51
|
Evaluation of insulin-like growth factor acid-labile subunit as a potential biomarker of effect for deoxynivalenol-induced proinflammatory cytokine expression. Toxicology 2013; 304:192-8. [PMID: 23298694 DOI: 10.1016/j.tox.2012.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/19/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023]
Abstract
Consumption of the trichothecene deoxynivalenol (DON) suppresses growth in experimental animals - an adverse effect that was used to establish the tolerable daily intake for this toxin. DON ingestion has been recently found to suppress plasma insulin-like growth factor acid-labile subunit (IGFALS), a protein essential for growth. Studies were conducted to explore the feasibility of using plasma IGFALS as a biomarker of effect for DON. In the first study, weanling mice were fed 0, 1, 2.5, 5 and 10 ppm DON and weight and plasma IGFALS determined at intervals over 9 wk. Reduced body weight gains were detectable beginning at wk 5 in the 10 ppm dose and wk 7 at the 5 ppm dose. Plasma IGFALS was significantly depressed at wk 5 in the 5 and 10 ppm groups at wk 9 in the 10 ppm group. Depressed IGFALS significantly correlated with reduced body weight at wk 5 and 9. Benchmark dose modeling revealed the BMDL and BMD for plasma IGFALS reduction were 1.1 and 3.0 ppm DON and for weight reduction were 2.1 and 4.5 ppm DON. In the second study, it was demonstrated that mice fed 15 ppm DON diet had significantly less plasma IGFALS than mice fed identical amounts of control diet. Thus DON's influence on IGFALS likely reflects the combined effects of reduced food intake as well as its physiological action involving suppressors of cytokine signaling. Taken together, these findings suggest that plasma IGFALS might be a useful biomarker for DON's adverse effects on growth.
Collapse
|
52
|
Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 2012; 217:149-58. [PMID: 23274714 DOI: 10.1016/j.toxlet.2012.12.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/24/2023]
Abstract
Trichothecenes are sesquiterpenoid mycotoxins commonly found as contaminants in cereal grains and are a major health and food safety concern due to their toxicity to humans and farm animals. Trichothecenes are predominantly produced by the phytopathogenic Fusarium fungus, and in plants they act as a virulence factor aiding the spread of the fungus during disease development. Known for their inhibitory effect on eukaryotic protein synthesis, trichothecenes also induce oxidative stress, DNA damage and cell cycle arrest and affect cell membrane integrity and function in eukaryotic cells. In animals, trichothecenes can be either immunostimulatory or immunosuppressive and induce apoptosis via mitochondria-mediated or -independent pathway. In plants, trichothecenes induce programmed cell death via production of reactive oxygen species. Recent advances in molecular techniques have led to the elucidation of signal transduction pathways that manifest trichothecene toxicity in eukaryotes. In animals, trichothecenes induce mitogen-activated protein kinase (MAPK) signalling cascades via ribotoxic stress response and/or endoplasmic reticulum stress response. The upstream signalling events that lead to the activation trichothecene-induced ribotoxic stress response are discussed. In plants, trichothecenes exhibit elicitor-like activity leading to the inductions MAPKs and genes involved in oxidative stress, cell death and plant defence response. Trichothecenes might also modulate hormone-mediated defence signalling and abiotic stress signalling in plants.
Collapse
|
53
|
Flannery BM, Clark ES, Pestka JJ. Anorexia induction by the trichothecene deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY. Toxicol Sci 2012; 130:289-97. [PMID: 22903826 DOI: 10.1093/toxsci/kfs255] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Consumption of deoxynivalenol (DON), a trichothecene mycotoxin known to commonly contaminate grain-based foods, suppresses growth of experimental animals, thus raising concerns over its potential to adversely affect young children. Although this growth impairment is believed to result from anorexia, the initiating mechanisms for appetite suppression remain unknown. Here, we tested the hypothesis that DON induces the release of satiety hormones and that this response corresponds to the toxin's anorectic action. Acute ip exposure to DON had no effect on plasma glucagon-like peptide-1, leptin, amylin, pancreatic polypeptide, gastric inhibitory peptide, or ghrelin; however, the toxin was found to robustly elevate peptide YY (PYY) and cholecystokinin (CCK). Specifically, ip exposure to DON at 1 and 5mg/kg bw induced PYY by up to 2.5-fold and CCK by up to 4.1-fold. These responses peaked within 15-120 min and lasted up to 120 min (CCK) and 240 min (PPY), corresponding with depressed rates of food intake. Direct administration of exogenous PYY or CCK similarly caused reduced food intake. Food intake experiments using the NPY2 receptor antagonist BIIE0246 and the CCK1A receptor antagonist devazepide, individually, suggested that PYY mediated DON-induced anorexia but CCK did not. Orolingual exposure to DON induced plasma PYY and CCK elevation and anorexia comparable with that observed for ip exposure. Taken together, these findings suggest that PYY might be one critical mediator of DON-induced anorexia and, ultimately, growth suppression.
