51
|
Molecular chaperones, cochaperones, and ubiquitination/deubiquitination system: involvement in the production of high quality spermatozoa. BIOMED RESEARCH INTERNATIONAL 2014; 2014:561426. [PMID: 25045686 PMCID: PMC4089148 DOI: 10.1155/2014/561426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/04/2014] [Indexed: 01/16/2023]
Abstract
Spermatogenesis is a complex process in which mitosis, meiosis, and cell differentiation events coexist. The need to guarantee the production of qualitatively functional spermatozoa has evolved into several control systems that check spermatogenesis progression/sperm maturation and tag aberrant gametes for degradation. In this review, we will focus on the importance of the evolutionarily conserved molecular pathways involving molecular chaperones belonging to the superfamily of heat shock proteins (HSPs), their cochaperones, and ubiquitination/deubiquitination system all over the spermatogenetic process. In this respect, we will discuss the conserved role played by the DNAJ protein Msj-1 (mouse sperm cell-specific DNAJ first homologue) and the deubiquitinating enzyme Ubpy (ubiquitin-specific processing protease-y) during the spermiogenesis in both mammals and nonmammalian vertebrates.
Collapse
|
52
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
53
|
Sirisaengtaksin N, Gireud M, Yan Q, Kubota Y, Meza D, Waymire JC, Zage PE, Bean AJ. UBE4B protein couples ubiquitination and sorting machineries to enable epidermal growth factor receptor (EGFR) degradation. J Biol Chem 2013; 289:3026-39. [PMID: 24344129 DOI: 10.1074/jbc.m113.495671] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR.
Collapse
Affiliation(s)
- Natalie Sirisaengtaksin
- From the Department of Neurobiology and Anatomy and the Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Nakamura N. Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2013; 2:732-50. [PMID: 24709878 PMCID: PMC3972651 DOI: 10.3390/cells2040732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
It is now understood that protein ubiquitination has diverse cellular functions in eukaryotes. The molecular mechanism and physiological significance of ubiquitin-mediated processes have been extensively studied in yeast, Drosophila and mammalian somatic cells. Moreover, an increasing number of studies have emphasized the importance of ubiquitination in spermatogenesis and fertilization. The dysfunction of various ubiquitin systems results in impaired sperm development with abnormal organelle morphology and function, which in turn is highly associated with male infertility. This review will focus on the emerging roles of ubiquitination in biogenesis, function and stability of sperm organelles in mammals.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
55
|
Funaki T, Kon S, Tanabe K, Natsume W, Sato S, Shimizu T, Yoshida N, Wong WF, Ogura A, Ogawa T, Inoue K, Ogonuki N, Miki H, Mochida K, Endoh K, Yomogida K, Fukumoto M, Horai R, Iwakura Y, Ito C, Toshimori K, Watanabe T, Satake M. The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Mol Biol Cell 2013; 24:2633-44. [PMID: 23864717 PMCID: PMC3756916 DOI: 10.1091/mbc.e13-05-0234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SMAP2 is an Arf GAP and modulates clathrin-coated vesicle formation. SMAP2-deficient male mice exhibited globozoospermia due to acrosome deformation. In SMAP2(−/−) spermatids, budding of proacrosomal vesicles from the TGN was distorted and clathrin traffic–related molecules such as CALM and syntaxin2 were mislocated. The trans-Golgi network (TGN) functions as a hub organelle in the exocytosis of clathrin-coated membrane vesicles, and SMAP2 is an Arf GTPase-activating protein that binds to both clathrin and the clathrin assembly protein (CALM). In the present study, SMAP2 is detected on the TGN in the pachytene spermatocyte to the round spermatid stages of spermatogenesis. Gene targeting reveals that SMAP2-deficient male mice are healthy and survive to adulthood but are infertile and exhibit globozoospermia. In SMAP2-deficient spermatids, the diameter of proacrosomal vesicles budding from TGN increases, TGN structures are distorted, acrosome formation is severely impaired, and reorganization of the nucleus does not proceed properly. CALM functions to regulate vesicle sizes, and this study shows that CALM is not recruited to the TGN in the absence of SMAP2. Furthermore, syntaxin2, a component of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex, is not properly concentrated at the site of acrosome formation. Thus this study reveals a link between SMAP2 and CALM/syntaxin2 in clathrin-coated vesicle formation from the TGN and subsequent acrosome formation. SMAP2-deficient mice provide a model for globozoospermia in humans.
