51
|
Propagation of adult SSCs: from mouse to human. BIOMED RESEARCH INTERNATIONAL 2013; 2013:384734. [PMID: 23484114 PMCID: PMC3581147 DOI: 10.1155/2013/384734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/06/2012] [Indexed: 12/24/2022]
Abstract
Adult spermatogonial stem cells (SSCs) represent a distinctive source of stem cells in
mammals for several reasons. First, by giving rise to spermatogenesis, SSCs are
responsible for the propagation of a father's genetic material. As such, autologous SSCs
have been considered for treatment of infertility and other purposes, including correction
of inherited disorders. Second, adult spermatogonia can spontaneously produce
embryonic-like stem cells in vitro, which could be used as an alternative for therapeutic,
diagnostic, or drug discovery strategies for humans. Therefore, an increasing urgency is
driving efforts to understand the biology of SSCs and improve techniques to manipulate
them in vitro as a prerequisite to achieve the aforementioned goals. The characterization
of adult SSCs also requires reproducible methods to isolate and maintain them in long-term
culture. Herein, we describe recent major advances and challenges in propagation of
adult SSCs from mice and humans during the past few years, including the use of unique
cell surface markers and defined cultured conditions.
Collapse
|
52
|
Abstract
The failure of testicular descent or cryptorchidism is the most common defect in newborn boys. The descent of the testes during development is controlled by insulin-like 3 peptide and steroid hormones produced in testicular Leydig cells, as well as by various genetic and developmental factors. While in some cases the association with genetic abnormalities and environmental causes has been shown, the etiology of cryptorchidism remains uncertain. Cryptorchidism is an established risk factor for infertility and testicular germ cell tumors (TGCT). Experimental animal models suggest a causative role for an abnormal testicular position on the disruption of spermatogenesis however the link between cryptorchidism and TGCT is less clear. The most common type of TGCT in cryptorchid testes is seminoma, believed to be derived from pluripotent prenatal germ cells. Recent studies have shown that seminoma cells and their precursor carcinoma in situ cells express a number of spermatogonial stem cell (SSC) markers suggesting that TGCTs might originate from adult stem cells. We review here the data on changes in the SSC somatic cell niche observed in cryptorchid testes of mouse models and in human patients. We propose that the misregulation of growth factors' expression may alter the balance between SSC self-renewal and differentiation and shift stem cells toward neoplastic transformation.
Collapse
Affiliation(s)
- Lydia Ferguson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International UniversityMiami, FL, USA
| | - Alexander I. Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International UniversityMiami, FL, USA
- *Correspondence: Alexander I. Agoulnik, Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, HLSI 419B, Miami, FL 33199, USA. e-mail:
| |
Collapse
|
53
|
Transcriptional/translational regulation of mammalian spermatogenic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:105-28. [PMID: 23696354 DOI: 10.1007/978-94-007-6621-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
54
|
Yang L, Wu W, Qi H. Gene expression profiling revealed specific spermatogonial stem cell genes in mouse. Genesis 2012; 51:83-96. [PMID: 23175476 DOI: 10.1002/dvg.22358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/05/2022]
Abstract
Mammalian spermatogenesis originates from spermatogonial stem cells (SSCs), which undergo mitosis, meiosis and spermiogenesis in order to generate mature spermatozoa. SSCs are adult stem cells that can both self-renew and differentiate. To maintain pluripotency, SSCs are regulated by both extrinsic factors secreted from surrounding somatic cells and intrinsic factors including specific gene expression programs. Using fluorescent labeled germ line stem cells, mouse gonocytes and SSCs were purified up to 97% by improved FACS method. Through microarray analyses, global gene expression profiles of gonocytes, SSCs, and differentiated cells were compared. A large number of distinctive genes were found to be enriched in respective cell populations, indicating different functional requirements of each cell type. Functional clustering analyses revealed that while gonocytes and SSCs preferentially express genes implicated in gene expression regulation and epigenetic modifications, differentiated cells including somatic cells are enriched with genes encoding proteins involved in various cellular activities. Further in situ hybridization and RT-PCR experiments confirmed SSC specific expression of several genes of which functions have not been characterized in SSCs. The comparative gene expression profiling provides a useful resource for gene discovery in relation to SSC regulation and opens new avenues for the study of molecular mechanisms underlying SSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Lele Yang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | |
Collapse
|
55
|
Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proc Natl Acad Sci U S A 2012; 109:16934-8. [PMID: 22984182 DOI: 10.1073/pnas.1211845109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male infertility is most commonly caused by spermatogenic defects or insufficiencies, the majority of which are as yet cureless. Recently, we succeeded in cultivating mouse testicular tissues for producing fertile sperm from spermatogonial stem cells. Here, we show that one of the most severe types of spermatogenic defect mutant can be treated by the culture method without any genetic manipulations. The Sl/Sl(d) mouse is used as a model of such male infertility. The testis of the Sl/Sl(d) mouse has only primitive spermatogonia as germ cells, lacking any sign of spermatogenesis owing to mutations of the c-kit ligand (KITL) gene that cause the loss of membrane-bound-type KITL from the surface of Sertoli cells. To compensate for the deficit, we cultured testis tissues of Sl/Sl(d) mice with a medium containing recombinant KITL and found that it induced the differentiation of spermatogonia up to the end of meiosis. We further discovered that colony stimulating factor-1 (CSF-1) enhances the effect of KITL and promotes spermatogenesis up to the production of sperm. Microinsemination of haploid cells resulted in delivery of healthy offspring. This study demonstrated that spermatogenic impairments can be treated in vitro with the supplementation of certain factors or substances that are insufficient in the original testes.
Collapse
|
56
|
Costa GMJ, Avelar GF, Rezende-Neto JV, Campos-Junior PHA, Lacerda SMSN, Andrade BSC, Thomé RG, Hofmann MC, Franca LR. Spermatogonial stem cell markers and niche in equids. PLoS One 2012; 7:e44091. [PMID: 22937157 PMCID: PMC3429436 DOI: 10.1371/journal.pone.0044091] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/01/2012] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and are located in a highly dynamic microenvironment called "niche" that influences all aspects of stem cell function, including homing, self-renewal and differentiation. Several studies have recently identified specific proteins that regulate the fate of SSCs. These studies also aimed at identifying surface markers that would facilitate the isolation of these cells in different vertebrate species. The present study is the first to investigate SSC physiology and niche in stallions and to offer a comparative evaluation of undifferentiated type A spermatogonia (Aund) markers (GFRA1, PLZF and CSF1R) in three different domestic equid species (stallions, donkeys, and mules). Aund were first characterized according to their morphology and expression of the GFRA1 receptor. Our findings strongly suggest that in stallions these cells were preferentially located in the areas facing the interstitium, particularly those nearby blood vessels. This distribution is similar to what has been observed in other vertebrate species. In addition, all three Aund markers were expressed in the equid species evaluated in this study. These markers have been well characterized in other mammalian species, which suggests that the molecular mechanisms that maintain the niche and Aund/SSCs physiology are conserved among mammals. We hope that our findings will help future studies needing isolation and cryopreservation of equids SSCs. In addition, our data will be very useful for studies that aim at preserving the germplasm of valuable animals, and involve germ cell transplantation or xenografts of equids testis fragments/germ cells suspensions.
Collapse
Affiliation(s)
- Guilherme M. J. Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gleide F. Avelar
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José V. Rezende-Neto
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Henrique A. Campos-Junior
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samyra M. S. N. Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno S. C. Andrade
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ralph Gruppi Thomé
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marie-Claude Hofmann
- Unit 1105, Department of Endocrine Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Luiz R. Franca
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
57
|
Abstract
This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine.