Collapse
Affiliation(s)
- Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
54
|
Smith LE, Stoltzfus RJ, Prendergast A. Food chain mycotoxin exposure, gut health, and impaired growth: a conceptual framework. Adv Nutr 2012; 3:526-31. [PMID: 22797988 PMCID: PMC3649721 DOI: 10.3945/an.112.002188] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Childhood stunting is an important and intractable public health problem that underlies ~20% of deaths among children aged <5 y in developing countries. Environmental enteropathy (EE), a subclinical condition of the small intestine characterized by reduced absorptive capacity and increased intestinal permeability, is almost universal among children in developing countries and may mediate stunting. However, the etiology of EE is poorly understood. Mycotoxins are metabolites of fungi that frequently contaminate the staple foods of children living in developing countries. We review evidence from human and animal studies that exposure to mycotoxins, particularly aflatoxin (AF), fumonisin (FUM), and deoxynivaenol (DON), may impair child growth. Although these toxins have distinct actions, they all mediate intestinal damage through: 1) inhibition of protein synthesis (AF, DON); 2) an increase in systemic proinflammatory cytokines (DON); and 3) inhibition of ceramide synthase (FUM). The intestinal pathology that arises from mycotoxin exposure is very similar to that of EE. We propose that future studies should address the role of mycotoxins in the pathogenesis of EE and evaluate interventions to limit mycotoxin exposure and reduce childhood stunting.
Collapse
Affiliation(s)
- Laura E. Smith
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; Queen Mary University of London, UK; and,To whom correspondence should be addressed. E-mail:
| | - Rebecca J. Stoltzfus
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; Queen Mary University of London, UK; and
| | | |
Collapse
|
55
|
The role of biomarkers in evaluating human health concerns from fungal contaminants in food. Nutr Res Rev 2012; 25:162-79. [PMID: 22651937 DOI: 10.1017/s095442241200008x] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxins are toxic secondary metabolites that globally contaminate an estimated 25 % of cereal crops and thus exposure is frequent in many populations. Aflatoxins, fumonisins and deoxynivalenol are amongst those mycotoxins of particular concern from a human health perspective. A number of risks to health are suggested including cancer, growth faltering, immune suppression and neural tube defects; though only the demonstrated role for aflatoxin in the aetiology of liver cancer is widely recognised. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates; instead biomarkers provide better tools for informing epidemiological investigations. Validated exposure biomarkers for aflatoxin (urinary aflatoxin M(1), aflatoxin-N7-guaunine, serum aflatoxin-albumin) were established almost 20 years ago and were critical in confirming aflatoxins as potent liver carcinogens. Validation has included demonstration of assay robustness, intake v. biomarker level, and stability of stored samples. More recently, aflatoxin exposure biomarkers are revealing concerns of growth faltering and immune suppression; importantly, they are being used to assess the effectiveness of intervention strategies. For fumonisins and deoxynivalenol these steps of development and validation have significantly advanced in recent years. Such biomarkers should better inform epidemiological studies and thus improve our understanding of their potential risk to human health.
