51
|
Diesing AK, Nossol C, Panther P, Walk N, Post A, Kluess J, Kreutzmann P, Dänicke S, Rothkötter HJ, Kahlert S. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett 2010; 200:8-18. [PMID: 20937367 DOI: 10.1016/j.toxlet.2010.10.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
The Fusarium derived mycotoxin deoxynivalenol (DON) is frequently found in cereals used for human and animal nutrition. We studied effects of DON in non-transformed, non-carcinoma, polarized epithelial cells of porcine small intestinal origin (IPEC-1 and IPEC-J2) in a low (200 ng/mL) and a high (2000 ng/mL) concentration. Application of high DON concentrations showed significant toxic effects as indicated by a reduction in cell number, in cellular reduction capacity measured by MTT assay, reduced uptake of neutral red (NR) and a decrease in cell proliferation. High dose toxicity was accompanied by disintegration of tight junction protein ZO-1 and increase of cell cycle phase G2/M. Activation of caspase 3 was found as an early event in the high DON concentration with an initial maximum after 6-8 h. In contrast, application of 200 ng/mL DON exhibited a response pattern distinct from the high dose DON toxicity. The cell cycle, ZO-1 expression and distribution as well as caspase 3 activation were not changed. BrdU incorporation was significantly increased after 72 h incubation with 200 ng/mL DON and NR uptake was only transiently reduced after 24 h. Low dose effects of DON on intestinal epithelial cells were triggered by mechanisms different from those responsible for the high dose toxicity.
Collapse
Affiliation(s)
- Anne-Kathrin Diesing
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Pestka JJ. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 2010; 84:663-79. [PMID: 20798930 DOI: 10.1007/s00204-010-0579-8] [Citation(s) in RCA: 696] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) is produced in wheat, barley and corn following infestation by the fungus Fusarium in the field and during storage. Colloquially known as "vomitoxin" because of its emetic effects in pigs, DON has been associated with human gastroenteritis. Since DON is commonly detected in cereal foods, there are significant questions regarding the risks of acute poisoning and chronic effects posed to persons ingesting this trichothecene. A further challenge is how to best manage perceived risks without rendering critical food staples unavailable to an ever-expanding world population. In experimental animal models, acute DON poisoning causes emesis, whereas chronic low-dose exposure elicits anorexia, growth retardation, immunotoxicity as well as impaired reproduction and development resulting from maternal toxicity. Pathophysiologic effects associated with DON include altered neuroendocrine signaling, proinflammatory gene induction, disruption of the growth hormone axis, and altered gut integrity. At the cellular level, DON induces ribotoxic stress thereby disrupting macromolecule synthesis, cell signaling, differentiation, proliferation, and death. There is a need to better understand the mechanistic linkages between these early dose-dependent molecular effects and relevant pathological sequelae. Epidemiological studies are needed to determine if relationships exist between consumption of high DON levels and incidence of both gastroenteritis and potential chronic diseases. From the perspective of human health translation, a particularly exciting development is the availability of biomarkers of exposure (e.g. DON glucuronide) and effect (e.g. IGF1) now make it possible to study the relationship between DON consumption and growth retardation in susceptible human populations such as children and vegetarians. Ultimately, a fusion of basic and translational research is needed to validate or refine existing risk assessments and regulatory standards for this common mycotoxin.
