51
|
Grossman H, Shalgi R. A Role of MicroRNAs in Cell Differentiation During Gonad Development. Results Probl Cell Differ 2016; 58:309-36. [PMID: 27300184 DOI: 10.1007/978-3-319-31973-5_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles' assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads' physiology and managing reproduction disorders.
Collapse
Affiliation(s)
- Hadas Grossman
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel
| | - Ruth Shalgi
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
52
|
Zhang J, Xiong J, Fang L, Lu Z, Wu M, Shi L, Qin X, Luo A, Wang S. The protective effects of human umbilical cord mesenchymal stem cells on damaged ovarian function: A comparative study. Biosci Trends 2016; 10:265-76. [DOI: 10.5582/bst.2016.01125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology
| | - Li Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology
| | - Zhiyong Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology
| | - Liangyan Shi
- Department of Obstetrics and Gynecology, Hubei Province, Maternity and Child Health Care Hospital
| | - Xian Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology
| |
Collapse
|
53
|
Mu F, Jing Y, Qin N, Zhu HY, Liu DH, Yuan SG, Xu RF. Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 29:1256-64. [PMID: 26954135 PMCID: PMC5003985 DOI: 10.5713/ajas.15.0794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/22/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
Adrenergic, alpha-1B-, receptor (ADRA1B) and peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) genes are involved in regulation of hen ovarian development. In this study, these two genes were investigated as possible molecular markers associated with hen-housed egg production, egg weight (EW) and body weight in Chinese Dagu hens. Samples were analyzed using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, followed by sequencing analysis. Two novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/G transition at base position 1915 in exon 2 of ADRA1B gene and a T/C mutation at base position 6146 in the 3′-untranslated region (UTR) of PPARGC1B gene were found to be polymorphic and named SNP A1915G and T6146C, respectively. The SNP A1915G (ADRA1B) leads to a non-synonymous substitution (aspartic acid 489-to-glycine). The 360 birds from the Dagu population were divided into genotypes AA and AG, allele A was found to be present at a higher frequency. Furthermore, the AG genotype correlated with significantly higher hen-housed egg production (HHEP) at 30, 43, 57, and 66 wks of age and with a higher EW at 30 and 43 wks (p<0.05). For the SNP T6146C (PPARGC1B), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher HHEP at 57 and 66 wks of age and EW at 30 and 43 wks (p<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AGTC haplotype found to be associated with the highest HHEP at 30 to 66 wks of age and with higher EW at 30 and 43 wks (p<0.05). Collectively, the two SNPs identified in this study might be used as potential genetic molecular markers favorable in the improvement of egg productivity in chicken breeding.
Collapse
Affiliation(s)
- F Mu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Y Jing
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - N Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - H Y Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - D H Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - S G Yuan
- Jilin Grain Group Agriculture and Livestock Co., Ltd., Changchun 130062, Jilin, China
| | - R F Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
54
|
Maalouf SW, Liu WS, Pate JL. MicroRNA in ovarian function. Cell Tissue Res 2015; 363:7-18. [PMID: 26558383 DOI: 10.1007/s00441-015-2307-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/29/2015] [Indexed: 01/14/2023]
Abstract
The mammalian ovary is a dynamic organ. The coordination of follicle recruitment, selection, and ovulation and the timely development and regression of the corpus luteum are essential for a functional ovary and fertility. Deregulation of any of these processes results in ovarian dysfunction and potential infertility. MicroRNA (miRNA) are short noncoding RNA that regulate developmental processes and time-sensitive functions. The expression of miRNA in the ovary varies with cell type, function, and stage of the estrous cycle. miRNA are involved in the formation of primordial follicles, follicular recruitment and selection, follicular atresia, oocyte-cumulus cell interaction, granulosal cell function, and luteinization. miRNA are differentially expressed in luteal cells at the various stages of the estrous cycle and during maternal recognition of pregnancy, suggesting a role in luteal development, maintenance, and regression. An understanding of the patterns of expression and functions of miRNA in the ovary will lead to novel therapeutics to treat ovarian dysfunction and improve fertility and, potentially, to the development of better contraceptives.
Collapse
Affiliation(s)
- S W Maalouf
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - W S Liu
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - J L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA.
| |
Collapse
|
55
|
Pelosi E, Forabosco A, Schlessinger D. Genetics of the ovarian reserve. Front Genet 2015; 6:308. [PMID: 26528328 PMCID: PMC4606124 DOI: 10.3389/fgene.2015.00308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
Primordial follicles or non-growing follicles (NGFs) are the functional unit of reproduction, each comprising a single germ cell surrounded by supporting somatic cells. NGFs constitute the ovarian reserve (OR), prerequisite for germ cell ovulation and the continuation of the species. The dynamics of the reserve is determined by the number of NGFs formed and their complex subsequent fates. During the reproductive lifespan, the OR progressively diminishes due to follicle atresia as well as recruitment, maturation, and ovulation. The depletion of the OR is the major determining driver of menopause, which ensues when the number of primordial follicles falls below a threshold of ∼1,000. Therefore, genes and processes involved in follicle dynamics are particularly important to understand the process of menopause, both in the typical reproductive lifespan and in conditions like primary ovarian insufficiency, defined as menopause before age 40. Genes and their variants that affect the timing of menopause thereby provide candidates for diagnosis of and intervention in problems of reproductive lifespan. We review the current knowledge of processes and genes involved in the development of the OR and in the dynamics of ovarian follicles.