Collapse
|
56
|
Wang X, Liu Q, Ihsan A, Huang L, Dai M, Hao H, Cheng G, Liu Z, Wang Y, Yuan Z. JAK/STAT Pathway Plays a Critical Role in the Proinflammatory Gene Expression and Apoptosis of RAW264.7 Cells Induced by Trichothecenes as DON and T-2 Toxin. Toxicol Sci 2012; 127:412-24. [DOI: 10.1093/toxsci/kfs106] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
57
|
Hepworth S, Hardie L, Fraser L, Burley V, Mijal R, Wild C, Azad R, Mckinney P, Turner P. Deoxynivalenol exposure assessment in a cohort of pregnant women from Bradford, UK. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:269-76. [DOI: 10.1080/19440049.2010.551301] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
58
|
Turner PC, Ji BT, Shu XO, Zheng W, Chow WH, Gao YT, Hardie LJ. A biomarker survey of urinary deoxynivalenol in China: the Shanghai Women's Health Study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:1220-3. [PMID: 21774617 DOI: 10.1080/19440049.2011.584070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Deoxynivalenol (DON) is a trichothecene mycotoxin found on wheat, maize and barley. In ecological surveys in China, DON and other trichothecenes have been implicated in acute poisoning episodes and linked with the incidence of esophageal cancer. In order to better understand exposure patterns, this pilot survey provided a combined measure of urinary un-metabolised or free DON (fD) and its glucuronide metabolite (DG) in a subset of 60 samples taken from the Shanghai Women's Health Study cohort, China. Samples were collected in 1997/1998 from women age 40-70 years. Urinary fD+DG combined was detected in 58/60 (96.7%) samples (mean 5.9 ng DON/mg creatinine; range nd-30.5); a similar frequency, and a mean level approximately half, of that previously observed for women in the UK. Wheat consumption was approximately 25% of that consumed by western diets; thus DON contamination of wheat may be higher in Shanghai than the UK. The de-epoxy metabolite of DON, a detoxification product observed in animals, was not detected, suggesting that humans may be particularly sensitive to DON due to a more restricted detoxification capacity.
Collapse
Affiliation(s)
- P C Turner
- Molecular Epidemiology Unit, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, UK.
| | | | | | | | | | | | | |
Collapse
|
59
|
Flannery BM, Wu W, Pestka JJ. Characterization of deoxynivalenol-induced anorexia using mouse bioassay. Food Chem Toxicol 2011; 49:1863-9. [PMID: 21575669 DOI: 10.1016/j.fct.2011.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
A short-term mouse model was devised to investigate induction of food refusal by the common foodborne trichothecene deoxynivalenol (DON). DON dose-dependently induced anorexia within 2 h of exposure when administered either by intraperitoneal (ip.) injection or by oral gavage. The no observed adverse effect and lowest observed adverse effect levels in this assay were 0.5 and 1 mg/kg bw for ip. exposure and 1 and 2.5 mg/kg bw for oral exposure, respectively. DON's effects on food intake were transient, lasting up to 3h at 1 mg/kg bw and up to 6 h at 5 mg/kg bw. Interestingly, a dose-dependent orexigenic response was observed in the 14 h following the initial 2h food intake measurement. Toxin-treated mice exhibited partial resistance to feed refusal when exposed to DON subsequently after 2 d, but not after 7 d suggesting that this modest tolerance was reversible. The short-term mouse bioassay described here was useful in characterizing DON-induced anorexia and should be applicable to elucidating mechanisms underlying this adverse nutritional effect.
Collapse
Affiliation(s)
- Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224, USA
| | | | | |
Collapse
|
60
|
Kobayashi-Hattori K, Amuzie CJ, Flannery BM, Pestka JJ. Body composition and hormonal effects following exposure to mycotoxin deoxynivalenol in the high-fat diet-induced obese mouse. Mol Nutr Food Res 2011; 55:1070-8. [PMID: 21538849 DOI: 10.1002/mnfr.201000640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/06/2011] [Accepted: 02/24/2011] [Indexed: 11/08/2022]
Abstract
SCOPE To characterize the effects of ingesting the common foodborne mycotoxin deoxynivalenol (DON) on body weight and composition in the high-fat (HF) diet-induced obese mice, a model of human obesity. METHODS AND RESULTS Female B6C3F1 mice were initially fed HF diets containing 45% kcal (HF45) or 60% kcal (HF60) as fat for 94 days to induce obesity. Half of each group was either continued on unamended HF diets or fed HF diets containing 10 mg/kg DON (DON-HF45 or DON-HF60) for another 54 days. Additional control mice were fed a low-fat (LF) diet containing 10% kcal as fat for the entire 148-day period. DON induced rapid decreases in body weights and fat mass, which stabilized to those of the LF control within 11 days. These effects corresponded closely to a robust transient decrease in food consumption. While lean body mass did not decline in DON-fed groups, further increases were suppressed. DON exposure reduced plasma insulin, leptin, insulin-like growth factor 1, and insulin-like growth factor acid labile subunit as well as increased hypothalamic mRNA level of the orexigenic agouti-related protein. CONCLUSION DON-mediated effects on body weight, fat mass, food intake, and hormonal levels in obese mice were consistent with a state of chronic energy restriction.
