51
|
Dorniak P, Welsh TH, Bazer FW, Spencer TE. Cortisol and interferon tau regulation of endometrial function and conceptus development in female sheep. Endocrinology 2013; 154:931-41. [PMID: 23264615 DOI: 10.1210/en.2012-1909] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During early pregnancy in sheep, the elongating conceptus secretes interferon-τ (IFNT) and the conceptus as well as endometrial epithelia produce prostaglandins (PG) via PG synthase 2 (PTGS2) and cortisol via hydroxysteroid (11-β) dehydrogenase 1 (HSD11B1). Ovarian progesterone induces and PG and IFNT stimulates endometrial HSD11B1 expression and keto-reductase activity as well as many epithelial genes that govern trophectoderm proliferation, migration, and attachment during elongation. The primary aim of these studies was to test the hypothesis that HSD11B1-derived cortisol has a biological role in endometrial function and conceptus development during early pregnancy in sheep. In study 1, cyclic ewes received vehicle, cortisol, PF 915275 (PF; a selective inhibitor of HSD11B1), cortisol and PF, meloxicam (a selective inhibitor of PTGS2), cortisol and meloxicam, recombinant ovine IFNT, or IFNT and PF into the uterus from day 10 to day14 after estrus. Cortisol and IFNT stimulated endometrial HSD11B1 expression and activity, increased endometrial PTGS2 activity and the amount of PG in the uterine lumen, and up-regulated many conceptus elongation-related genes in the endometrium. Some effects of cortisol and IFNT were mediated by PTGS2-derived PG. In study 2, bred ewes received PF 915275 or recombinant ovine IFNT and into the uterus from day 10 to day 14 after mating. Inhibition of HSD11B1 activity in utero prevented conceptus elongation, whereas IFNT rescued conceptus elongation in PF-infused ewes. These results suggest that HSD11B1-derived cortisol mediates, in part, actions of ovarian progesterone and the conceptus on endometrial function and support the hypothesis that IFNT, PG, and cortisol coordinately regulate endometrial functions important for conceptus elongation and implantation during early pregnancy in sheep.
Collapse
Affiliation(s)
- Piotr Dorniak
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164-6353, USA
| | | | | | | |
Collapse
|
52
|
Duong HT, Skarzynski DJ, Piotrowska-Tomala KK, Bah MM, Jankowska K, Warmowski P, Łukasik K, Okuda K, Acosta TJ. Conversion of Cortisone to Cortisol and Prostaglandin F 2αProduction by the Reproductive Tract of Cows at the Late Luteal Stage In Vivo. Reprod Domest Anim 2012; 47:939-45. [DOI: 10.1111/j.1439-0531.2012.01995.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
53
|
Lee J, McCracken JA, Stanley JA, Nithy TK, Banu SK, Arosh JA. Intraluteal Prostaglandin Biosynthesis and Signaling Are Selectively Directed Towards PGF2alpha During Luteolysis but Towards PGE2 During the Establishment of Pregnancy in Sheep1. Biol Reprod 2012; 87:97. [DOI: 10.1095/biolreprod.112.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
54
|
Dorniak P, Bazer FW, Wu G, Spencer TE. Conceptus-derived prostaglandins regulate endometrial function in sheep. Biol Reprod 2012; 87:9, 1-7. [PMID: 22517622 DOI: 10.1095/biolreprod.112.100487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In sheep, the trophectoderm of the elongating conceptus secretes interferon tau (IFNT) and prostaglandins (PGE2, PGF2alpha, PGI2). The PGs are derived from PG synthase 2 (PTGS2), and inhibition of PTGS2 in utero prevents conceptus elongation. IFNT increases expression of many genes in the endometrial epithelia that regulate conceptus elongation. This study tested the hypothesis that PGs secreted by the conceptus regulate endometrial functions that govern conceptus elongation. Cyclic ewes received intrauterine infusions of control vehicle or early pregnancy levels of IFNT, PGE2, PGF2alpha, or PGI2 from Days 10-14 postestrus. Expression levels of endometrial GRP, IGFBP1, and LGALS15, whose products stimulate trophectoderm cell migration and attachment, were increased by PGE2, PGI2, and IFNT. All PGs and IFNT increased expression of the HEXB protease gene, but only IFNT increased the CST6 protease inhibitor gene. Differential effects of PGs were observed for expression of the CTSL protease gene and its inhibitor, CST3. IFNT, PGF2alpha, and PGI2 