51
|
Moro N, Ghavim SS, Harris NG, Hovda DA, Sutton RL. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury. Brain Res 2016; 1642:270-277. [PMID: 27059390 DOI: 10.1016/j.brainres.2016.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022]
Abstract
Experimental traumatic brain injury (TBI) is known to produce an acute increase in cerebral glucose utilization, followed rapidly by a generalized cerebral metabolic depression. The current studies determined effects of single or multiple treatments with sodium pyruvate (SP; 1000mg/kg, i.p.) or ethyl pyruvate (EP; 40mg/kg, i.p.) on cerebral glucose metabolism and neuronal injury in rats with unilateral controlled cortical impact (CCI) injury. In Experiment 1 a single treatment was given immediately after CCI. SP significantly improved glucose metabolism in 3 of 13 brain regions while EP improved metabolism in 7 regions compared to saline-treated controls at 24h post-injury. Both SP and EP produced equivalent and significant reductions in dead/dying neurons in cortex and hippocampus at 24h post-CCI. In Experiment 2 SP or EP were administered immediately (time 0) and at 1, 3 and 6h post-CCI. Multiple SP treatments also significantly attenuated TBI-induced reductions in cerebral glucose metabolism (in 4 brain regions) 24h post-CCI, as did multiple injections of EP (in 4 regions). The four pyruvate treatments produced significant neuroprotection in cortex and hippocampus 1day after CCI, similar to that found with a single SP or EP treatment. Thus, early administration of pyruvate compounds enhanced cerebral glucose metabolism and neuronal survival, with 40mg/kg of EP being as effective as 1000mg/kg of SP, and multiple treatments within 6h of injury did not improve upon outcomes seen following a single treatment.
Collapse
Affiliation(s)
- Nobuhiro Moro
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Sima S Ghavim
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Neil G Harris
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - David A Hovda
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| | - Richard L Sutton
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6901, USA.
| |
Collapse
|
52
|
Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and Metabolic Crisis Are Associated with Spreading Depolarizations in Severe Traumatic Brain Injury Patients. J Neurotrauma 2016; 33:1775-1783. [PMID: 26586606 DOI: 10.1089/neu.2015.4226] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral microdialysis has enabled the clinical characterization of excitotoxicity (glutamate >10 μM) and non-ischemic metabolic crisis (lactate/pyruvate ratio [LPR] >40) as important components of secondary damage in severe traumatic brain injury (TBI). Spreading depolarizations (SD) are pathological waves that occur in many patients in the days following TBI and, in animal models, cause elevations in extracellular glutamate, increased anaerobic metabolism, and energy substrate depletion. Here, we examined the association of SD with changes in cerebral neurochemistry by placing a microdialysis probe alongside a subdural electrode strip in peri-lesional cortex of 16 TBI patients requiring neurosurgery. In 107 h (median; range: 76-117 h) of monitoring, 135 SDs were recorded in six patients. Glutamate (50 μmol/L) and lactate (3.7 mmol/L) were significantly elevated on day 0 in patients with SD compared with subsequent days and with patients without SD, whereas pyruvate was decreased in the latter group on days 0 and 1 (two-way analysis of variance [ANOVA], p values <0.05). In patients with SD, both glutamate and LPR increased in a dose-dependent manner with the number of SDs in the microdialysis sampling period (0, 1, ≥2 SD) [glutamate: 2.1→7.0→52.3 μmol/L; LPR: 27.8→29.9→45.0, p values <0.05]. In these patients, there was a 10% probability of SD occurring when glutamate and LPR were in normal ranges, but a 60% probability when both variables were abnormal (>10 μmol/L and >40 μmol/L, respectively). Taken together with previous studies, these preliminary clinical results suggest SDs are a key pathophysiological process of secondary brain injury associated with non-ischemic glutamate excitotoxicity and severe metabolic crisis in severe TBI patients.