Collapse
Affiliation(s)
- Kazuo Kobayashi-Hattori
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
61
|
Amuzie CJ, Flannery BM, Ulrich AM, Pestka JJ. Effects of deoxynivalenol consumption on body weight and adiposity in the diet-induced obese mouse. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:658-667. [PMID: 21432715 DOI: 10.1080/15287394.2011.539119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The potential for the obese state to alter sensitivity to toxic chemicals is poorly understood. In this study, dose-response effects of the trichothecene deoxynivalenol (DON), a common food-borne mycotoxin, were determined on body weight of diet-induced obese mice. In study 1, the effects of feeding adult female B6C3F1 mice a high-fat diet (HFD; 60% kcal from fat) containing 0, 2, 5, or 10 ppm DON for 10 wk on body weight and adiposity were compared. Mice consuming 5 or 10 ppm DON exhibited a 15 and 24% decrease in weight gain and a 50 and 83% reduction in periuterine fat, respectively. In study 2, mice were fed HFD for 8 wk to induce obesity and the effects of consuming HFD + 0, 2, 5, or 10 ppm DON for 8 wk were then determined. Mice fed 5 or 10 ppm DON exhibited a 16 and 23% weight reduction and a 0 and 40% periuterine fat reduction, respectively. In a follow-up experiment, food consumption was measured prior to and after the transition from HFD to HFD + 10 ppm DON. Exposure to DON was found to lower HFD consumption within 1 d, with significant weight loss in DON-fed mice evident after 6 d. In both studies 1 and 2, consumption of 5 or 10 ppm DON diminished circulating levels of insulin-like growth factor acid-labile subunit. Taken together, DON consumption lowered weight gain and produced weight loss in diet-induced obese mice at higher thresholds than that observed previously in normal B6C3F1 mice.
Collapse
Affiliation(s)
- C J Amuzie
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | |
Collapse
|
62
|
Wu F, Bhatnagar D, Bui-Klimke T, Carbone I, Hellmich R, Munkvold G, Paul P, Payne G, Takle E. Climate change impacts on mycotoxin risks in US maize. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2010.1246] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To ensure future food security, it is crucial to understand how potential climate change scenarios will affect agriculture. One key area of interest is how climatic factors, both in the near- and the long-term future, could affect fungal infection of crops and mycotoxin production by these fungi. The objective of this paper is to review the potential impact of climate change on three important mycotoxins that contaminate maize in the United States, and to highlight key research questions and approaches for understanding this impact. Recent climate change analyses that pertain to agriculture and in particular to mycotoxigenic fungi are discussed, with respect to the climatic factors – temperature and relative humidity – at which they thrive and cause severe damage. Additionally, we discuss how climate change will likely alter the life cycles and geographic distribution of insects that are known to facilitate fungal infection of crops.