Collapse
Affiliation(s)
- James J Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
53
|
Schuhmacher‐Wolz U, Heine K, Schneider K. Report on toxicity data on trichothecene mycotoxins HT‐2 and T‐2 toxins. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-65] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Karin Heine
- Forschungs‐und Beratungsinstitut Gefahrstoffe GmbH (FoBiG)
| | | |
Collapse
|
54
|
Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins (Basel) 2010; 2:1300-17. [PMID: 22069639 PMCID: PMC3153246 DOI: 10.3390/toxins2061300] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 05/25/2010] [Accepted: 05/28/2010] [Indexed: 01/18/2023] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) is commonly encountered in human cereal foods throughout the world as a result of infestation of grains in the field and in storage by the fungus Fusarium. Significant questions remain regarding the risks posed to humans from acute and chronic DON ingestion, and how to manage these risks without imperiling access to nutritionally important food commodities. Modulation of the innate immune system appears particularly critical to DON's toxic effects. Specifically, DON induces activation of mitogen-activated protein kinases (MAPKs) in macrophages and monocytes, which mediate robust induction of proinflammatory gene expression-effects that can be recapitulated in intact animals. The initiating mechanisms for DON-induced ribotoxic stress response appear to involve the (1) activation of constitutive protein kinases on the damaged ribosome and (2) autophagy of the chaperone GRP78 with consequent activation of the ER stress response. Pathological sequelae resulting from chronic low dose exposure include anorexia, impaired weight gain, growth hormone dysregulation and aberrant IgA production whereas acute high dose exposure evokes gastroenteritis, emesis and a shock-like syndrome. Taken together, the capacity of DON to evoke ribotoxic stress in mononuclear phagocytes contributes significantly to its acute and chronic toxic effects in vivo. It is anticipated that these investigations will enable the identification of robust biomarkers of effect that will be applicable to epidemiological studies of the human health effects of this common mycotoxin.
Collapse
|
55
|
|
56
|
Bae H, Gray JS, Li M, Vines L, Kim J, Pestka JJ. Hematopoietic cell kinase associates with the 40S ribosomal subunit and mediates the ribotoxic stress response to deoxynivalenol in mononuclear phagocytes. Toxicol Sci 2010; 115:444-52. [PMID: 20181660 DOI: 10.1093/toxsci/kfq055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The trichothecene deoxynivalenol (DON) binds to eukaryotic ribosomes and triggers p38-driven proinflammatory gene expression in the macrophage-a response that is dependent on both double-stranded RNA-activated protein kinase (PKR) and hematopoietic cell kinase (Hck). Here we elucidated critical linkages that exist among the ribosome and these kinases during the course of DON-induced ribotoxic stress in mononuclear phagocytes. Similar to PKR inhibitors, Hck inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2) suppressed p38 activation and p38-driven interleukin 8 (IL-8) expression in the U937 human monocyte cell line. U937 cells stably transfected with a PKR antisense vector (U9K-A1) displayed marked reduction of DON-induced p38 activation and IL-8 expression as compared to cells transfected with empty vector (U9K-C2), with both responses being completely ablated by PP2. Western analysis of sucrose density gradient fractions revealed that PKR and Hck interacted with the 40S ribosomal subunit in U9K-C2 but not U9K-A1 cells. Subsequent transfection and immunoprecipitation studies with HeLa cells indicated that Hck interacted with ribosomal protein S3. Consistent with U937 cells, DON induced p38 association with the ribosome and phosphorylation in peritoneal macrophages from wild-type but not PKR-deficient mice. DON-induced phosphorylation of ribosome-associated Hck in RAW 264.7 murine macrophages was also suppressed by 2-aminopurine (2-AP). Both 2-AP and PP2 inhibited DON-induced phosphorylation of p38 as well as two kinases, apoptosis signal-regulating kinase 1 and mitogen-activated protein kinase 3/6, known to be upstream of p38. Taken together, PKR and Hck were critical for DON-induced ribosomal recruitment of p38, its subsequent phosphorylation, and, ultimately, p38-driven proinflammatory cytokine expression.
Collapse
Affiliation(s)
- Heekyong Bae
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | | | | | | | |
Collapse
|
57
|
Melchior WB, Tolleson WH. A functional quantitative polymerase chain reaction assay for ricin, Shiga toxin, and related ribosome-inactivating proteins. Anal Biochem 2010; 396:204-11. [DOI: 10.1016/j.ab.2009.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/23/2022]
|
58
|
Abstract
Humans are exposed to mycotoxins via ingestion, contact and inhalation. This must have occurred throughout human history and led to severe outbreaks. Potential diseases range from akakabio-byo to stachybotryotoxicosis and cancer. The known molecular bases of toxicology run the gamut of 23 compounds, from aflatoxins (AFs) to zearalenone, ochratoxin A and deoxynivalenol. Ergotism is one of the oldest recognized mycotoxicosis, although mycotoxin science only commenced in the 1960s with the discovery of AFs in turkey feed. AFs are carcinogenic. Some others are suspected carcinogens. The effects of mycotoxins are acute or chronic in nature. Mycotoxins are well known in the scientific community, although they have a low profile in the general population. An incongruous situation occurs in United States where mycotoxins from "moldy homes" are considered to be a significant problem, although there is a general debate about seriousness. This contrasts with the thousands of deaths from mycotoxins that occur, even now, in the technologically less developed countries (e.g., Indonesia, China, and Africa). Mycotoxins are more toxic than pesticides. Studies are moving from whole animal work to investigating the biochemical mechanisms in isolated cells, and the mechanisms of toxicity at the molecular level are being elucidated. The stereochemical nature of AFs has been shown to be important. In addition, the effect of multiple mycotoxins is being increasingly investigated, which will more accurately represent the situation in nature. It is anticipated that more fungal metabolites will be recognized as dangerous toxins and permitted statutory levels will decrease in the future.