Collapse
Affiliation(s)
- Tomo Funaki
- Department of Molecular Immunology, Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Paiardi C, Pasini ME, Amadeo A, Gioria M, Berruti G. The ESCRT-deubiquitinating enzyme USP8 in the cervical spinal cord of wild-type and Vps54-recessive (wobbler) mutant mice. Histochem Cell Biol 2013; 141:57-73. [PMID: 23615794 DOI: 10.1007/s00418-013-1096-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 11/30/2022]
Abstract
Usp8 is a deubiquitinating enzyme that works as regulator of endosomal trafficking and is involved in cell proliferation. "In vivo" USP8 is predominantly expressed in the central nervous system and testis, two organs with highly polarized cells. Considering that neuronal cell functionality is strictly dependent on vesicular traffic and ubiquitin-mediated sorting of the endocytosed cargo, it could be of relevance to investigate about USP8 in neuronal cells, in particular motor neurons. In this study, we found that USP8 is expressed in the gray and white matter of the spinal cord, labeling neuronal cell bodies, axonal microtubules and synaptic terminals. The glia component is essentially USP8-immunonegative. The partial colocalization of USP8 with EEA1 in motor neurons indicates that USP8 is involved in early endosomal trafficking while that with Vps54 suggests an involvement in the retrograde traffic. The variant Vps54(L967Q) is responsible for the wobbler phenotype, a disorder characterized by motor neuron degeneration. We searched for USP8/Vps54 in wobbler spinal cord. The most worth-mention result was that wobbler oligodendrocytes, in contrast to the wild-type, are heavily USP8-immunoreactive; no significant modification was appreciated about the cellular expression of mutated Vps54. On the other hand, as to the neuronal intracellular localization, both USP8 and Vps54(L967Q) did not show the typical spot-like distribution, but seemed to accumulate in proteinaceous aggregates. Collectively, our study suggests that in neuronal cells USP8 could be involved in endosomal trafficking, retrograde transport and synaptic plasticity. In disorders leading to neurodegeneration USP8 is upregulated and could influence the neuron-oligodendrocyte interactions.
Collapse
Affiliation(s)
- Chiara Paiardi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy,
| | | | | | | | | |
Collapse
|
57
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
58
|
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2012; 40:3213-30. [DOI: 10.1007/s11033-012-2397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
|
59
|
Guyonnet B, Zabet-Moghaddam M, SanFrancisco S, Cornwall GA. Isolation and proteomic characterization of the mouse sperm acrosomal matrix. Mol Cell Proteomics 2012; 11:758-74. [PMID: 22707618 DOI: 10.1074/mcp.m112.020339] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A critical step during fertilization is the sperm acrosome reaction in which the acrosome releases its contents allowing the spermatozoa to penetrate the egg investments. The sperm acrosomal contents are composed of both soluble material and an insoluble material called the acrosomal matrix (AM). The AM is thought to provide a stable structure from which associated proteins are differentially released during fertilization. Because of its important role during fertilization, efforts have been put toward isolating the AM for biochemical study and to date AM have been isolated from hamster, guinea pig, and bull spermatozoa. However, attempts to isolate AM from mouse spermatozoa, the species in which fertilization is well-studied, have been unsuccessful possibly because of the small size of the mouse sperm acrosome and/or its fusiform shape. Herein we describe a procedure for the isolation of the AM from caput and cauda mouse epididymal spermatozoa. We further carried out a proteomic analysis of the isolated AM from both sperm populations and identified 501 new proteins previously not detected by proteomics in mouse spermatozoa. A comparison of the AM proteome from caput and cauda spermatozoa showed that the AM undergoes maturational changes during epididymal transit similar to other sperm domains. Together, our studies suggest the AM to be a dynamic and functional structure carrying out a variety of biological processes as implied by the presence of a diverse group of proteins including proteases, chaperones, hydrolases, transporters, enzyme modulators, transferases, cytoskeletal proteins, and others.