Collapse
Affiliation(s)
- F. Wu
- Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - D. Bhatnagar
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd Bldg 001, New Orleans, LA 70124, USA
| | - T. Bui-Klimke
- Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - I. Carbone
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Suite 233, Partners III, Raleigh, NC 27606, USA
| | - R. Hellmich
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Ames, IA 50011, USA
| | - G. Munkvold
- Department of Plant Pathology, Iowa State University, Seed Science Building, Ames, IA 50011, USA
| | - P. Paul
- Department of Plant Pathology, Ohio State University, Selby Hall, Wooster, OH 43210, USA
| | - G. Payne
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Suite 233, Partners III, Raleigh, NC 27606, USA
| | - E. Takle
- Department of Geological and Atmospheric Science and Department of Agronomy, Iowa State University, 3010 Agronomy Hall, Ames, IA 50011
| |
Collapse
|
63
|
Turner PC, White KLM, Burley VJ, Hopton RP, Rajendram A, Fisher J, Cade JE, Wild CP. A comparison of deoxynivalenol intake and urinary deoxynivalenol in UK adults. Biomarkers 2010; 15:553-62. [PMID: 20572795 DOI: 10.3109/1354750x.2010.495787] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The relationship between deoxynivalenol (DON) intake and first morning urinary DON was examined in UK adults to validate the latter as a biomarker of human exposure. DON was assessed in first morning samples collected during a period of normal diet, a wheat-restriction intervention diet, and partial wheat-restriction intervention in which bread was allowed. During the partial intervention duplicate bread portions were collected for DON analysis. During the normal diet, partial intervention and full intervention, urinary DON was detected in 198/210 (geometric mean 10.1 ng DON mg(-1) creatinine, 95% confidence interval (CI) 8.6-11.6 ng mg(-1); range nd-70.7 ng mg(-1)), in 94/98 (5.9 ng mg(-1), 95% CI 4.8-7.0 ng mg(-1); range nd-28.4 ng mg(-1)), and 17/40 (0.5 ng mg(-1), 95% CI 0.3-0.7 ng mg(-1); range nd-3.3 ng mg(-1)) volunteers, respectively. A strong correlation between DON intake and the urinary biomarker was observed (p <0.001, adjusted r(2) = 0.83) in models adjusting for age, sex and body mass index. These data demonstrate a quantitative correlation between DON exposure and urinary DON, and serve to validate the use of urinary DON as an exposure biomarker.
Collapse
Affiliation(s)
- Paul C Turner
- Molecular Epidemiology Unit, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, UK.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Voss K, Snook M. Stability of the mycotoxin deoxynivalenol (DON) during the production of flour-based foods and wheat flake cereal. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:1694-1700. [DOI: 10.1080/19440049.2010.514688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
65
|
Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1247] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Produced by the mould genus Fusarium, the type B trichothecenes include deoxynivalenol (DON), nivalenol (NIV) and their acetylated precursors. These mycotoxins often contaminate cereal staples, posing a potential threat to public health that is still incompletely understood. Understanding the mechanistic basis by which these toxins cause toxicity in experimental animal models will improve our ability to predict the specific thresholds for adverse human effects as well as the persistence and reversibility of these effects. Acute exposure to DON and NIV causes emesis in susceptible species such as pigs in a manner similar to that observed for certain bacterial enterotoxins. Chronic exposure to these mycotoxins at low doses causes growth retardation and immunotoxicity whereas much higher doses can interfere with reproduction and development. Pathophysiological events that precede these toxicities include altered neuroendocrine responses, upregulation of proinflammatory gene expression, interference with growth hormone signalling and disruption of gastrointestinal tract permeability. The underlying molecular mechanisms involve deregulation of protein synthesis, aberrant intracellular cell signalling, gene transactivation, mRNA stabilisation and programmed cell death. A fusion of basic and translational research is now needed to validate or refine existing risk assessments and regulatory standards for DON and NIV. From the perspective of human health translation, biomarkers have been identified that potentially make it possible to conduct epidemiological studies relating DON consumption to potential adverse human health effects. Of particular interest will be linkages to growth retardation, gastrointestinal illness and chronic autoimmune diseases. Ultimately, such knowledge can facilitate more precise science-based risk assessment and management strategies that protect consumers without reducing availability of critical food sources.
Collapse
Affiliation(s)
- J. Pestka
- Deptartment of Food Science and Human Nutrition, Deptartment of Microbiology and Molecular Genetics, Center for Integrative Toxicology, 234 G. Malcolm Trout Building, Michigan State University, East Lansing, MI 48824-1224, USA
| |
Collapse
|
66
|
Turner PC, Hopton RP, White KLM, Fisher J, Cade JE, Wild CP. Assessment of deoxynivalenol metabolite profiles in UK adults. Food Chem Toxicol 2010; 49:132-5. [PMID: 20934480 DOI: 10.1016/j.fct.2010.10.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/01/2010] [Accepted: 10/02/2010] [Indexed: 11/16/2022]
Abstract
Deoxynivalenol (DON) requires no activation for toxicity, though susceptibility may reflect individual variations in detoxification. This study reports the measurement of un-metabolised urinary DON (free DON) and DOM-1 in samples previously analysed for the combined measure of free DON+DON-glucuronide (fD+DG), with a concentration >5 ng/ml, for 34 UK adults. Four consecutive daily urine samples were analysed from twenty-two individuals, whilst from 12 individuals only a single sample was analysed. The mean (median) concentration of urinary fD+DG in this sub-set was 17.8 ng/ml (13.8 ng/ml), range 5.0-78.2 ng/ml. In 23/34 (68%) individuals, free DON was detected, mean 2.4 ng/ml; range 0.5-9.3 ng/ml. Urinary DOM-1 was detected in 1/34 (3%) of individuals; present at ∼1% of urinary fD+DG concentration for that individual. The concentration of fD+DG combined was significantly correlated with urinary free DON (p<0.001, R(2)=0.65), but not with the percentage of free DON to fD+DG (p=0.615, R(2)=0.01), suggesting that the level of DON exposure did not affect the metabolism to DG within the range observed. In this survey most individuals had no detectable urinary DOM-1 and 68% did not detoxify all of the ingested DON to DON-glucuronide. This study needs to be extended to understand whether the fD / DG ratio provides a phenotypic measure of DON susceptibility.