increased ANGPTL3 expression, but only IFNT and PGE2 increased HIF1A expression, both of which regulate angiogenesis. For glucose transporters, IFNT and all PGs increased SLC2A1 expression, but only PGs increased SLC2A5 expression, whereas endometrial SLC2A12 and SLC5A1 expression levels were increased by IFNT, PGE2, and PGF2alpha. Infusions of all PGs and IFNT increased the amino acid transporter SLC1A5, but only IFNT increased SLC7A2 expression. In the uterine lumen, only IFNT increased glucose levels, and only PGE2 and PGF2alpha increased total amino acids. These results indicate that PGs and IFNT from the conceptus coordinately regulate endometrial functions important for growth and development of the conceptus during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Piotr Dorniak
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | | | | | | |
Collapse
|
55
|
Dorniak P, Welsh TH, Bazer FW, Spencer TE. Endometrial HSD11B1 and Cortisol Regeneration in the Ovine Uterus: Effects of Pregnancy, Interferon Tau, and Prostaglandins1. Biol Reprod 2012; 86:124. [DOI: 10.1095/biolreprod.111.097063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
56
|
Is cortisol a modulator of interferon tau action in the endometrium during early pregnancy in cattle? J Reprod Immunol 2012; 93:82-93. [DOI: 10.1016/j.jri.2012.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 11/20/2022]
|
57
|
Bauersachs S, Ulbrich SE, Reichenbach HD, Reichenbach M, Büttner M, Meyer HH, Spencer TE, Minten M, Sax G, Winter G, Wolf E. Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in Bovine Endometrium1. Biol Reprod 2012; 86:46. [DOI: 10.1095/biolreprod.111.094771] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
58
|
Lee J, Banu SK, Nithy TK, Stanley JA, Arosh JA. Early pregnancy induced expression of prostaglandin E2 receptors EP2 and EP4 in the ovine endometrium and regulated by interferon tau through multiple cell signaling pathways. Mol Cell Endocrinol 2012; 348:211-23. [PMID: 21907262 DOI: 10.1016/j.mce.2011.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022]
Abstract
Prostaglandin E2 (PGE(2)) plays pleiotropic roles at fetal-maternal interface during establishment of pregnancy. The objectives of the study were to: (i) determine regulation of PGE2 receptors EP1, EP2, EP3, and EP4 in the endometrium during the estrous cycle and early pregnancy; and (ii) understand endometrial epithelial and stromal cell-specific hormonal regulation of EP2 and EP4 in sheep. Results indicate that: (i) early pregnancy induces expression of EP2 and EP4 but not EP1 and EP3 proteins in the endometrium on days 12-16 compared to that of estrous cycle; (ii) intrauterine infusion of interferon tau (IFNT) increases expression of EP2 and EP4 proteins in endometrium; and (iii) IFNT activates distinct epithelial and stromal cell-specific JAK, EGFR, ERK1/2, AKT, or JNK signaling module to regulate expression of EP2 and EP4 proteins in the ovine endometrium. Our results indicate a role for EP2 and EP4-mediated PGE(2) signaling in endometrial functions and establishment of pregnancy in ruminants.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endometrium/cytology
- Endometrium/metabolism
- Epithelial Cells/metabolism
- Estrous Cycle/genetics
- Estrous Cycle/metabolism
- Female
- Gene Expression
- Gene Expression Regulation
- Interferon Type I/pharmacology
- Interferon Type I/physiology
- Male
- Phosphorylation
- Pregnancy
- Pregnancy Proteins/pharmacology
- Pregnancy Proteins/physiology
- Protein Kinases/metabolism
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Sheep
- Signal Transduction
- Stromal Cells/metabolism
Collapse
Affiliation(s)
- JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
59
|