Collapse
Affiliation(s)
- Emanuele Pelosi
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - David Schlessinger
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
56
|
Zhang H, Liu K. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update 2015; 21:779-86. [PMID: 26231759 DOI: 10.1093/humupd/dmv037] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The first small follicles to appear in the mammalian ovaries are primordial follicles. The initial pool of primordial follicles serves as the source of developing follicles and oocytes for the entire reproductive lifespan of the animal. Although the selective activation of primordial follicles is critical for female fertility, its underlying mechanisms have remained poorly understood. METHODS A search of PubMed was conducted to identify peer-reviewed literature pertinent to the study of mammalian primordial follicle activation, especially recent reports of the role of primordial follicle granulosa cells (pfGCs) in regulating this process. RESULTS In recent years, molecular mechanisms that regulate the activation of primordial follicles have been elucidated, mostly through the use of genetically modified mouse models. Several molecules and pathways operating in both the somatic pfGCs and oocytes, such as the phosphatidylinositol 3 kinase (PI3K) and the mechanistic target of rapamycin complex 1 (mTORC1) pathways, have been shown to be important for primordial follicle activation. More importantly, recent studies have provided an updated view of how exactly signaling pathways in pfGCs and in oocytes, such as the KIT ligand (KL) and KIT, coordinate in adult ovaries so that the activation of primordial follicles is achieved. CONCLUSIONS In this review, we have provided an updated picture of how mammalian primordial follicles are activated. The functional roles of pfGCs in governing the activation of primordial follicles in adulthood are highlighted. The in-depth understanding of the cellular and molecular mechanisms of primordial follicle activation will hopefully lead to more treatments of female infertility, and the current progress indicates that the use of existing primordial follicles as a source for obtaining fertilizable oocytes as a new treatment for female infertility is just around the corner.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Kui Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
57
|
McGinnis LK, Luense LJ, Christenson LK. MicroRNA in Ovarian Biology and Disease. Cold Spring Harb Perspect Med 2015; 5:a022962. [PMID: 25986593 DOI: 10.1101/cshperspect.a022962] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) are posttranscriptional gene regulatory molecules that show regulated expression within ovarian tissue. Most research investigating miRNAs in the ovary has relied exclusively on in vitro analyses. In this review, we highlight those few studies in which investigators have illustrated an in vivo effect of miRNAs on ovarian function. We also provide a synopsis of how these small noncoding RNAs can impact ovarian disease. miRNAs have great potential as novel diagnostic biomarkers for the detection of ovarian disease and in the assisted reproductive technologies (ART) for selection of healthy viable oocytes and embryos.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Lacey J Luense
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lane K Christenson
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
58
|
da Silveira JC, de Andrade GM, Nogueira MFG, Meirelles FV, Perecin F. Involvement of miRNAs and Cell-Secreted Vesicles in Mammalian Ovarian Antral Follicle Development. Reprod Sci 2015; 22:1474-83. [PMID: 25736328 DOI: 10.1177/1933719115574344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ovarian follicular development is a controlled series of events culminating with an ovulatory or atretic follicle. MicroRNAs (miRNAs) are small noncoding RNAs involved in translational regulation of genes in different developmental processes. Deletion of Dicer in mice ovaries demonstrated the importance of miRNAs in reproduction, which led to infertility. The miRNAs were thought to act only within host cells; however, these molecules are also present in cell-secreted vesicles. These vesicles are present in body fluids such as milk, serum, and ovarian follicular fluid. Vesicles are secreted in extracellular fluids and travel from donor to target cells, mediating transfer of bioactive material. Herein we discuss the role of hormonal-regulated miRNAs within different ovarian follicular cells as well as cell-secreted vesicles participation in mammalian ovarian follicular fluid. Furthermore, we discuss the possibility of miRNAs transference mediated by cell-secreted vesicles present in ovarian follicular fluid, increasing the versatility of miRNA functions during antral follicle development.
Collapse
Affiliation(s)
- Juliano C da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Gabriella M de Andrade
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marcelo F G Nogueira
- Department of Biological Science, Faculty of Sciences and Letters, University of São Paulo State, Assis, São Paulo, Brazil
| | - Flávio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
59
|
Abstract
It has become a current social trend for women to delay childbearing. However, the quality of oocytes from older females is compromised and the pregnancy rate of older women is lower. With the increased rate of delayed childbearing, it is becoming more and more crucial to understand the mechanisms underlying the compromised quality of oocytes from older women, including mitochondrial dysfunctions, aneuploidy and epigenetic changes. Establishing proper epigenetic modifications during oogenesis and early embryo development is an important aspect in reproduction. The reprogramming process may be influenced by external and internal factors that result in improper epigenetic changes in germ cells. Furthermore, germ cell epigenetic changes might be inherited by the next generations. In this review, we briefly summarise the effects of ageing on oocyte quality. We focus on discussing the relationship between ageing and epigenetic modifications, highlighting the epigenetic changes in oocytes from advanced-age females and in post-ovulatory aged oocytes as well as the possible underlying mechanisms.
