell damage on cultured rat hepatocytes.
Collapse
|
89
|
Ellis JK, Athersuch TJ, Cavill R, Radford R, Slattery C, Jennings P, McMorrow T, Ryan MP, Ebbels TMD, Keun HC. Metabolic response to low-level toxicant exposure in a novel renal tubuleepithelial cell system. ACTA ACUST UNITED AC 2011; 7:247-57. [DOI: 10.1039/c0mb00146e] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
90
|
Mantle PG, Amerasinghe C, Brown AL, Herman D, Horn T, Krogh T, Odell EW, Rosenbaum T, Tatu CA. A pilot study of nuclear instability in archived renal and upper urinary tract tumours with putative ochratoxin aetiology. Toxins (Basel) 2010; 2:326-40. [PMID: 22069587 PMCID: PMC3153191 DOI: 10.3390/toxins2030326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 11/16/2022] Open
Abstract
DNA ploidy measurement has been applied uniquely to wax-embedded tissue of primary renal cell and metastatic tumours of a key experimental researcher on porcine ochratoxicosis, a control, and four transitional cell carcinomas from cases of Balkan endemic nephropathy. Primary renal tumour was diploid, and hyperdiploid metastasis was within the lower ploidy range for typical renal cell carcinoma. Three Balkan primary tumours showed extensive aneuploidy indicating marked nuclear instability, similar to model rat renal carcinoma caused by ochratoxin A. In contrast, much less nuclear instability in the putative occupational ochratoxicosis case fitted poorly with the ochratoxin A model.
Collapse
Affiliation(s)
- Peter G. Mantle
- Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK
- Author to whom correspondence should be addressed; ; Tel.: +44-207-594-5245
| | - Cyrille Amerasinghe
- Department of Histopathology, Ealing Hospital, Southall, Middlesex, UB1 3HW, UK
| | - Amy L. Brown
- Department of Oral Pathology, Kings College London, London, UK
| | - Diana Herman
- Pathology Department, County Hospital Timisoara, Romania
| | - Thomas Horn
- Pathology Department, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Thoger Krogh
- Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus. Denmark
| | - Edward W. Odell
- Department of Oral Pathology, Kings College London, London, UK
| | - Tomas Rosenbaum
- Department of Urology, Ealing Hospital, Southall, Middlesex. UB1 3HW, UK
| | - Calin A. Tatu
- Department of Biology, University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
91
|
Inhibition of apoptosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin depends on protein biosynthesis. Cell Biol Toxicol 2010; 26:391-401. [PMID: 20108032 DOI: 10.1007/s10565-010-9151-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant. Most of the toxic effects of TCDD are believed to be mediated by high-affinity binding to the aryl hydrocarbon receptor (AhR) and subsequent effects on gene transcription and protein expression. TCDD causes cancer in multiple tissues in different animal species and is classified as a class 1 human carcinogen. In initiation-promotion studies, TCDD was shown to be a potent liver-tumor promotor. Among other theories it has been hypothesized that TCDD promotes tumor growth by preventing initiated cells from correctly executing apoptosis. In this study, we examined the effects of TCDD on apoptosis induced by UV-C light, ochratoxin A (OTA), and cycloheximide (CHX) in primary rat hepatocytes. Both UV-C light and OTA caused caspase activation and nuclear apoptotic effects. CHX did not activate caspases but nevertheless caused DNA fragmentation and chromatin condensation. TCDD inhibited UV-C light-induced apoptosis and this effect seemed to be dependent on AhR-activation as was shown by employing an AhR antagonist. In contrast to UV-C light-induced apoptosis, TCDD failed to protect primary rat hepatocytes from OTA- or CHX-induced apoptosis. Since both of these compounds inhibit protein biosynthesis as was demonstrated by measuring the incorporation of radiolabeled leucin and protein expression of cytochrome P450 1A1, we propose that the inhibition of apoptosis by TCDD depends on protein biosynthesis. Either TCDD induces some anti-apoptotic protein in an AhR-dependent manner or inhibits pro-apoptotic proteins induced by UV irradiation.
