51
|
Wang F, Zhang Y, He C, Wang T, Piao Q, Liu Q. Silencing the gene encoding C/EBP homologous protein lessens acute brain injury following ischemia/reperfusion. Neural Regen Res 2014; 7:2432-8. [PMID: 25337093 PMCID: PMC4200717 DOI: 10.3969/j.issn.1673-5374.2012.31.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
C/EBP homologous protein, an important transcription factor during endoplasmic reticulum stress, participates in cell apoptosis mediated by endoplasmic reticulum stress. Previous studies have shown that C/EBP homologous protein mediates nerve injury during Alzheimer’s disease, subarachnoid hemorrhage and spinal cord trauma. In this study, we introduced C/EBP homologous protein short hairpin RNA into the brains of ischemia/reperfusion rat models via injection of lentiviral vector through the left lateral ventricle. Silencing C/EBP homologous protein gene expression significantly reduced cerebral infarction volume, decreased water content and tumor necrosis factor-α and interleukin-1β mRNA expression in brain tissues following infarction, diminished the number of TUNEL-positive cells in the infarct region, decreased caspase-3 protein content and increased Bcl-2 protein content. These results suggest that silencing C/EBP homologous protein lessens cell apoptosis and inflammatory reactions, thereby protecting nerves.
Collapse
Affiliation(s)
- Fengzhang Wang
- Department of Neurology, Bethune First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Yuan Zhang
- Department of Neonatology, Bethune First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunke He
- Department of Orthopedics, Jilin Hospital of Integrated Traditional and Western Medicine, Changchun 130021, Jilin Province, China
| | - Tingting Wang
- Department of Infectious Diseases, Zibo First Hospital, Zibo 255200, Shandong Province, China
| | - Qiyan Piao
- Department of Cardiology, General Hospital of China National Petroleum Corporation in Jilin, Jilin 132021, Jilin Province, China
| | - Qun Liu
- Department of Neurology, Bethune First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
52
|
Park YS, Cho JH, Kim IH, Cho GS, Cho JH, Park JH, Ahn JH, Chen BH, Shin BN, Shin MC, Tae HJ, Cho YS, Lee YL, Kim YM, Won MH, Lee JC. Effects of ischemic preconditioning on VEGF and pFlk-1 immunoreactivities in the gerbil ischemic hippocampus after transient cerebral ischemia. J Neurol Sci 2014; 347:179-87. [PMID: 25300771 DOI: 10.1016/j.jns.2014.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/01/2014] [Accepted: 09/23/2014] [Indexed: 01/19/2023]
Abstract
Ischemia preconditioning (IPC) displays an important adaptation of the CNS to sub-lethal ischemia. In the present study, we examined the effect of IPC on immunoreactivities of VEGF-, and phospho-Flk-1 (pFlk-1) following transient cerebral ischemia in gerbils. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+) sham-operated-group, and IPC+ischemia-operated-group). IPC was induced by subjecting gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated-group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) alone 5 days after ischemia-reperfusion, however, in all the IPC+ischemia-operated-groups, pyramidal neurons in the SP were well protected. In immunohistochemical study, VEGF immunoreactivity in the ischemia-operated-group was increased in the SP at 1 day post-ischemia and decreased with time. Five days after ischemia-reperfusion, strong VEGF immunoreactivity was found in non-pyramidal cells, which were identified as pericytes, in the stratum oriens (SO) and radiatum (SR). In the IPC+sham-operated- and IPC+ischemia-operated-groups, VEGF immunoreactivity was significantly increased in the SP. pFlk-1 immunoreactivity in the sham-operated- and ischemia-operated-groups was hardly found in the SP, and, from 2 days post-ischemia, pFlk-1 immunoreactivity was strongly increased in non-pyramidal cells, which were identified as pericytes. In the IPC+sham-operated-group, pFlk-1 immunoreactivity was significantly increased in both pyramidal and non-pyramidal cells; in the IPC+ischemia-operated-groups, the similar pattern of VEGF immunoreactivity was found in the ischemic CA1, although the VEGF immunoreactivity was strong in non-pyramidal cells at 5 days post-ischemia. In brief, our findings show that IPC dramatically augmented the induction of VEGF and pFlk-1 immunoreactivity in the pyramidal cells of the CA1 after ischemia-reperfusion, and these findings suggest that the increases of VEGF and Flk-1 expressions may be necessary for neurons to survive from transient ischemic damage.
Collapse
Affiliation(s)
- Yoo Seok Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Young Shin Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 140-743, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
53
|
Abstract
Stroke is a leading cause of morbidity in the developed world and results in chronic disability in many cases. The literature related to the critical factors that regulate tissue self-regeneration in stroke is still limited, which restricts effective therapy. However, optimism in this area has been provided by recent research. The mechanisms involved in tissue regeneration and the mode of the participation of stem/progenitor cells and soluble protein neurotrophic factors in this process may yield a more complete understanding of the nature of stroke. This review summarizes the current understanding of both cellular and humoral issues with a particular emphasis on how these issues contribute to tissue regeneration in stroke.