Duong HT, Piotrowska-Tomala KK, Acosta TJ, Bah MM, Sinderewicz E, Majewska M, Jankowska K, Okuda K, Skarzynski DJ. Effects of cortisol on pregnancy rate and corpus luteum function in heifers: an in vivo study. J Reprod Dev 2011; 58:223-30. [PMID: 22156379 DOI: 10.1262/jrd.11-122t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether glucocorticoids affect the function of the bovine corpus luteum (CL) during the estrous cycle and early pregnancy, we examined the effects of exogenous cortisol or reduced endogenous cortisol on the secretion of progesterone (P4) and on pregnancy rate. In preliminary experiments, doses of cortisol and metyrapone (an inhibitor of cortisol synthesis) were established (n=33). Cortisol in effective doses of 10 mg blocked tumor necrosis factor-induced prostaglandin F(2α) secretion as measured by its metabolite (PGFM) concentrations in the blood. Metyrapone in effective doses of 500 mg increased the P4 concentration. Thus, both reagents were then intravaginally applied in the chosen doses daily from Day 15 to 18 after estrus (Day 0) in noninseminated heifers (n=18) or after artificial insemination (n=36). Pregnancy was confirmed by transrectal ultrasonography between Days 28-30 after insemination. Plasma concentrations of P4 were lower in cortisol-treated heifers than in control heifers on Days 17 and 18 of the estrous cycle (P<0.05). However, the interestrus intervals were not different between control and cortisol-treated animals (P>0.05). Moreover, metyrapone increased P4 and prolonged the CL lifespan in comparison to control animals (P<0.05). Interestingly, in inseminated heifers, cortisol increased the pregnancy rate (75%) compared with control animals (58%), whereas metyrapone reduced the pregnancy rate to 16.7% (P<0.05). The overall results suggest that cortisol, depending on the physiological status of heifers (pregnant vs. nonpregnant), modulates CL function by influencing P4 secretion. Cortisol may have a positive influence on CL function during early pregnancy, leading to support of embryo implantation and resulting in higher rates of pregnancy in heifers.
Collapse
Affiliation(s)
- Hai Thanh Duong
- Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Bazer FW, Wu G, Johnson GA, Kim J, Song G. Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biol Reprod 2011; 85:1094-107. [PMID: 21865556 DOI: 10.1095/biolreprod.111.094722] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interferon tau (IFNT), the pregnancy recognition signal in ruminants, abrogates the uterine luteolytic mechanism to ensure maintenance of function for the corpora lutea to produce progesterone (P4). IFNT also suppresses expression of classical IFN-stimulated genes by uterine lumenal epithelium (LE) and superficial glandular (sGE) epithelium but, acting in concert with progesterone, affects expression of a multitude of genes critical to growth and development of the conceptus. The LE and sGE secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling, and implantation. Secretions include arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate the mechanistic target of rapamycin cell signaling pathway to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds alphavbeta3 and alpha5beta1 integrins to induce focal adhesion assembly, adhesion, and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling, and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation. This minireview focuses on components of histotroph that affect conceptus development in the ewe.
Collapse
Affiliation(s)
- Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA.
| | | | | | | | | |
Collapse
|
61
|
Dorniak P, Bazer FW, Spencer TE. Prostaglandins Regulate Conceptus Elongation and Mediate Effects of Interferon Tau on the Ovine Uterine Endometrium1. Biol Reprod 2011; 84:1119-27. [DOI: 10.1095/biolreprod.110.089979] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
62
|
Siemieniuch MJ, Majewska M, Takahashi M, Sakatani M, Lukasik K, Okuda K, Skarżyński DJ. Are glucocorticoids auto- and/or paracrine factors in early bovine embryo development and implantation? Reprod Biol 2011; 10:249-56. [PMID: 21113206 DOI: 10.1016/s1642-431x(12)60045-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We determined the transcript content of three genes involved in the metabolism of glucocorticoids (GC) in bovine in vitro fertilized embryos (2-blastomere stage until hatched blastocyst), trophoblast as well as the oviduct (Day 2-4 of the estrous cycle) and endometrium (Day 16 of the cycle and pregnancy). Since mRNA expression of the glucocorticoid receptor and two enzymes responsible for GC production (11β-HSD1 and 2) was demonstrated in the embryos in all pre-implantation stages as well as in the endometrium and oviduct, it is suggested that GC may serve as auto-/paracrine factors in the development of bovine pre-implantation embryos.