Collapse
Affiliation(s)
- Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - J Adam Wilson
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - Anna Teresa Mazzeo
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,3 Department Anesthesia and Intensive Care, University of Torino , Torino, Italy
| | - M Ross Bullock
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,4 Department of Neurosurgery, University of Miami , Miami, Florida
| | - Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio.,5 Neurotrauma Center, UC Neuroscience Institute , Cincinnati, Ohio.,6 Mayfield Clinic , Cincinnati, Ohio
| |
Collapse
|
53
|
Patet C, Quintard H, Suys T, Bloch J, Daniel RT, Pellerin L, Magistretti PJ, Oddo M. Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate. J Neurotrauma 2015; 32:1560-6. [DOI: 10.1089/neu.2014.3781] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Camille Patet
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Hervé Quintard
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Tamarah Suys
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Clinical Neurosciences, University of Lausanne, Switzerland
| | - Roy T. Daniel
- Department of Clinical Neurosciences, University of Lausanne, Switzerland
| | - Luc Pellerin
- Departement of Physiology, University of Lausanne, Switzerland
| | - Pierre J. Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mauro Oddo
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| |
Collapse
|
54
|
Lu XCM, Shear DA, Graham PB, Bridson GW, Uttamsingh V, Chen Z, Leung LY, Tortella FC. Dual Therapeutic Effects of C-10068, a Dextromethorphan Derivative, Against Post-Traumatic Nonconvulsive Seizures and Neuroinflammation in a Rat Model of Penetrating Ballistic-Like Brain Injury. J Neurotrauma 2015; 32:1621-32. [PMID: 25794265 DOI: 10.1089/neu.2014.3766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Post-traumatic seizures can exacerbate injurious outcomes of severe brain trauma, yet effective treatments are limited owing to the complexity of the pathology underlying the concomitant occurrence of both events. In this study, we tested C-10068, a novel deuterium-containing analog of (+)-N-methyl-3-ethoxymorphinan, in a rat model of penetrating ballistic-like brain injury (PBBI) and evaluated the effects of C-10068 on PBBI-induced nonconvulsive seizures (NCS), acute neuroinflammation, and neurofunctional outcomes. NCS were detected by electroencephalographic monitoring. Neuroinflammation was evaluated by immunohistochemical markers, for example, glial fibrillary acidic protein and major histocompatibility complex class I, for activation of astrocytes and microglia, respectively. Neurofunction was tested using rotarod and Morris water maze tasks. Three infusion doses of C-10068 (1.0, 2.5, and 5.0 mg/kg/h × 72 h) were tested in the antiseizure study. Neuroinflammation and neurofunction were evaluated in animals treated with 5.0 mg/kg/h × 72 h C-10068. Compared to vehicle treatment, C-10068 dose dependently reduced PBBI-induced NCS incidence (40-50%), frequency (20-70%), and duration (30-82%). The most effective antiseizure dose of C-10068 (5.0 mg/kg/h × 72 h) also significantly attenuated hippocampal astrocyte activation and perilesional microglial reactivity post-PBBI. Within C-10068-treated animals, a positive correlation was observed in reduction in NCS frequency and reduction in hippocampal astrocyte activation. Further, C-10068 treatment significantly attenuated astrocyte activation in seizure-free animals. However, C-10068 failed to improve PBBI-induced motor and cognitive functions with the dosing regimen used in this study. Overall, the results indicating that C-10068 exerts both potent antiseizure and antiinflammatory effects are promising and warrant further investigation.
Collapse
Affiliation(s)
- Xi-Chun May Lu
- 1 Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Deborah A Shear
- 1 Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | | | - Gary W Bridson
- 2 Concert Pharmaceuticals Inc. , Lexington, Massachusetts
| | | | - Zhiyong Chen
- 1 Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Lai Yee Leung
- 1 Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Frank C Tortella
- 1 Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|
55
|
Jordan KG, Schneider AL. Counterpoint: Emergency (“Stat”) EEG in the Era of Nonconvulsive Status Epilepticus. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/1086508x.2009.11079704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
56
|
|
57
|
Mountney A, Shear DA, Potter B, Marcsisin SR, Sousa J, Melendez V, Tortella FC, Lu XCM. Ethosuximide and phenytoin dose-dependently attenuate acute nonconvulsive seizures after traumatic brain injury in rats. J Neurotrauma 2013; 30:1973-82. [PMID: 23822888 DOI: 10.1089/neu.2013.3001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute seizures frequently occur following severe traumatic brain injury (TBI) and have been associated with poor patient prognosis. Silent or nonconvulsive seizures (NCS) manifest in the absence of motor convulsion, can only be detected via continuous electroencephalographic (EEG) recordings, and are often unidentified and untreated. Identification of effective anti-epileptic drugs (AED) against post-traumatic NCS remains crucial to improve neurological outcome. Here, we assessed the anti-seizure profile of ethosuximide (ETX, 12.5-187.5 mg/kg) and phenytoin (PHT, 5-30 mg/kg) in a spontaneously occurring NCS model associated with penetrating ballistic-like brain injury (PBBI). Rats were divided between two drug cohorts, PHT or ETX, and randomly assigned to one of four doses or vehicle within each cohort. Following PBBI, NCS were detected by continuous EEG monitoring for 72 h post-injury. Drug efficacy was evaluated on NCS parameters of incidence, frequency, episode duration, total duration, and onset latency. Both PHT and ETX attenuated NCS in a dose-dependent manner. In vehicle-treated animals, 69-73% experienced NCS (averaging 9-10 episodes/rat) with average onset of NCS occurring at 30 h post-injury. Compared with control treatment, the two highest PHT and ETX doses significantly reduced NCS incidence to 13-40%, reduced NCS frequency (1.8-6.2 episodes/rat), and delayed seizure onset: <20% of treated animals exhibited NCS within the first 48 h. NCS durations were also dose-dependently mitigated. For the first time, we demonstrate that ETX and PHT are effective against spontaneously occurring NCS following PBBI, and suggest that these AEDs may be effective at treating post-traumatic NCS.