Collapse
Affiliation(s)
- Bogusław Machalinski
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, Szczecin 70-111, Poland
| |
Collapse
|
54
|
Talwar T, Srivastava MVP. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery. Ann Indian Acad Neurol 2014; 17:1-6. [PMID: 24753650 PMCID: PMC3992742 DOI: 10.4103/0972-2327.128519] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/02/2013] [Accepted: 12/01/2013] [Indexed: 02/06/2023] Open
Abstract
Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF) is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.
Collapse
Affiliation(s)
- Tanu Talwar
- Department of Neurology, AIIMS, New Delhi, India
| | | |
Collapse
|
55
|
Li Y, Guo L, Ahn HS, Kim MH, Kim SW. Amniotic mesenchymal stem cells display neurovascular tropism and aid in the recovery of injured peripheral nerves. J Cell Mol Med 2014; 18:1028-34. [PMID: 24708439 PMCID: PMC4508143 DOI: 10.1111/jcmm.12249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/18/2014] [Indexed: 12/15/2022] Open
Abstract
Recently, we reported that human amniotic membrane-derived mesenchymal stem cells (AMMs) possess great angiogenic potential. In this study, we determined whether local injection of AMMs ameliorates peripheral neuropathy. AMMs were transplanted into injured sciatic nerves. AMM injection promoted significant recovery of motor nerve conduction velocity and voltage amplitude compared to human adipose-derived mesenchymal stem cells. AMM implantation also augmented blood perfusion and increased intraneural vascularity. Whole-mount fluorescent imaging analysis demonstrated that AMMs exhibited higher engraftment and endothelial incorporation abilities in the sciatic nerve. In addition, the higher expression of pro-angiogenic factors was detected in AMMs injected into the peripheral nerve. Therefore, these data provide novel therapeutic and mechanistic insights into stem cell biology, and AMM transplantation may represent an alternative therapeutic option for treating peripheral neuropathy.
Collapse
Affiliation(s)
- YongNan Li
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | |
Collapse
|
56
|
Barker R, Ashby EL, Wellington D, Barrow VM, Palmer JC, Kehoe PG, Esiri MM, Love S. Pathophysiology of white matter perfusion in Alzheimer's disease and vascular dementia. ACTA ACUST UNITED AC 2014; 137:1524-32. [PMID: 24618270 PMCID: PMC3999715 DOI: 10.1093/brain/awu040] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The pathophysiology of white matter hypoperfusion is poorly understood. Barker et al. quantify ante-mortem hypoperfusion by measuring myelin proteins differentially susceptible to ischaemia, and assess the extent to which vasoregulatory factors protect from or contribute to ischaemic white matter injury in Alzheimer’s disease and vascular dementia. Little is known about the contributors and physiological responses to white matter hypoperfusion in the human brain. We previously showed the ratio of myelin-associated glycoprotein to proteolipid protein 1 in post-mortem human brain tissue correlates with the degree of ante-mortem ischaemia. In age-matched post-mortem cohorts of Alzheimer’s disease (n = 49), vascular dementia (n = 17) and control brains (n = 33) from the South West Dementia Brain Bank (Bristol), we have now examined the relationship between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and several other proteins involved in regulating white matter vascularity and blood flow. Across the three cohorts, white matter perfusion, indicated by the ratio of myelin-associated glycoprotein to proteolipid protein 1, correlated positively with the concentration of the vasoconstrictor, endothelin 1 (P = 0.0005), and negatively with the concentration of the pro-angiogenic protein, vascular endothelial growth factor (P = 0.0015). The activity of angiotensin-converting enzyme, which catalyses production of the vasoconstrictor angiotensin II was not altered. In samples of frontal white matter from an independent (Oxford, UK) cohort of post-mortem brains (n = 74), we confirmed the significant correlations between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and both endothelin 1 and vascular endothelial growth factor. We also assessed microvessel density in the Bristol (UK) samples, by measurement of factor VIII-related antigen, which we showed to correlate with immunohistochemical measurements of vessel density, and found factor VIII-related antigen levels to correlate with the level of vascular endothelial growth factor (P = 0.0487), suggesting that upregulation of vascular endothelial growth factor tends to increase vessel density in the white matter. We propose that downregulation of endothelin 1 and upregulation of vascular endothelial growth factor in the context of reduced ratio of myelin-associated glycoprotein to proteolipid protein 1 are likely to be protective physiological responses to reduced white matter perfusion. Further analysis of the Bristol cohort showed that endothelin 1 was reduced in the white matter in Alzheimer’s disease (P < 0.05) compared with control subjects, but not in vascular dementia, in which endothelin 1 tended to be elevated, perhaps reflecting abnormal regulation of white matter perfusion in vascular dementia. Our findings demonstrate the potential of post-mortem measurement of myelin proteins and mediators of vascular function, to assess physiological and pathological processes involved in the regulation of cerebral perfusion in Alzheimer’s disease and vascular dementia.