Collapse
Affiliation(s)
- Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | |
Collapse
|
58
|
Campos-Junior PHA, Costa GMJ, Lacerda SMSN, Rezende-Neto JV, de Paula AM, Hofmann MC, de França LR. The spermatogonial stem cell niche in the collared peccary (Tayassu tajacu). Biol Reprod 2012; 86:155, 1-10. [PMID: 22262689 DOI: 10.1095/biolreprod.111.095430] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the seminiferous epithelium, spermatogonial stem cells (SSCs) are located in a particular environment called the "niche" that is controlled by the basement membrane, key testis somatic cells, and factors originating from the vascular network. However, the role of Leydig cells (LCs) as a niche component is not yet clearly elucidated. Recent studies showed that peccaries (Tayassu tajacu) present a peculiar LC cytoarchitecture in which these cells are located around the seminiferous tubule lobes, making the peccary a unique model for investigating the SSC niche. This peculiarity allowed us to subdivide the seminiferous tubule cross-sections in three different testis parenchyma regions (tubule-tubule, tubule-interstitium, and tubule-LC contact). Our aims were to characterize the different spermatogonial cell types and to determine the location and/or distribution of the SSCs along the seminiferous tubules. Compared to differentiating spermatogonia, undifferentiated spermatogonia (A(und)) presented a noticeably higher nuclear volume (P < 0.05), allowing an accurate evaluation of their distribution. Immunostaining analysis demonstrated that approximately 93% of A(und) were GDNF receptor alpha 1 positive (GFRA1(+)), and these cells were preferentially located adjacent to the interstitial compartment without LCs (P < 0.05). The expression of colony-stimulating factor 1 was observed in LCs and peritubular myoid cells (PMCs), whereas its receptor was present in LCs and in GFRA1(+) A(und). Taken together, our findings strongly suggest that LCs, different from PMCs, might play a minor role in the SSC niche and physiology and that these steroidogenic cells are probably involved in the differentiation of A(und) toward type A(1) spermatogonia.
Collapse
Affiliation(s)
- Paulo Henrique A Campos-Junior
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
59
|
Lucas BEG, Fields C, Joshi N, Hofmann MC. Mono-(2-ethylhexyl)-phthalate (MEHP) affects ERK-dependent GDNF signalling in mouse stem-progenitor spermatogonia. Toxicology 2012; 299:10-9. [PMID: 22564763 DOI: 10.1016/j.tox.2012.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/14/2012] [Accepted: 04/21/2012] [Indexed: 01/13/2023]
Abstract
Many commercial and household products such as lubricants, cosmetics, plastics, and paint contain phthalates, in particular bis-(2-ethyhexyl)-phthalate (DEHP). As a consequence, phthalates have been found in a number of locations and foods (streambeds, household dust, bottled water and dairy products). Epidemiological and animal studies analysing phthalate exposure in males provide evidence of degradation in sperm quality, associated to an increase in the incidence of genital birth defects and testicular cancers. In the testis, spermatogenesis is maintained throughout life by a small number of spermatogonial stem cells (SSCs) that self-renew or differentiate to produce adequate numbers of spermatozoa. Disruption or alteration of SSC self-renewal induce decreased sperm count and sperm quality, or may potentially lead to testicular cancer. GDNF, or glial cell-line-derived neurotrophic factor, is a growth factor that is essential for the self-renewal of SSCs and continuous spermatogenesis. In the present study, the SSC-derived cell line C18-4 was used as a model for preliminary assessment of the effects of mono-(2-ethylhexyl)-phthalate (MEHP, main metabolite of DEHP) on spermatogonial stem cells. Our data demonstrate that MEHP disrupts one of the known GDNF signalling pathways in these cells. MEHP induced a decrease of C18-4 cell viability in a time- and dose-dependent manner, as well as a disruption of ERK1/2 activation but not of SRC signalling. As a result, we observed a decrease of expression of the transcription factor FOS, which is downstream of the GDNF/ERK1/2 axis in these cells. Taken together, our data suggest that MEHP exposure affects SSC proliferation through inhibition of specific signalling molecules.