Collapse
Affiliation(s)
- Robert R M Paterson
- IBB-Institute for Biotechnology and Bioengineering, Universidade do Minho, Portugal.
| | | |
Collapse
|
59
|
A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 2009; 106:21883-8. [PMID: 20007368 DOI: 10.1073/pnas.0909777106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trichothecene mycotoxins synthesized by Fusarium species are potent inhibitors of eukaryotic translation. They are encountered in both the environment and in food, posing a threat to human and animal health. They have diverse roles in the cell that are not limited to the inhibition of protein synthesis. To understand the trichothecene mechanism of action, we screened the yeast knockout library to identify genes whose deletion confers resistance to trichothecin (Tcin). The largest group of resistant strains affected mitochondrial function, suggesting a role for fully active mitochondria in trichothecene toxicity. Tcin inhibited mitochondrial translation in the wild-type strain to a greater extent than in the most resistant strains, implicating mitochondrial translation as a previously unrecognized site of action. The Tcin-resistant strains were cross-resistant to anisomycin and chloramphenicol, suggesting that Tcin targets the peptidyltransferase center of mitochondrial ribosomes. Tcin-induced cell death was partially rescued by mutants that regulate mitochondrial fusion and maintenance of the tubular morphology of mitochondria. Treatment of yeast cells with Tcin led to the fragmentation of the tubular mitochondrial network, supporting a role for Tcin in disruption of mitochondrial membrane morphology. These results provide genome-wide insight into the mode of action of trichothecene mycotoxins and uncover a critical role for mitochondrial translation and membrane maintenance in their toxicity.
Collapse
|
60
|
Chaudhari M, Jayaraj R, Bhaskar ASB, Lakshmana Rao PV. Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells. Toxicology 2009; 262:153-61. [PMID: 19524637 DOI: 10.1016/j.tox.2009.06.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/31/2009] [Accepted: 06/02/2009] [Indexed: 11/17/2022]
Abstract
T-2 toxin is the most toxic trichothecene and both humans and animals suffer from several pathological conditions after consumption of foodstuffs contaminated with trichothecenes. We investigated the molecular mechanism of T-2 toxin induced cytotoxicity and cell death in HeLa cells. T-2 toxin at LC50 of 10 ng/ml caused time dependent increase in cytotoxicity as assessed by dye uptake, lactatedehydrogenase leakage and MTT assay. The toxin caused generation of reactive oxygen species as early as 30 min followed by significant depletion of glutathione levels and increased lipid peroxidation. The results indicate oxidative stress as underlying mechanism of cytotoxicity. Single stranded DNA damage after T-2 treatment was observed as early as 2 and 4h by DNA diffusion assay. The cells exhibited apoptotic morphology like condensed chromatin and nuclear fragmentation after 4h of treatment. Downstream of T-2 induced oxidative stress and DNA damage a time dependent increase in expression level of p53 protein was observed. The increase in Bax/Bcl2 ratio indicated shift in response, in favour of apoptotic process in T-2 toxin treated cells. Western blot analysis showed increase in levels of mitochondrial apoptogenic factors Bax, Bcl-2, cytochrome-c followed by activation of caspases-9, -3 and -7 leading to DNA fragmentation and apoptosis. In addition to caspase-dependent pathway, our results showed involvement of caspase-independent AIF pathway in T-2 induced apoptosis. Broad spectrum caspase inhibitor z-VAD-fmk could partially protect the cells from DNA damage but could not inhibit AIF induced oligonucleosomal DNA fragmentation beyond 4 h. Results of the study clearly show that oxidative stress is the underlying mechanism by which T-2 toxin causes DNA damage and apoptosis.