Collapse
Affiliation(s)
- Andrea Mountney
- 1 Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW To review recent clinical data and summarize actual recommendations for the management of electrographic seizures and status epilepticus in neuro-ICU patients. RECENT FINDINGS Electrographic, 'nonconvulsive', seizures are frequent in neuro-ICU patients including traumatic brain injury, subarachnoid hemorrhage, intracerebral hemorrhage and hypoxic-ischemic encephalopathy. Continuous electroencephalography monitoring is thus of great potential utility. The impact of electrographic seizures on outcome however is not entirely established and it is also unclear what type of electroencephalography paroxysms require treatment and when and how exactly to treat them. Evidence from randomized studies is lacking and will not be available in the near future. Given robust animal and human evidence showing the potential negative impact of seizures on secondary cerebral damage and outcome, treatment of seizures appears reasonable, particularly if related to status epilepticus. On the contrary, over-aggressive antiepileptic therapy entails risks. The management of seizures should therefore be guided individually, based on the underlying cause, the severity of illness and patient comorbidities. SUMMARY We provide a pragmatic approach for the management of electrographic seizures in neuro-ICU patients. International consensus guidelines on continuous electroencephalography monitoring and seizure therapy are needed and would represent the rationale for a future multicenter randomized trial.
Collapse
|
59
|
Abstract
BACKGROUND Seizures are common in critically ill patients and can impact morbidity and mortality. Traditional anti-epileptic drugs (AEDs) in this setting are not always effective and are associated with adverse events and drug interactions. Lacosamide (LCM) is a new AED which is available in parental form although few studies have evaluated the safety and efficacy of LCM in critically ill patients. METHODS Critically ill patients at Emory University Hospital who received LCM from April 1, 2009 to February 1, 2010 were retrospectively reviewed. Primary outcome measure was incidence and time to seizure cessation. Adverse effects were also recorded. RESULTS LCM was administered in 24 patients including 13 episodes of refractory status epilepticus (RSE) occurring in 10 patients and for treatment of isolated seizures or following resolution of RSE in an additional 14 patients. Seizure cessation was achieved in 5/13 (38%) episodes of RSE (mean 11.2 h) while there was at least a 50% decrease in seizure frequency in 7/13 (54%). 11/14 patients (76%) who received LCM for treatment of isolated seizures or prevention of seizure recurrence remained seizure free. Three patients experienced a decline in systolic blood pressure (> 20 mmHg) while one patient experienced unexplained fever and one patient had elevation of liver function tests. CONCLUSIONS This preliminary data suggests that LCM may be a safe and effective alternative for treatment of seizures in critically ill patients. Further prospective, randomized controlled trials are needed to confirm these findings and further explore the incidence of adverse effects.
Collapse
|
60
|
Young GB, Sharpe MD, Savard M, Al Thenayan E, Norton L, Davies-Schinkel C. Seizure detection with a commercially available bedside EEG monitor and the subhairline montage. Neurocrit Care 2011; 11:411-6. [PMID: 19585276 DOI: 10.1007/s12028-009-9248-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Availability of standard, continuous electroencephalography (cEEG) monitoring in ICU is very limited, although commercially available 4-channel modules are present in many ICUs. We investigated the sensitivity of such modules compared with the more complete monitoring with a standard EEG system. METHODS Seventy patients at high risk of seizures in the medical-surgical intensive care unit and Epilepsy Monitoring Unit were recorded simultaneously for at least 24 h with a 4-channel commercial ICU bedside monitoring system (Datex-Ohmeda) with a subhairline montage and a standard EEG machine (XLTEK) using the international 10-20 system of electrode placement. Recordings were interpreted independently from each other. RESULTS The 4-channel recordings demonstrated a sensitivity of 68 and 98% specificity for seizure detection, and a sensitivity of 39% and a specificity of 92% for detection of spikes and PLEDs. CONCLUSIONS The 4-channel EEG module has limited but practical usefulness for seizure detection when standard cEEG monitoring is not available.