Collapse
Affiliation(s)
- Benjamin E G Lucas
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | |
Collapse
|
60
|
Waheeb R, Hofmann MC. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. ACTA ACUST UNITED AC 2012; 34:e296-305; discussion e305. [PMID: 21790653 DOI: 10.1111/j.1365-2605.2011.01199.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals, spermatogenesis is maintained throughout life by a small subpopulation of type A spermatogonia called spermatogonial stem cells (SSCs). In rodents, SSCs, or Asingle spermatogonia, form the self-renewing population. SSCs can also divide into Apaired (Apr) spermatogonia that are predestined to differentiate. Apaired spermatogonia produce chains of Aaligned (Aal) spermatogonia that divide to form A1 to A4, then type B spermatogonia. Type B spermatogonia will divide into primary spermatocytes that undergo meiosis. In human, there are only two different types of A spermatogonia, the Adark and Apale spermatogonia. The Adark spermatogonia are considered reserve stem cells, whereas the Apale spermatogonia are the self-renewing stem cells. There is only one generation of type B spermatogonia before differentiation into spermatocytes, which makes human spermatogenesis less efficient than in rodents. Although the biology of human SSCs is not well known, a panel of phenotypic markers has recently emerged that is remarkably similar to the list of markers expressed in mice. One such marker, the orphan receptor GPR125, is a plasma membrane protein that can be used to isolate human SSCs. Human SSCs proliferate in culture in response to growth factors such as GDNF, which is essential for SSC self-renewal in mice and triggers the same signalling pathways in both species. Therefore, despite differences in the spermatogonial differentiation scheme, both species use the same genes and proteins to maintain the pool of self-renewing SSCs within their niche. Spermatocytic seminomas are mainly found in the testes of older men, and they rarely metastasize. It is believed that these tumours originate from a post-natal germ cell. Because these lesions can express markers specific for meiotic prophase, they might originate from a primary spermatocyte. However, morphological appearance and overall immunohistochemical profile of these tumours indicate that the cell of origin could also be a spermatogonial stem cell.
Collapse
Affiliation(s)
- R Waheeb
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | |
Collapse
|
61
|
He Z, Kokkinaki M, Jiang J, Zeng W, Dobrinski I, Dym M. Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting. Methods Mol Biol 2012; 825:45-57. [PMID: 22144235 DOI: 10.1007/978-1-61779-436-0_4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian spermatogenesis is a process whereby male germ-line stem cells (spermatogonial stem cells) divide and differentiate into sperm. Although a great deal of progress has been made in the isolation and characterization of spermatogonial stem cells (SSCs) in rodents, little is known about human SSCs. We have recently isolated human G protein-coupled receptor 125 (GPR125)-positive spermatogonia and GDNF family receptor alpha 1 (GFRA1)-positive spermatogonia using a 2-step enzymatic digestion and magnetic-activated cell sorting (MACS) from adult human testes. Cell purities of isolated human GPR125- and GFRA1-positive spermatogonia after MACS are greater than 95%, and cell viability is over 96%. The isolated GPR125- and GFRA1-positive spermatogonia coexpress GPR125, integrin, alpha 6 (ITGA6), THY1 (also known as CD90), GFRA1, and ubiquitin carboxyl-terminal esterase L1 (UCHL1), markers for rodent or pig SSCs/progenitors, suggesting that GPR125- and GFRA1-positive spermatogonia are phenotypically the SSCs in human testis. Human GPR125-positive spermatogonia can be cultured for 2 weeks with a remarkable increase in cell number. Immunocytochemistry further reveals that GPR125-positive spermatogonia can be maintained in an undifferentiated state in vitro. Collectively, the methods using enzymatic digestion and MACS can efficiently isolate and purify SSCs from adult human testis with consistent and high quality. The ability of isolating and characterizing human SSCs could provide a population of stem cells with high purity for mechanistic studies on human SSC self-renewal and differentiation as well as potential applications of human SSCs in regenerative medicine.