Collapse
|
92
|
Boesch-Saadatmandi C, Wagner AE, Graeser AC, Hundhausen C, Wolffram S, Rimbach G. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J Anim Physiol Anim Nutr (Berl) 2009; 93:547-54. [DOI: 10.1111/j.1439-0396.2008.00838.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
93
|
Stemmer K, Ellinger-Ziegelbauer H, Ahr HJ, Dietrich DR. Molecular characterization of preneoplastic lesions provides insight on the development of renal tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1686-98. [PMID: 19717638 DOI: 10.2353/ajpath.2009.081071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kidneys are the second most frequent site for chemically induced cancers in rats. However, there is still limited information on direct effects of carcinogens on pathways involved in the development of kidney tumors. Since transformed tumor cells have different characteristics than their cell of origin, it was hypothesized that healthy tissue and progressing stages of preneoplastic lesions are differentially influenced by chemical carcinogens. To elucidate this question, TSC2(-/-) Eker rats were gavaged with genotoxic aristolochic acid or nongenotoxic ochratoxin A for 3 and 6 months, respectively. Histopathology and cell proliferation analysis demonstrated a compound- and sex-specific onset of preneoplastic lesions. In contrast, comparable gene expression profiles of laser-microdissected preneoplastic lesions from carcinogen-treated and control rats, including reduced expression of genes involved in carcinogen uptake and metabolism, point to a compound-independent lesion progression. Gene expression profiles and additional immunostaining suggested that clonal expansion of renal lesions appears primarily driven by disturbed mammalian target of rapamycin complex 1 and mammalian target of rapamycin complex 2 pathway regulation. Finally, prolonged carcinogen exposure resulted in only marginal gene expression changes in tubules with normal morphology, indicating that some tubules may have adapted to the treatment. Taken together, these findings indicate that the final outcome of in vivo carcinogenicity studies is primarily determined by time-restricted initial events, while lesion progression may be a compound-independent process, involving deregulated mTOR signaling in the Eker rat model.
Collapse
Affiliation(s)
- Kerstin Stemmer
- Department of Human and Environmental Toxicology, University of Konstanz, Konstanz 78457, Germany
| | | | | | | |
Collapse
|
94
|
Vettorazzi A, Gonzalez-Peñas E, Trocóniz I, Arbillaga L, Corcuera L, Gil A, López de Cerain A. A different kinetic profile of ochratoxin A in mature male rats. Food Chem Toxicol 2009; 47:1921-7. [PMID: 19445996 DOI: 10.1016/j.fct.2009.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/30/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
|
95
|
Mantle PG. Minimum tolerable exposure period and maximum threshold dietary intake of ochratoxin A for causing renal cancer in male Dark Agouti rats. Food Chem Toxicol 2009; 47:2419-24. [PMID: 19577606 DOI: 10.1016/j.fct.2009.05.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/24/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
In rats fed dietary ochratoxin A (5 ppm for 3, 6 or 9 months) no renal tumours occurred throughout natural life of the group treated for 3 months, during which the ochratoxin dose was 3 times that in the high dose group of the NTP study. Bilateral renal carcinoma occurred in one rat in the 6 month group. Four rats treated for 9 months developed unilateral renal carcinoma. Overall latency between ceasing toxin exposure and discovering tumours was 35-97 weeks. Experimental verification of a 'no observable effect level' was made for feed containing 400 ppb, equivalent to approximately 7 microg ochratoxin A/day for Dark Agouti rats for up to 2 years, during which mean daily dose commenced at approximately 50 microg/kg, but later for adults was in the range 30-20 microg/kg. This data doubles the daily in vivo threshold dose from the NTP study ( approximately 15 microg/kg), and could influence human risk assessment. An at least 3 month threshold period for exposure to exceptionally high daily OTA intake (90 microg; 640-450 microg/kg) raises doubts over interpretation of experimental molecular data for OTA exposure at lower dose for up to 3 months in studies aimed at understanding carcinogenic mechanism.