Collapse
Affiliation(s)
- G Bryan Young
- Department of Clinical Neurological Sciences, The University of Western Ontario, Room B10-106, University Hospital, 339 Windermere Rd, London, Ontario, N6A 5A5, Canada.
| | | | | | | | | | | |
Collapse
|
61
|
Continuous electroencephalography in the medical ICU. Neurocrit Care 2011; 11:445-6. [PMID: 19657600 DOI: 10.1007/s12028-009-9260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
62
|
Murphy-Human T, Welch E, Zipfel G, Diringer MN, Dhar R. Comparison of short-duration levetiracetam with extended-course phenytoin for seizure prophylaxis after subarachnoid hemorrhage. World Neurosurg 2011; 75:269-74. [PMID: 21492729 DOI: 10.1016/j.wneu.2010.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/10/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND The optimal regimen for seizure prophylaxis after subarachnoid hemorrhage (SAH) remains uncertain. Based on data suggesting that a short course may be adequate, coupled with an association between phenytoin exposure and poor cognitive outcome, our institution modified their seizure prophylaxis protocol for patients with SAH from an extended course of phenytoin to 3 days of levetiracetam. This study sought to compare the incidence of seizures before and after this change to evaluate whether a short course of levetiracetam would be as effective in preventing in-hospital seizures. METHODS This study analyzed 442 consecutive patients admitted with SAH between January 2003 and January 2008, including 297 patients treated before the protocol change (PHT group) and 145 treated afterward (LEV group). Occurrence of all seizures was extracted from a prospectively collected intensive care unit database and further review of medical records. In-hospital seizures were divided into early (occurring on or before day 3, all patients on prophylaxis) and those occurring late (after day 3, LEV group off prophylaxis). RESULTS In-hospital seizures occurred in 3.4% of the PHT group and 8.3% of the LEV group (P = 0.03). Although the rate of early seizures was not different (1.4% PHT vs. 2.8% LEV, P = 0.45), there was a higher rate of late seizures (2% PHT vs. 5.5% LEV, P = 0.05). CONCLUSIONS The use of short-duration levetiracetam for seizure prophylaxis after SAH was associated with a higher rate of in-hospital seizures than an extended course of phenytoin, mainly related to an increase in late seizures, when the levetiracetam had been discontinued. This suggests that a longer duration of prophylaxis may be required to minimize seizures in patients with SAH, although confirmatory studies are required.
Collapse
|
63
|
Lu XCM, Hartings JA, Si Y, Balbir A, Cao Y, Tortella FC. Electrocortical Pathology in a Rat Model of Penetrating Ballistic-Like Brain Injury. J Neurotrauma 2011; 28:71-83. [DOI: 10.1089/neu.2010.1471] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xi-Chun May Lu
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jed A. Hartings
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Yuanzheng Si
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Alexander Balbir
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Ying Cao
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Frank C. Tortella
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
64
|
Haselkorn ML, Shellington DK, Jackson EK, Vagni VA, Janesko-Feldman K, Dubey RK, Gillespie DG, Cheng D, Bell MJ, Jenkins LW, Homanics GE, Schnermann J, Kochanek PM. Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice. J Neurotrauma 2010; 27:901-10. [PMID: 20121416 DOI: 10.1089/neu.2009.1075] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We reported that adenosine A(1) receptor (A(1)AR) knockout (KO) mice develop lethal status epilepticus after experimental traumatic brain injury (TBI), which is not seen in wild-type (WT) mice. Studies in epilepsy, multiple sclerosis, and neuro-oncology suggest enhanced neuro-inflammation and/or neuronal death in A(1)AR KO. We hypothesized that A(1)AR deficiency exacerbates the microglial response and neuronal damage after TBI. A(1)AR KO and WT littermates were subjected to mild controlled cortical impact (3 m/sec; 0.5 mm depth) to left parietal cortex, an injury level below the acute seizure threshold in the KO. At 24 h or 7 days, mice were sacrificed and serial sections prepared. Iba-1 immunostaining was used to quantify microglia at 7 days. To assess neuronal injury, sections were stained with Fluoro-Jade C (FJC) at 24 h to evaluate neuronal death in the hippocampus and cresyl violet staining at 7 days to analyze cortical lesion volumes. We also studied the effects of adenosine receptor agonists and antagonists on (3)H-thymidine uptake (proliferation index) by BV-2 cells (immortalized mouse microglial). There was no neuronal death in CA1 or CA3 quantified by FJC. A(1)AR KO mice exhibited enhanced microglial response; specifically, Iba-1 + microglia were increased 20-50% more in A(1)AR KO versus WT in ipsilateral cortex, CA3, and thalamus, and contralateral cortex, CA1, and thalamus (p < 0.05). However, contusion and cortical volumes did not differ between KO and WT. Pharmacological studies in cultured BV-2 cells indicated that A(1)AR activation inhibits microglial proliferation. A(1)AR activation is an endogenous inhibitor of the microglial response to TBI, likely via inhibition of proliferation, and this may represent a therapeutic avenue to modulate microglia after TBI.