Collapse
Affiliation(s)
- Zuping He
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
62
|
Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15:468-83. [PMID: 21155977 PMCID: PMC3064728 DOI: 10.1111/j.1582-4934.2010.01242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
63
|
Yeh JR, Zhang X, Nagano MC. Wnt5a is a cell-extrinsic factor that supports self-renewal of mouse spermatogonial stem cells. J Cell Sci 2011; 124:2357-66. [PMID: 21693582 DOI: 10.1242/jcs.080903] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The maintenance of spermatogonial stem cells (SSCs) provides the foundation for life-long spermatogenesis. Although glial-cell-line-derived neurotrophic factor and fibroblast growth factor 2 are crucial for self-renewal of SSCs, recent studies have suggested that other growth factors have important roles in controlling SSC fate. Because β-catenin-dependent Wnt signaling promotes self-renewal of various stem cell types, we hypothesized that this pathway contributes to SSC maintenance. Using transgenic reporter mice for β-catenin-dependent signaling, we found that this signaling was not active in SSCs in vitro and in most spermatogonia in vivo. Nonetheless, a pan-Wnt antagonist significantly reduced SSC activity in vitro, suggesting that some Wnt molecules exist in our serum-free culture system and contribute to SSC maintenance. Here, we report that Wnt5a promotes SSC activity. We found that Wnt5a-expressing fibroblasts supported SSC activity better than those not expressing Wnt5a in culture, and that recombinant Wnt5a stimulated SSC maintenance. Furthermore, Wnt5a promoted SSC survival in the absence of feeder cells, and this effect was abolished by inhibiting the Jun N-terminal kinase cascade. In addition, Wnt5a blocked β-catenin-dependent signaling. We detected the expression of Wnt5a and potential Wnt5a receptors in Sertoli cells and stem/progenitor spermatogonia, respectively. These results indicate that Wnt5a is a cell-extrinsic factor that supports SSC self-renewal through β-catenin-independent mechanisms.
Collapse
Affiliation(s)
- Jonathan R Yeh
- Department of Obstetrics and Gynecology and Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A1, Canada
| | | | | |
Collapse
|
64
|
Simon L, Ekman GC, Garcia T, Carnes K, Zhang Z, Murphy T, Murphy KM, Hess RA, Cooke PS, Hofmann MC. ETV5 regulates sertoli cell chemokines involved in mouse stem/progenitor spermatogonia maintenance. Stem Cells 2011; 28:1882-92. [PMID: 20799334 PMCID: PMC3109872 DOI: 10.1002/stem.508] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to offspring. Although growth factors responsible for self-renewal of these cells are known, the factors and mechanisms that attract and physically maintain these cells within their microenvironment are poorly understood. Mice with targeted disruption of Ets variant gene 5 (Etv5) show total loss of stem/progenitor spermatogonia following the first wave of spermatogenesis, resulting in a Sertoli cell-only phenotype and aspermia. Microarray analysis of primary Sertoli cells from Etv5 knockout (Etv5(-/-)) versus wild-type (WT) mice revealed significant decreases in expression of several chemokines. Chemotaxis assays demonstrated that migration of stem/progenitor spermatogonia toward Etv5(-/-) Sertoli cells was significantly decreased compared to migration toward WT Sertoli cells. Interestingly, differentiating spermatogonia, spermatocytes, and round spermatids were not chemoattracted by WT Sertoli cells, whereas stem/progenitor spermatogonia showed a high and significant chemotactic index. Rescue assays using recombinant chemokines indicated that C-C-motif ligand 9 (CCL9) facilitates Sertoli cell chemoattraction of stem/progenitor spermatogonia, which express C-C-receptor type 1 (CCR1). In addition, there is protein-DNA interaction between ETV5 and Ccl9, suggesting that ETV5 might be a direct regulator of Ccl9 expression. Taken together, our data show for the first time that Sertoli cells are chemoattractive for stem/progenitor spermatogonia, and that production of specific chemokines is regulated by ETV5. Therefore, changes in chemokine production and consequent decreases in chemoattraction by Etv5(-/-) Sertoli cells helps to explain stem/progenitor spermatogonia loss in Etv5(-/-) mice.