Collapse
Affiliation(s)
- Marta J Siemieniuch
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | | | | | | | | | | | | |
Collapse
|
63
|
Korzekwa AJ, Bah MM, Kurzynowski A, Lukasik K, Groblewska A, Skarzynski DJ. Leukotrienes modulate secretion of progesterone and prostaglandins during the estrous cycle and early pregnancy in cattle: an in vivo study. Reproduction 2010; 140:767-76. [PMID: 20813877 DOI: 10.1530/rep-10-0202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently, we showed that leukotrienes (LTs) regulate ovarian cell function in vitro. The aim of this study was to examine the role of LTs in corpus luteum (CL) function during both the estrous cycle and early pregnancy in vivo. mRNA expression of LT receptors (BLT for LTB(4) and CYSLT for LTC(4)), and 5-lipoxygenase (5-LO) in CL tissue and their localization in the ovary were studied during the estrous cycle and early pregnancy. Moreover, concentrations of LTs (LTB(4) and C(4)) in the CL tissue and blood were measured. 5-LO and BLT mRNA expression increased on days 16-18 of the cycle, whereas CYSLT mRNA expression increased on days 16-18 of the pregnancy. The level of LTB(4) was evaluated during pregnancy compared with the level of LTC(4), which increased during CL regression. LT antagonists influenced the duration of the estrous cycle: the LTC(4) antagonist (azelastine) prolonged the luteal phase, whereas the LTB(4) antagonist (dapsone) caused earlier luteolysis in vivo. Dapsone decreased progesterone (P(4)) secretion and azelastine increased P(4) secretion during the estrous cycle. In summary, LT action in the bovine reproductive tract is dependent on LT type: LTB(4) is luteotropic during the estrous cycle and supports early pregnancy, whereas LTC(4) is luteolytic, regarded as undesirable in early pregnancy. LTs are produced/secreted in the CL tissue, influence prostaglandin function, and serve as important factors during the estrous cycle and early pregnancy in cattle.
Collapse
Affiliation(s)
- Anna J Korzekwa
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland.
| | | | | | | | | | | |
Collapse
|
64
|
Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod 2009; 16:135-52. [PMID: 19880575 DOI: 10.1093/molehr/gap095] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Uterine receptivity to implantation varies among species, and involves changes in expression of genes that are coordinate with attachment of trophectoderm to uterine lumenal and superficial glandular epithelia, modification of phenotype of uterine stromal cells, silencing of receptors for progesterone and estrogen, suppression of genes for immune recognition, alterations in membrane permeability to enhance conceptus-maternal exchange of factors, angiogenesis and vasculogenesis, increased vascularity of the endometrium, activation of genes for transport of nutrients into the uterine lumen, and enhanced signaling for pregnancy recognition. Differential expression of genes by uterine epithelial and stromal cells in response to progesterone, glucocorticoids, prostaglandins and interferons may influence uterine receptivity to implantation in mammals. Uterine receptivity to implantation is progesterone-dependent; however, implantation is preceded by loss of expression of receptors for progesterone (PGR) so that progesterone most likely acts via PGR-positive stromal cells throughout pregnancy. Endogenous retroviruses expressed by the uterus and/or blastocyst also affect implantation and placentation in various species. Understanding the roles of the variety of hormones, growth factors and endogenous retroviral proteins in uterine receptivity for implantation is essential to enhancing reproductive health and fertility in humans and domestic animals.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M Health Sciences Center, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|