Collapse
Affiliation(s)
- Benoit Guyonnet
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Texas Tech University, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
60
|
Genome-wide association study identifies candidate genes for male fertility traits in humans. Am J Hum Genet 2012; 90:950-61. [PMID: 22633400 DOI: 10.1016/j.ajhg.2012.04.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/26/2012] [Accepted: 04/10/2012] [Indexed: 01/16/2023] Open
Abstract
Despite the fact that hundreds of genes are known to affect fertility in animal models, relatively little is known about genes that influence natural fertility in humans. To broadly survey genes contributing to variation in male fertility, we conducted a genome-wide association study (GWAS) of two fertility traits (family size and birth rate) in 269 married men who are members of a founder population of European descent that proscribes contraception and has large family sizes. Associations between ∼250,000 autosomal SNPs and the fertility traits were examined. A total of 41 SNPs with p ≤ 1 × 10(-4) for either trait were taken forward to a validation study of 123 ethnically diverse men from Chicago who had previously undergone semen analyses. Nine (22%) of the SNPs associated with reduced fertility in the GWAS were also associated with one or more of the ten measures of reduced sperm quantity and/or function, yielding 27 associations with p values < 0.05 and seven with p values < 0.01 in the validation study. On the basis of 5,000 permutations of our data, the probabilities of observing this many or more small p values were 0.0014 and 5.6 × 10(-4), respectively. Among the nine associated loci, outstanding candidates for male fertility genes include USP8, an essential deubiquitinating enzyme that has a role in acrosome assembly; UBD and EPSTI1, which have potential roles in innate immunity; and LRRC32, which encodes a latent transforming growth factor β (TGF-β) receptor on regulatory T cells. We suggest that mutations in these genes that are more severe may account for some of the unexplained infertility (or subfertility) in the general population.
Collapse
|
61
|
Nakamura N. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function. MEMBRANES 2011; 1:354-93. [PMID: 24957874 PMCID: PMC4021871 DOI: 10.3390/membranes1040354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023]
Abstract
A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
62
|
Roqueta-Rivera M, Abbott TL, Sivaguru M, Hess RA, Nakamura MT. Deficiency in the omega-3 fatty acid pathway results in failure of acrosome biogenesis in mice. Biol Reprod 2011; 85:721-32. [PMID: 21653892 DOI: 10.1095/biolreprod.110.089524] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An omega-3 fatty acid, docosahexaenoic acid (DHA), is enriched in testicular membrane phospholipids, but its function is not well understood. The Fads2 gene encodes an enzyme required for the endogenous synthesis of DHA. Using Fads2-null mice (Fads2-/-), we found in our preceding studies that DHA deficiency caused the arrest of spermiogenesis and male infertility, both of which were reversed by dietary DHA. In this study, we investigated a cellular mechanism underlying the DHA essentiality in spermiogenesis. Periodic acid-Schiff staining and acrosin immunohistochemistry revealed the absence of acrosomes in Fads2-/- round spermatids. Acrosin, an acrosomal marker, was scattered throughout the cytoplasm of the Fads2-/- spermatids, and electron microscopy showed that proacrosomal granules were formed on the trans-face of the Golgi. However, excessive endoplasmic reticulum and vesicles were present on the cis-face of the Golgi in Fads2-/- spermatids. The presence of proacrosomal vesicles but lack of a developed acrosome in Fads2-/- spermatids suggested failed vesicle fusion. Syntaxin 2, a protein involved in vesicle fusion, colocalized with acrosin in the acrosome of wild-type mice. In contrast, syntaxin 2 remained scattered in reticular structures and showed no extensive colocalization with acrosin in the Fads2-/- spermatids, suggesting failed fusion with acrosin-containing vesicles or failed transport and release of syntaxin 2 vesicles from Golgi. Dietary supplementation of DHA in Fads2-/- mice restored an intact acrosome. In conclusion, acrosome biogenesis under DHA deficiency is halted after release of proacrosomal granules. Misplaced syntaxin 2 suggests an essential role of DHA in proper delivery of membrane proteins required for proacrosomal vesicle fusion.