Collapse
Affiliation(s)
- Liz Simon
- Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Calvel P, Rolland AD, Jégou B, Pineau C. Testicular postgenomics: targeting the regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1481-500. [PMID: 20403865 DOI: 10.1098/rstb.2009.0294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sperm are, arguably, the most differentiated cells produced within the body of any given species. This is owing to the fact that spermatogenesis is an intricate and highly specialized process evolved to suit the individual particularities of each sexual species. Despite a vast diversity in method, the aim of spermatogenesis is always the same, the idealized transmission of genetic patrimony. Towards this goal certain requirements must always be met, such as a relative twofold reduction in ploidy, repackaging of the chromatin for transport and specialized enhancements for cell motility, recognition and fusion. In the past 20 years, the study of molecular networks coordinating male germ cell development, particularly in mammals, has become more and more facilitated thanks to large-scale analyses of genome expression. Such postgenomic endeavors have generated landscapes of data for both fundamental and clinical reproductive biology. Continuous, large-scale integration analyses of these datasets are undertaken which provide access to very precise information on a myriad of biomolecules. This review presents commonly used transcriptomic and proteomic workflows applied to various testicular germ cell studies. We will also provide a general overview of the technical possibilities available to reproductive genomic biologists, noting the advantages and drawbacks of each technique.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, IFR 140, University of Rennes I, Campus de Beaulieu, Rennes 35042, France
| | | | | | | |
Collapse
|
66
|
Abstract
Mammalian testes continually produce a huge number of sperm over a long reproductive period. This constant spermatogenesis is supported by a highly robust stem cell system. Morphological analyses in the 1960s and 70s established the basis of mammalian spermatogenesis and the associated stem cell research. Subsequently, from the 1990s on, functional analyses, which have included post-transplantation colony formation, in vitro spermatogonial culture with persisting stem cell activity, in vivo lineage tracing, and live imaging, and also lines of molecular-genetic analyses, have contributed greatly to our understanding of mammalian spermatogenic stem cells. This review will provide a brief overview of the history of this field and then go on to describe in detail the progress made in recent years.
Collapse
Affiliation(s)
- Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| |
Collapse
|
67
|
Kokkinaki M, Lee TL, He Z, Jiang J, Golestaneh N, Hofmann MC, Chan WY, Dym M. Age affects gene expression in mouse spermatogonial stem/progenitor cells. Reproduction 2010; 139:1011-20. [PMID: 20371641 DOI: 10.1530/rep-09-0566] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis in man starts with spermatogonial stem cells (SSCs), and leads to the production of sperm in approximately 64 days, common to old and young men. Sperm from elderly men are functional and able to fertilize eggs and produce offspring, even though daily sperm production is more than 50% lower and damage to sperm DNA is significantly higher in older men than in those who are younger. Our hypothesis is that the SSC/spermatogonial progenitors themselves age. To test this hypothesis, we studied the gene expression profile of mouse SSC/progenitor cells at several ages using microarrays. After sequential enzyme dispersion, we purified the SSC/progenitors with immunomagnetic cell sorting using an antibody to GFRA1, a known SSC/progenitor cell marker. RNA was isolated and used for the in vitro synthesis of amplified and labeled cRNAs that were hybridized to the Affymetrix mouse genome microarrays. The experiments were repeated twice with different cell preparations, and statistically significant results are presented. Quantitative RT-PCR analysis was used to confirm the microarray results. Comparison of four age groups (6 days, 21 days, 60 days, and 8 months old) showed a number of genes that were expressed specifically in the older mice. Two of them (i.e. Icam1 and Selp) have also been shown to mark aging hematopoietic stem cells. On the other hand, the expression levels of the genes encoding the SSC markers Gfra1 and Plzf did not seem to be significantly altered by age, indicating that age affects only certain SSC/progenitor properties.