Collapse
Affiliation(s)
- M Lee Haselkorn
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care 2010; 12:382-9. [PMID: 20198513 DOI: 10.1007/s12028-010-9337-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Continuous EEG monitoring (cEEG) of critically ill patients is frequently utilized to detect non-convulsive seizures (NCS) and status epilepticus (NCSE). The indications for cEEG, as well as when and how to treat NCS, remain unclear. We aimed to describe the current practice of cEEG in critically ill patients to define areas of uncertainty that could aid in designing future research. METHODS We conducted an international survey of neurologists focused on cEEG utilization and NCS management. RESULTS Three-hundred and thirty physicians completed the survey. 83% use cEEG at least once per month and 86% manage NCS at least five times per year. The use of cEEG in patients with altered mental status was common (69%), with higher use if the patient had a prior convulsion (89%) or abnormal eye movements (85%). Most respondents would continue cEEG for 24 h. If NCS or NCSE is identified, the most common anticonvulsants administered were phenytoin/fosphenytoin, lorazepam, or levetiracetam, with slightly more use of levetiracetam for NCS than NCSE. CONCLUSIONS Continuous EEG monitoring (cEEG) is commonly employed in critically ill patients to detect NCS and NCSE. However, there is substantial variability in current practice related to cEEG indications and duration and to management of NCS and NCSE. The fact that such variability exists in the management of this common clinical problem suggests that further prospective study is needed. Multiple points of uncertainty are identified that require investigation.
Collapse
|
66
|
Abstract
INTRODUCTION Continuous EEG provides the unique possibility to monitor neuronal function non-invasively. In our pilot study, we evaluated EEG spectral power during spontaneous drops in cerebral perfusion pressure (CPP) in deeply sedated and mechanically ventilated patients with severe stroke. We aimed to identify parameters that may be used for continuous monitoring even in patients with a burst-suppression baseline EEG pattern. METHODS Twenty ventilated and sedated patients with severe hemorrhagic or ischemic stroke underwent continuous EEG monitoring with synchronous CPP recording. RESULTS EEG monitoring duration was 83.9 hours on average per patient. Spectral power of EEG during drops of CPP was compared with epochs during normal CPP under the same levels of sedation. We found a significant decrease in faster EEG activity (3.5-20.7 Hz) during phases of low CPP (unaffected hemisphere P < 0.01, affected hemisphere P < 0.01, both P < 0.01). CONCLUSION Despite considerable changes in baseline activity due to deep sedation and severe brain injury, we found evidence for disturbed neuronal function during drops in CPP. Thus, continuous EEG monitoring may add clinically relevant information on neuronal function in the setting of multimodality brain monitoring. Further studies are needed to implement real-time data analysis in the ICU setting.
Collapse
|
67
|
Nichol G, Aufderheide TP, Eigel B, Neumar RW, Lurie KG, Bufalino VJ, Callaway CW, Menon V, Bass RR, Abella BS, Sayre M, Dougherty CM, Racht EM, Kleinman ME, O'Connor RE, Reilly JP, Ossmann EW, Peterson E. Regional Systems of Care for Out-of-Hospital Cardiac Arrest. Circulation 2010; 121:709-29. [DOI: 10.1161/cir.0b013e3181cdb7db] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Out-of-hospital cardiac arrest continues to be an important public health problem, with large and important regional variations in outcomes. Survival rates vary widely among patients treated with out-of-hospital cardiac arrest by emergency medical services and among patients transported to the hospital after return of spontaneous circulation. Most regions lack a well-coordinated approach to post–cardiac arrest care. Effective hospital-based interventions for out-of-hospital cardiac arrest exist but are used infrequently. Barriers to implementation of these interventions include lack of knowledge, experience, personnel, resources, and infrastructure. A well-defined relationship between an increased volume of patients or procedures and better outcomes among individual providers and hospitals has been observed for several other clinical disorders. Regional systems of care have improved provider experience and patient outcomes for those with ST-elevation myocardial infarction and life-threatening traumatic injury. This statement describes the rationale for regional systems of care for patients resuscitated from cardiac arrest and the preliminary recommended elements of such systems. Many more people could potentially survive out-of-hospital cardiac arrest if regional systems of cardiac resuscitation were established. A national process is necessary to develop and implement evidence-based guidelines for such systems that must include standards for the categorization, verification, and designation of components of such systems. The time to do so is now.