Collapse
Affiliation(s)
- Manjari Chaudhari
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | | | | | | |
Collapse
|
61
|
Satratoxin G interaction with 40S and 60S ribosomal subunits precedes apoptosis in the macrophage. Toxicol Appl Pharmacol 2009; 237:137-45. [PMID: 19306889 DOI: 10.1016/j.taap.2009.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 11/24/2022]
Abstract
Satratoxin G (SG) and other macrocyclic trichothecene mycotoxins are potent inhibitors of eukaryotic translation that are potentially immunosuppressive. The purpose of this research was to test the hypothesis that SG-induced apoptosis in the macrophage correlates with binding of this toxin to the ribosome. Exposure of RAW 264.7 murine macrophages to SG at concentrations of 10 to 80 ng/ml induced DNA fragmentation within 4 h that was indicative of apoptosis. To relate these findings to ribosome binding of SG, RAW cells were exposed to different toxin concentrations for various time intervals, ribosomal fractions isolated by sucrose density gradient ultracentrifugation and resultant fractions analyzed for SG by competitive ELISA. SG was found to specifically interact with 40S and 60S ribosomal subunits as early as 5 min and that, at high concentrations or extended incubation times, the toxin induced polysome disaggregation. While co-incubation with the simple Type B trichothecene DON had no effect on SG uptake into cell cytoplasm, it inhibited SG binding to the ribosome, suggesting that the two toxins bound to identical sites and that SG binding was reversible. Although both SG and DON induced mobilization of p38 and JNK 1/2 to the ribosome, phosphorylation of ribosomal bound MAPKs occurred only after DON treatment. SG association with the 40S and 60S subunits was also observed in the PC-12 neuronal cell model which is similarly susceptible to apoptosis. To summarize, SG rapidly binds small and large ribosomal subunits in a concentration- and time-dependent manner that was consistent with induction of apoptosis.
Collapse
|
62
|
Gray JS, Bae HK, Li JCB, Lau AS, Pestka JJ. Double-stranded RNA-activated protein kinase mediates induction of interleukin-8 expression by deoxynivalenol, Shiga toxin 1, and ricin in monocytes. Toxicol Sci 2008; 105:322-30. [PMID: 18599499 DOI: 10.1093/toxsci/kfn128] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Translational inhibitors such as the trichothecene mycotoxin deoxynivalenol (DON) and ribosomal inhibitory proteins (RIPs) induce mitogen-activated protein kinase (MAPK)-driven chemokine and cytokine production by a mechanism known as the ribotoxic stress response (RSR). Double-stranded RNA-activated protein kinase (PKR) associates with the ribosome making it uniquely positioned to sense 28S ribosomal RNA damage and initiate the RSR. We have previously shown that PKR mediates DON-induced MAPK phosphorylation in macrophages and monocytes. The purpose of this study was to test the hypothesis that PKR is essential for induction of interleukin (IL)-8 expression in monocytes by DON and two prototypical RIPs, ricin, and Shiga toxin 1 (Stx1). Preincubation of human monocytic U937 cells with the PKR inhibitors C16 and 2-aminopurine (2-AP) blocked DON-induced expression of IL-8 protein and mRNA. Induction of IL-8 expression was similarly impaired in U937 cells stably transfected with a dominant negative PKR plasmid (UK9M) as compared with cells transfected with control plasmid (UK9C). Nuclear factor-kappa B binding, which has been previously shown to be a requisite for DON-induced IL-8 transcription, was markedly reduced in UK9M cells as compared with UK9C cells. As observed for DON, ricin-, and Stx1-induced IL-8 expression was suppressed by the PKR inhibitors C16 and 2-AP as well as impaired in UK9M cells. Taken together, these data indicate that PKR plays a common role in IL-8 induction by DON and the two RIPs, suggesting that this kinase might be a critical factor in RSR.
Collapse
Affiliation(s)
- Jennifer S Gray
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|