Collapse
Affiliation(s)
- Peter G Mantle
- Centre for Environmental Policy, Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
96
|
Characterization of ochratoxin A-induced apoptosis in primary rat hepatocytes. Cell Biol Toxicol 2009; 26:239-54. [DOI: 10.1007/s10565-009-9131-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
97
|
Cavin C, Delatour T, Marin-Kuan M, Fenaille F, Holzhäuser D, Guignard G, Bezençon C, Piguet D, Parisod V, Richoz-Payot J, Schilter B. Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses. Toxicol Sci 2009; 110:84-94. [PMID: 19414514 DOI: 10.1093/toxsci/kfp090] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin occurring in a variety of foods. OTA is nephrotoxic and nephrocarcinogenic in rodents. An OTA-mediated increase of the inducible nitric oxide synthase (iNOS) expression was observed in normal rat kidney renal cell line and in rat hepatocyte cultures, suggesting the induction of nitrosative stress. This was associated with an increased nuclear factor kappa-light chain enhancer of activated B cells activity. The potential consequences of iNOS induction were further investigated. A significant increase in the levels of protein nitrotyrosine residues was observed with OTA. In addition, OTA was found to increase the level of DNA abasic sites in both cell cultures system. This end point was used as an indirect measure of 8-nitroguanine formation. Treatment of the cells with L-N(6)-(1-iminoethyl) lysine, a specific inhibitor of iNOS activity, inhibited the OTA-mediated overnitration of proteins but did not reduce the level of DNA abasic sites. It was found previously that nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activators were able to restore the cellular defense against oxidative stress and could prevent DNA abasic sites in cell cultures. In the present study, pretreatment of the cells with activators of Nrf2 prevented OTA-mediated increase in lipid peroxidation, confirming the potential of Nrf2 activators to confer protection against OTA-mediated oxidative stress. In addition, it was found that Nrf2 activators could also prevent OTA-induced protein nitration and cytotoxicity. In conclusion, the present data further confirm oxidative stress as a key source of OTA-induced DNA damage and provide additional evidence for a role of this mechanism in OTA carcinogenicity. The exact role of nitrosative stress still remains to be established.
Collapse
Affiliation(s)
- Christophe Cavin
- Quality and Safety Department, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Kiyosawa N, Ando Y, Manabe S, Yamoto T. Toxicogenomic biomarkers for liver toxicity. J Toxicol Pathol 2009; 22:35-52. [PMID: 22271975 PMCID: PMC3246017 DOI: 10.1293/tox.22.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 11/26/2008] [Indexed: 12/15/2022] Open
Abstract
Toxicogenomics (TGx) is a widely used technique in the preclinical stage of drug development to investigate the molecular mechanisms of toxicity. A number of candidate TGx biomarkers have now been identified and are utilized for both assessing and predicting toxicities. Further accumulation of novel TGx biomarkers will lead to more efficient, appropriate and cost effective drug risk assessment, reinforcing the paradigm of the conventional toxicology system with a more profound understanding of the molecular mechanisms of drug-induced toxicity. In this paper, we overview some practical strategies as well as obstacles for identifying and utilizing TGx biomarkers based on microarray analysis. Since clinical hepatotoxicity is one of the major causes of drug development attrition, the liver has been the best documented target organ for TGx studies to date, and we therefore focused on information from liver TGx studies. In this review, we summarize the current resources in the literature in regard to TGx studies of the liver, from which toxicologists could extract potential TGx biomarker gene sets for better hepatotoxicity risk assessment.
Collapse
Affiliation(s)
- Naoki Kiyosawa
- Medicinal Safety Research Labs., Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan
| | | | | | | |
Collapse
|
99
|
Adler M, Müller K, Rached E, Dekant W, Mally A. Modulation of key regulators of mitosis linked to chromosomal instability is an early event in ochratoxin A carcinogenicity. Carcinogenesis 2009; 30:711-9. [DOI: 10.1093/carcin/bgp049] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
100
|
Mally A, Dekant W. Mycotoxins and the kidney: Modes of action for renal tumor formation by ochratoxin A in rodents. Mol Nutr Food Res 2008; 53:467-78. [DOI: 10.1002/mnfr.200800149] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|