Collapse
|
68
|
Hartings JA, Strong AJ, Fabricius M, Manning A, Bhatia R, Dreier JP, Mazzeo AT, Tortella FC, Bullock MR. Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 2010; 26:1857-66. [PMID: 19508156 DOI: 10.1089/neu.2009.0961] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we investigated the incidence of cortical spreading depolarizations (spreading depression and peri-infarct depolarization) after traumatic brain injury (TBI) and their relationship to systemic physiologic values during neurointensive care. Subdural electrode strips were placed on peri-contusional cortex in 32 patients who underwent surgical treatment for TBI. Prospective electrocorticography was performed during neurointensive care with retrospective analysis of hourly nursing chart data. Recordings were 84 hr (median) per patient and 2,503 hr in total. In 17 patients (53%), 280 spreading depolarizations (spreading depressions and peri-infarct depolarizations) were observed. Depolarizations occurred in a bimodal pattern with peak incidence on days 1 and 7. The probability of a depolarization occurring increased significantly as a function of declining mean arterial pressure (MAP; R(2) = 0.78; p < 0.001) and cerebral perfusion pressure (R(2) = 0.85; p < 0.01), and increasing core temperature (R(2) = 0.44; p < 0.05). Depolarization probability was 7% for MAP values of >100 mm Hg but 33% for MAP of < or =70 mm Hg. Temperatures of < or =38.4 degrees C were associated with a 21% depolarization risk, compared to 63% for >38.4 degrees C. Intracranial pressures were higher in patients with depolarizations (18.3 +/- 9.3 vs. 13.5 +/- 6.7 mm Hg; p < 0.001). We conclude that depolarization phenomena are a common cortical pathology in TBI. Their association with lower perfusion levels and higher temperatures suggests that the labile balance of energy supply and demand is an important determinant of their occurrence. Monitoring of depolarizations might serve as a functional measure to guide therapeutic efforts and their blockade may provide an additional line of defense against the effects of secondary insults.
Collapse
Affiliation(s)
- Jed A Hartings
- UC Neuroscience Institute, Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio 45219, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bubrick EJ, Bromfield EB, Dworetzky BA. Utilization of below-the-hairline EEG in detecting subclinical seizures. Clin EEG Neurosci 2010; 41:15-8. [PMID: 20307011 DOI: 10.1177/155005941004100105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nonconvulsive status epilepticus (NCSE) is a serious condition commonly considered when evaluating a patient with altered mental status, and an electroencephalogram (EEG) is necessary for diagnosis. Neurology house staff often must make this diagnosis at times when no EEG technologist is available. We report our experience with abbreviated, emergency below-the-hairline EEGs (BTH-EEG) performed by neurology residents at our institution over a 1-1/2 year period. We analyzed demographic and clinical data in relation to whether or not an ictal or periodic pattem was identified, and these results were compared to follow up EEGs. Thirty-nine studies were identified, ranging in duration from 3 min-13 hrs. Mean and median age of patients included was 53 (range 25-81 yrs); 21 were female. Seven of 39 BTH-EEGs showed at least one electrographic seizure, 9 more showed periodic discharges. Follow-up EEGs showed electrographic seizures in 6 of 39 patients, including 3 of the 7 with ictal BTH-EEG, and an additional 3 whose BTH-EEGs showed periodic lateralized discharges but no organized seizures. All 7 patients with ictal BTH-EEGs survived to discharge, vs. 23 of the remaining 32. We conclude that in selected cases, BTH-EEG is useful in detecting seizures and/or other epileptiform patterns. In our series, when NCSE was in question, the BTH-EEG showed these patterns 41% of the time. The BTH-EEG is a fast, non-invasive, inexpensive tool that may save valuable time, especially when no other viable option is immediately available. This technique may be applicable more broadly, not just limited to centers with neurology residents.