Collapse
Affiliation(s)
- Manuel Roqueta-Rivera
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
63
|
Paiardi C, Pasini ME, Gioria M, Berruti G. Failure of acrosome formation and globozoospermia in the wobbler mouse, a Vps54 spontaneous recessive mutant. SPERMATOGENESIS 2011; 1:52-62. [PMID: 21866276 DOI: 10.4161/spmg.1.1.14698] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022]
Abstract
The acrosome is a unique organelle that plays an important role at fertilization and during sperm morphogenesis and that is absent in globozoospermia, an inherited infertility syndrome in humans. At the light of recent experimental evidence, the acrosome is considered a lysosome-related organelle to whose biogenesis both the endocytic and biosynthetic pathways contribute. Vps54 is a vesicular sorting protein involved in the retrograde traffic; the recessive Vps54(L967Q) mutation in the mouse results in the wobbler phenotype, characterized by motor-neuron degeneration and male infertility. Here we have investigated the spatio-temporal occurrence/progression of the wobbler fertility disorder starting from mice at post-natal day 35, the day of the first event of spermiation. We show that the pathogenesis of wobbler infertility originates at the first spermiogenetic wave, affecting acrosome formation and sperm head elongation. Vps54(L967Q)-labeled vesicles, on the contrary of the wild-type Vps54-labeled ones, are not able to coalesce into a larger vesicle that develops, flattens and shapes to give rise to the acrosome. Evidence that it is the malfunctioning of the endocytic traffic to hamper the development of the acrosome comes out from the study on UBPy. UBPy, a deubiquitinating enzyme, is a marker of acrosome biogenesis from the endocytic pathway. In wobbler spermatids UBPy-positive endosomes remain single, scattered vesicles that do not contribute to acrosome formation. As secondary defect of wobbler spermiogenesis, spermatid mitochondria are misorted; moreover, with the progression of the age/disease also Sertoli-germ cell adhesions are compromised suggesting a derailment in the endocytic route that underlies their restructuring.
Collapse
Affiliation(s)
- Chiara Paiardi
- Department of Biology; Laboratory of cellular and Molecular Biology of Reproduction; University of Milano; Milan, Italy
| | | | | | | |
Collapse
|
64
|
Expression pattern of mUBPy in the brain and sensory organs of mouse during embryonic development. Brain Res 2010; 1355:16-30. [PMID: 20633544 DOI: 10.1016/j.brainres.2010.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 11/23/2022]
Abstract
Mouse UBPy (mUBPy) belongs to the family of ubiquitin-specific processing proteases (UBPs). In this study we have investigated the expression of mUBPy in the brain and sensory organs of mouse at different embryonic stages (E9, E11, E13, E15, E17, E19) and during the postnatal stages P0, P1, P2, P4 and P5 using Western blot and immunohistochemistry. mUBPy-immunoreactive cell bodies first appeared at stage E11 in several brain regions, particularly in the walls surrounding the vesicles and the ventricles. Subsequently, at stage E13, new mUBPy-positive cells appeared in the corpus striatum, the caudate nucleus, the thalamus, the epithalamus, the hypothalamus and the pons. At E15 the mUBPy pattern was very similar to that observed at E13, whereas at stage E17 mUBPy-immunoreactivity significantly decreased and a high number of mUBPy-immunoreactive cells was found only to line the third ventricle and within the mantle layer of the fourth ventricle. At E19 and P0, no mUBPy-immunoreactive element was found in the brain. At the postnatal stages P2 and P5, mUBPy-positive cells were detected in all subdivisions of the brain, with high concentrations in several cortex regions. Double labeling with the mUBPy antiserum and antisera against specific cell markers showed that the enzyme is expressed both in neurons and astrocytes. Outside the brain, mUBPy was detected, from stage E11, in the eye, within the lens and the cornea, in the inner ear, at the level of the cochlear and vestibular systems and in the olfactory epithelium. The spatio-temporal expression of mUBPy suggests that the enzyme may be involved in neuroregulatory processes during embryogenesis.
Collapse
|