Collapse
Affiliation(s)
- Paul C Turner
- Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics University of Leeds, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
67
|
Pestka JJ. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 2010; 84:663-79. [PMID: 20798930 DOI: 10.1007/s00204-010-0579-8] [Citation(s) in RCA: 696] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) is produced in wheat, barley and corn following infestation by the fungus Fusarium in the field and during storage. Colloquially known as "vomitoxin" because of its emetic effects in pigs, DON has been associated with human gastroenteritis. Since DON is commonly detected in cereal foods, there are significant questions regarding the risks of acute poisoning and chronic effects posed to persons ingesting this trichothecene. A further challenge is how to best manage perceived risks without rendering critical food staples unavailable to an ever-expanding world population. In experimental animal models, acute DON poisoning causes emesis, whereas chronic low-dose exposure elicits anorexia, growth retardation, immunotoxicity as well as impaired reproduction and development resulting from maternal toxicity. Pathophysiologic effects associated with DON include altered neuroendocrine signaling, proinflammatory gene induction, disruption of the growth hormone axis, and altered gut integrity. At the cellular level, DON induces ribotoxic stress thereby disrupting macromolecule synthesis, cell signaling, differentiation, proliferation, and death. There is a need to better understand the mechanistic linkages between these early dose-dependent molecular effects and relevant pathological sequelae. Epidemiological studies are needed to determine if relationships exist between consumption of high DON levels and incidence of both gastroenteritis and potential chronic diseases. From the perspective of human health translation, a particularly exciting development is the availability of biomarkers of exposure (e.g. DON glucuronide) and effect (e.g. IGF1) now make it possible to study the relationship between DON consumption and growth retardation in susceptible human populations such as children and vegetarians. Ultimately, a fusion of basic and translational research is needed to validate or refine existing risk assessments and regulatory standards for this common mycotoxin.
Collapse
Affiliation(s)
- James J Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
68
|
Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins (Basel) 2010; 2:1300-17. [PMID: 22069639 PMCID: PMC3153246 DOI: 10.3390/toxins2061300] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 05/25/2010] [Accepted: 05/28/2010] [Indexed: 01/18/2023] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) is commonly encountered in human cereal foods throughout the world as a result of infestation of grains in the field and in storage by the fungus Fusarium. Significant questions remain regarding the risks posed to humans from acute and chronic DON ingestion, and how to manage these risks without imperiling access to nutritionally important food commodities. Modulation of the innate immune system appears particularly critical to DON's toxic effects. Specifically, DON induces activation of mitogen-activated protein kinases (MAPKs) in macrophages and monocytes, which mediate robust induction of proinflammatory gene expression-effects that can be recapitulated in intact animals. The initiating mechanisms for DON-induced ribotoxic stress response appear to involve the (1) activation of constitutive protein kinases on the damaged ribosome and (2) autophagy of the chaperone GRP78 with consequent activation of the ER stress response. Pathological sequelae resulting from chronic low dose exposure include anorexia, impaired weight gain, growth hormone dysregulation and aberrant IgA production whereas acute high dose exposure evokes gastroenteritis, emesis and a shock-like syndrome. Taken together, the capacity of DON to evoke ribotoxic stress in mononuclear phagocytes contributes significantly to its acute and chronic toxic effects in vivo. It is anticipated that these investigations will enable the identification of robust biomarkers of effect that will be applicable to epidemiological studies of the human health effects of this common mycotoxin.
Collapse
|