Collapse
Affiliation(s)
- Ellen J Bubrick
- Department of Neurology, Division of Epilepsy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW Continuous electroencephalography (cEEG) is being used more frequently in intensive care units to detect epileptic activity and ischemia. This review analyzes clinical applications and limitations of cEEG as a routine neuromonitoring tool. RECENT FINDINGS cEEG is primarily used to detect nonconvulsive seizures, which are frequent and possibly associated with harm. Cerebral ischemia, such as that from vasospasm after subarachnoid hemorrhage, can be detected earlier by EEG and quantitative EEG (qEEG). Highly skilled technicians and subspecialty-trained physicians are needed to generate good quality EEG and to interpret these data. qEEG allows more efficient interpretation of large amounts of EEG and may trigger prespecified alarms. Currently, there is little high-quality data on cEEG to define indications, cost-saving potential, and impact on outcome. A few studies have demonstrated how cEEG can be integrated into multimodality brain monitoring of severely brain-injured patients. SUMMARY cEEG should be considered as an integral part of multimodality monitoring of the injured brain, particularly in patients at risk for nonconvulsive seizure or ischemia. Automated alarms may help establish cEEG monitoring as an integral part of brain monitoring. All neurological ICUs that routinely care for patients with refractory status epilepticus should have the capability to perform cEEG monitoring. Further research determining the impact on outcome and making EEG monitoring more user friendly may help move this technique out of the subspecialized ICU setting into the general ICU environment. In the future, it may be possible to use specific EEG parameters as endpoints for therapeutic interventions.
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in cerebral microdialysis for investigational and clinical neurochemical monitoring in patients with critical neurological conditions. RECENT FINDINGS Use of microdialysis with other methods, including PET, electrophysiological monitoring and brain tissue oximetry in traumatic brain injury, subarachnoid hemorrhage with vasospasm, and infarction with refractory increased intracranial pressure have been reported. Potentially adverse neurochemical effects of nonconvulsive status epilepticus and cortical slow depolarization waves, both of which are increasingly recognized in traumatic brain injury and stroke patients, have been reported. The explosive growth in the use of cerebral oximetry with targeted management of brain tissue oxygen levels is leading to greater understanding of derangements of cerebral bioenergetics in the critically ill brain, but there remain unresolved basic issues. Understanding of the analytes that are measurable at the bedside - glucose, lactate, pyruvate, glutamate and glycerol - continues to evolve with glucose, lactate, pyruvate and the lactate-pyruvate ratio taking center stage. Analytes including inflammatory biomarkers such as cytokines and metabolites of nitric oxide are presently investigational, but hold promise for future application in advancing our understanding of basic pathophysiology, therapeutic target selection and prognostication. Growing consensus on indications for use of clinical microdialysis and advances in commercially available equipment continue to make microdialysis increasingly 'ready for prime time.' SUMMARY Cerebral microdialysis is an established tool for neurochemical research in the ICU. This technique cannot be fruitfully used in isolation, but when combined with other monitoring methods provides unique insights into the biochemical and physiological derangements in the injured brain.
Collapse
|
72
|
Waziri A, Claassen J, Stuart RM, Arif H, Schmidt JM, Mayer SA, Badjatia N, Kull LL, Connolly ES, Emerson RG, Hirsch LJ. Intracortical electroencephalography in acute brain injury. Ann Neurol 2009; 66:366-77. [DOI: 10.1002/ana.21721] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
73
|
Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg 2009; 109:506-23. [PMID: 19608827 DOI: 10.1213/ane.0b013e3181a9d8b5] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Because of recent technical advances, it is now possible to record and monitor the continuous digital electroencephalogram (EEG) of many critically ill patients simultaneously. Continuous EEG monitoring (cEEG) provides dynamic information about brain function that permits early detection of changes in neurologic status, which is especially useful when the clinical examination is limited. Nonconvulsive seizures are common in comatose critically ill patients and can have multiple negative effects on the injured brain. The majority of seizures in these patients cannot be detected without cEEG. cEEG monitoring is most commonly used to detect and guide treatment of nonconvulsive seizures, including after convulsive status epilepticus. In addition, cEEG is used to guide management of pharmacological coma for treatment of increased intracranial pressure. An emerging application for cEEG is to detect new or worsening brain ischemia in patients at high risk, especially those with subarachnoid hemorrhage. Improving quantitative EEG software is helping to make it feasible for cEEG (using full scalp coverage) to provide continuous information about changes in brain function in real time at the bedside and to alert clinicians to any acute brain event, including seizures, ischemia, increasing intracranial pressure, hemorrhage, and even systemic abnormalities affecting the brain, such as hypoxia, hypotension, acidosis, and others. Monitoring using only a few electrodes or using full scalp coverage, but without expert review of the raw EEG, must be done with extreme caution as false positives and false negatives are common. Intracranial EEG recording is being performed in a few centers to better detect seizures, ischemia, and peri-injury depolarizations, all of which may contribute to secondary injury. When cEEG is combined with individualized, physiologically driven decision making via multimodality brain monitoring, intensivists can identify when the brain is at risk for injury or when neuronal injury is already occurring and intervene before there is permanent damage. The exact role and cost-effectiveness of cEEG at the current time remains unclear, but we believe it has significant potential to improve neurologic outcomes in a variety of settings.