Collapse
Affiliation(s)
- Maria Kokkinaki
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
He Z, Kokkinaki M, Dym M. Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc Res Tech 2009; 72:586-95. [PMID: 19263492 DOI: 10.1002/jemt.20698] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process that involves the division and differentiation of spermatogonial stem cells (SSCs) into mature spermatozoa. SSCs are a subpopulation of type A spermatogonia resting on the basement membrane in the mammalian testis. Self-renewal and differentiation of SSCs are the foundation of normal spermatogenesis, and thus a better understanding of molecular mechanisms and signaling pathways in the SSCs is of paramount importance for the regulation of spermatogenesis and may eventually lead to novel targets for male contraception as well as for gene therapy of male infertility and testicular cancer. Uncovering the molecular mechanisms is also of great interest to a better understanding of SSC aging and for developing novel therapeutic strategies for degenerative diseases in view of the recent work demonstrating the pluripotent potential of the SSC. Progress has recently been made in elucidating the signaling molecules and pathways that determine cell fate decisions of SSCs. In this review, we first address the morphological features, phenotypic characteristics, and the potential of SSCs, and then we focus on the recent advances in defining the key signaling molecules and crucial signaling pathways regulating self-renewal and differentiation of SSCs. The association of aberrant expression of signaling molecules and cascades with abnormal spermatogenesis and testicular cancer are also discussed. Finally, we point out potential future directions to pursue in research on signaling pathways of SSCs.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
69
|
He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M. Isolation, characterization, and culture of human spermatogonia. Biol Reprod 2009; 82:363-72. [PMID: 19846602 DOI: 10.1095/biolreprod.109.078550] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study was designed to isolate, characterize, and culture human spermatogonia. Using immunohistochemistry on tubule sections, we localized GPR125 to the plasma membrane of a subset of the spermatogonia. Immunohistochemistry also showed that MAGEA4 was expressed in all spermatogonia (A(dark), A(pale), and type B) and possibly preleptotene spermatocytes. Notably, KIT was expressed in late spermatocytes and round spermatids, but apparently not in human spermatogonia. UCHL1 was found in the cytoplasm of spermatogonia, whereas POU5F1 was not detected in any of the human germ cells. GFRA1 and ITGA6 were localized to the plasma membrane of the spermatogonia. Next, we isolated GPR125-positive spermatogonia from adult human testes using a two-step enzymatic digestion followed by magnetic-activated cell sorting. The isolated GPR125-positive cells coexpressed GPR125, ITGA6, THY1, and GFRA1, and they could be cultured for short periods of time and exhibited a marked increase in cell numbers as shown by a proliferation assay. Immunocytochemistry of putative stem cell genes after 2 wk in culture revealed that the cells were maintained in an undifferentiated state. MAPK1/3 phosphorylation was increased after 2 wk of culture of the GPR125-positive spermatogonia compared to the freshly isolated cells. Taken together, these results indicate that human spermatogonia share some but not all phenotypes with spermatogonial stem cells (SSCs) and progenitors from other species. GPR125-positive spermatogonia are phenotypically putative human SSCs and retain an undifferentiated status in vitro. This study provides novel insights into the molecular characteristics, isolation, and culture of human SSCs and/or progenitors and suggests that the MAPK1/3 pathway is involved in their proliferation.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, USA
| | | | | | | | | |
Collapse
|
70
|
Stukenborg JB, Schlatt S, Simoni M, Yeung CH, Elhija MA, Luetjens CM, Huleihel M, Wistuba J. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod 2009; 15:521-9. [PMID: 19561342 DOI: 10.1093/molehr/gap052] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Culture and differentiation of male germ cells has been performed for various purposes in the past. To date, none of the studies aimed at in vitro spermatogenesis has resulted in a sufficient number of mature gametes. Numerous studies have revealed worthy pieces of information, building up a body of information on conditions that are required to maintain and mature male germ cells in vitro. In this review, we report on previously published and unpublished experiments addressing murine germ cell differentiation in three-dimensional (3D) in vitro culture systems. In a systematic set of experiments, we examined the influence of two different matrices (soft agar and methylcellulose) as well as the need for gonadotrophin support. For the first time, we demonstrate that pre-meiotic male germ cells [revealed by the absence of meiotic marker expression (e.g. Boule)] obtained from immature mice pass through meiosis in vitro. After several weeks of culture, we obtained morphologically normal spermatozoa embedded in the matrix substance. Complete maturation relied on support from somatic testicular cells and the presence of gonadotrophins but appeared independent from the matrix in a 3D culture environment. Further research efforts are required to reveal the applicability of this culture technique for human germ cells and the functionality of the spermatozoa for generating offspring.
Collapse
Affiliation(s)
- Jan-Bernd Stukenborg
- Institute of Reproductive and Regenerative Biology of the Centre of Reproductive Medicine and Andrology, University Münster, Domagkstrasse 11 48129, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|