Collapse
Affiliation(s)
- Zhao-Jia Ge
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Heide Schatten
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Cui-Lian Zhang
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Qing-Yuan Sun
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
60
|
Sui S, He B, Jia Y, Li R, Cai D, Li X, Song H, Jia L, Zhao R. Maternal protein restriction during gestation and lactation programs offspring ovarian steroidogenesis and folliculogenesis in the prepubertal gilts. J Steroid Biochem Mol Biol 2014; 143:267-76. [PMID: 24787658 DOI: 10.1016/j.jsbmb.2014.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/17/2014] [Accepted: 04/20/2014] [Indexed: 01/28/2023]
Abstract
Maternal malnutrition may disrupt ovarian functions in adult offspring. Steroidogenesis and folliculogenesis in the offspring ovary appear to be the major targets of nutritional programming. Nevertheless, the mechanism by which maternal low-protein diet affects the offspring steroidogenesis and folliculogenesis, and the possible pathway linking these two processes remain unclear. In this study, Landrace×Yorkshire crossbred sows were fed either standard (SP) or low-protein (LP, 50% of the SP) diets throughout gestation and lactation. Female offspring were fed the same diet after weaning until 6 months of age. LP offspring had higher serum 17β-estradiol level (P<0.01), which was accompanied by lower mRNA (P<0.05) but higher protein (P<0.05) expression of cytochrome P450 aromatase (CYP19A1) in the ovary. CYP19A1 protein up-regulation was associated with lower ovarian expression of drosha (P<0.05) and miRNAs targeting CYP19A1 (P<0.05). LP offspring had less graafian follicles with more apoptotic granulosa cells (P<0.05), as well as higher caspase 3 activity (P<0.05) and FasL expression (P<0.05) in the ovary. FasL gene up-regulation was associated with higher ERα protein expression (P<0.05) and binding to FasL gene promoter. These results suggest that a maternal LP diet in pregnancy and lactation elevated serum 17β-estradiol level by activating CYP19A1 through miRNA-mediated mechanism, and induced granulosa apoptosis in graafian follicles through ER-activated Fas/FasL-caspase 3 pathway.
Collapse
Affiliation(s)
- Shiyan Sui
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Runsheng Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Demin Cai
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haogang Song
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Longfei Jia
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
61
|
Xiao G, Xia C, Yang J, Liu J, Du H, Kang X, Lin Y, Guan R, Yan P, Tang S. MiR-133b regulates the expression of the Actin protein TAGLN2 during oocyte growth and maturation: a potential target for infertility therapy. PLoS One 2014; 9:e100751. [PMID: 24959893 PMCID: PMC4069098 DOI: 10.1371/journal.pone.0100751] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/25/2014] [Indexed: 01/09/2023] Open
Abstract
Infertility is an area of increasing in life science research. Although follicular maturation disorders and anovulation are the primary causations of infertility, its molecular mechanism is not well understood. Recent research has shown that microRNAs (miRNAs) might play an important role in the regulation of ovarian follicle development and maturation. In this study, the expression of miRNAs in metaphase I (MI) oocytes treated with or without insulin-like growth factor 1 (IGF-1) was observed by microRNA microarray analysis. Results show that 145 miRNAs were up-regulated and 200 miRNAs were down-regulated in MI oocytes after IGF-1 treatment. MiR-133b, which was up-regulated more than 30-fold, was chosen for further research. As a potential target of miR133b, transgelin 2 (TAGLN2) gene was down-regulated, at both transcription and translation levels, in miR-133b- over-expressed 293T cells, but TAGLN2 was up-regulated when the expression of miR-133b was inhibited. Furthermore, the expression level of TAGLN2 in the ovaries of 8-week- old mice was higher than that observed in 4-week-old mice. Immunofluorescence experiments showed that TAGLN2 was located in the cytoplasm. In general, our results indicate that miR-133b may play important roles in the growth and maturation of oocytes by regulating its potential target, TAGLN2, at both transcription and translation levels. Therefore, our research provides a potential new target for infertility therapy.
Collapse
Affiliation(s)
- Guohong Xiao
- Department of Pathology, University of South China, Hengyang, China
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Chenglai Xia
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Yang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Jianqiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Hongzi Du
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Xiangjin Kang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yuyi Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Ronghua Guan
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Pengke Yan
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengsong Tang
- Department of Pathology, University of South China, Hengyang, China
- Center for Life Science, Hunan University of Arts and Science, Changde, China
- * E-mail:
| |
Collapse
|
62
|
Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril 2014; 101:1524-30. [DOI: 10.1016/j.fertnstert.2014.04.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/13/2014] [Accepted: 04/15/2014] [Indexed: 01/08/2023]
|