Collapse
Affiliation(s)
- Daniel Friedman
- Department of Neurology, Comprehensive Epilepsy Center, Columbia University, NewYork City, New York, USA
| | | | | |
Collapse
|
74
|
Kochanek PM, Tasker RC. Pediatric neurointensive care: 2008 update for the Rogers' Textbook of Pediatric Intensive Care. Pediatr Crit Care Med 2009; 10:517-23. [PMID: 19584637 DOI: 10.1097/pcc.0b013e3181ab88cd] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To review important articles, in the field of pediatric neurointensive care, that were published subsequent to the fourth edition of the Rogers' Textbook of Pediatric Intensive Care. DATA SOURCES The U.S. National Library of Medicine (http://www.ncbi.nlm.nih.gov/sites/entrezPubMed) was searched for the term pediatric and the following individual terms, cardiac arrest, asphyxia, traumatic brain injury, status epilepticus, stroke, cerebral ischemia, and cerebral hemorrhage, to generate abstracts of additional citations that were then screened for potential inclusion. The authors were also aware of a number of key recent articles in both pediatric and adult neurointensive care and these were also screened. STUDY SELECTION AND DATA EXTRACTION Promising articles were reviewed and the decision as to whether they were included was made at the discretion of the section editors. DATA SYNTHESIS Articles in four categories were included based on selected chapters in the neurointensive care section of the textbook, using the specific chapter heading in the textbook, namely, head and spinal cord trauma, hypoxic-ischemic encephalopathy, status epilepticus, and cerebrovascular disease and stroke. CONCLUSION Developments in the field and practice of pediatric neurocritical care continue with significant additions to the literature and practice recommendations concerning care following traumatic brain injury, cardiac arrest, status epilepticus, and cerebrovascular events. Importantly, the continued progression in knowledge raises the health services issue of whether, in certain settings of high clinical volume, it is time for specialized pediatric neurointensive care services or units.
Collapse
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
75
|
Intravenous levetiracetam in critically ill children with status epilepticus or acute repetitive seizures. Pediatr Crit Care Med 2009; 10:505-10. [PMID: 19325512 PMCID: PMC2946960 DOI: 10.1097/pcc.0b013e3181a0e1cf] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Intravenous (IV) levetiracetam (LEV) is approved for use in patients older than 16 years and may be useful in critically ill children, although there is little data available regarding pharmacokinetics. We aim to investigate the safety, an appropriate dosing, and efficacy of IV LEV in critically ill children. DESIGN We describe a cohort of critically ill children who received IV LEV for status epilepticus, including refractory or nonconvulsive status, or acute repetitive seizures. RESULTS There were no acute adverse effects noted. Children had temporary cessation of ongoing refractory status epilepticus, termination of ongoing nonconvulsive status epilepticus, cessation of acute repetitive seizures, or reduction in epileptiform discharges with clinical correlate. CONCLUSIONS IV LEV was effective in terminating status epilepticus or acute repetitive seizures and well tolerated in critically ill children. Further study is needed to elucidate the role of IV LEV in critically ill children.
Collapse
|
76
|
|
77
|
Traumatic brain injury in children: recent advances in management. Indian J Pediatr 2008; 75:1159-65. [PMID: 19132318 DOI: 10.1007/s12098-008-0240-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
Abstract
To define and discuss new developments in the field of pediatric traumatic brain injury (TBI). Review of several recent key studies on therapy since publication of the first U.S. traumatic brain injury guidelines in 2003. In addition, we discuss new developments in the use of biomarkers of brain injury in TBI diagnosis and also discuss recent advances in bedside neuromonitoring that may be helpful in the setting of pediatric brain injury. Important new information on optimal cerebral perfusion pressure management, cerebrospinal fluid drainage, decompressive craniectomy, hypothermia, biomarkers of brain injury along with advances in neuromonitoring are presented. The 2003 guidelines have stimulated important new research. This is reshaping bedside care.
Collapse
|
78
|
Abstract
Seizures are common in pediatric emergency care units, either as the main medical issue or in association with an additional neurological problem. Rapid treatment prolonged and repetitive seizures or status epilepticus is important. Multiple anti-convulsant medications are useful in this setting, and each has various indications and potential adverse effects that must be considered in regard to individual patients. This review discusses new data regarding anticonvulsants that are useful in these settings, including fosphenytoin, valproic acid, levetiracetam, and topiramate. A status epilepticus treatment algorithm is suggested, incorporating changes from traditional algorithms based on these new data. Treatment issues specific to complex medical patients, including patients with brain tumors, renal dysfunction, hepatic dysfunction, transplant, congenital heart disease, and anticoagulation, are also discussed.
Collapse
|