Collapse
Affiliation(s)
- Rachel Barker
- 1 Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Miyake H, Nakagawa I, Takeshima Y, Nishimura F, Park YS, Nakamura M, Nakase H. Post-ischemic administration of vascular endothelial growth factor inhibitor in a rat model of cerebral venous infarction. Neurol Med Chir (Tokyo) 2014; 53:135-40. [PMID: 23524495 DOI: 10.2176/nmc.53.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral venous ischemia can result in severe brain edema. Inhibition of vascular endothelial growth factor (VEGF) activity by a neutralizing antibody can completely block the hypoxia-induced increase in vascular permeability. VEGF, which induces angiogenesis, also acts as a vascular permeability (VP) factor. We previously showed that inhibition of VEGF attenuates VP and reduces cerebral venous infarction (CVI) in the acute stage. The present study investigated the therapeutic time window during which inhibition of VEGF can reduce CVI in a rat two-vein occlusion (2-VO) model. A 2-VO model was created by photochemically occluding two adjacent cortical veins. Male Wistar rats (n = 42) were assigned to one of four groups: Group 1 was treated with a VEGF antagonist at 24 hours after 2-VO (n = 11); Group 2 was treated with phosphate-buffered solution (PBS) at 24 hours after 2-VO (n = 11); Group 3 was treated with a VEGF antagonist at 48 hours after 2-VO (n = 10); and Group 4 was treated with PBS at 48 hours after 2-VO (n = 10). The developing ischemic infarct was evaluated histologically at 7 days after 2-VO. CVI areas were significantly smaller in Group 1 than in Groups 2, 3, and 4 (p <0.05) but were similar when comparing Groups 3 and 4. Anti-VEGF therapy was effective in reducing CVI in rats if started within 24 hours after 2-VO.
Collapse
Affiliation(s)
- Hitoshi Miyake
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
58
|
Jiang S, Xia R, Jiang Y, Wang L, Gao F. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier. PLoS One 2014; 9:e86407. [PMID: 24551038 PMCID: PMC3925082 DOI: 10.1371/journal.pone.0086407] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023] Open
Abstract
The blood-brain barrier (BBB) impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS) drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF) on BBB permeability in Kunming (KM) mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse), while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI). Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001). Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI) or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.
Collapse
Affiliation(s)
- Shize Jiang
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
| | - Rui Xia
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
| | - Lei Wang
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
| | - Fabao Gao
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
- * E-mail:
| |
Collapse
|
59
|
Shinozaki M, Nakamura M, Konomi T, Kobayashi Y, Takano M, Saito N, Toyama Y, Okano H. Distinct roles of endogenous vascular endothelial factor receptor 1 and 2 in neural protection after spinal cord injury. Neurosci Res 2013; 78:55-64. [PMID: 24107617 DOI: 10.1016/j.neures.2013.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 01/19/2023]
Abstract
Secondary degeneration after spinal cord injury (SCI) is caused by increased vascular permeability, infiltration of inflammatory cells, and subsequent focal edema. Therapeutic interventions using neurotrophic factors have focused on the prevention of such reactions to reduce cell death and promote tissue regeneration. Vascular endothelial growth factor (VEGF) is a potent angiogenic and vascular permeability factor. However, the effect of VEGF on SCI remains controversial. VEGF signaling is primarily regulated through two primary receptors, VEGF receptor 1 (VEGF-R1) and VEGF receptor 2 (VEGF-R2). The purpose of this study was to examine the effects of intraperitoneal administration of VEGF-R1- and VEGF-R2-neutralizing antibodies on a mouse model of SCI. VEGF-R1 blockade, but not VEGF-R2 blockade, decreased the permeability and infiltration of inflammatory cells, and VEGF-R2 blockade caused a significant increase in neuronal apoptosis in the acute phase of SCI. VEGF-R2 blockade decreased the residual tissue area and the number of neural fibers in the chronic phase of SCI. VEGF-R2 blockade worsened the functional recovery and prolonged the latency of motor evoked potentials. These data suggest that endogenous VEGF-R2 plays a crucial role in neuronal protection after SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Tsunehiko Konomi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiomi Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morito Takano
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
60
|
Zhang W, Sato K, Hayashi T, Omori N, Nagano I, Kato S, Horiuchi S, Abe K. Extension of ischemic therapeutic time window by a free radical scavenger, Edaravone, reperfused with tPA in rat brain. Neurol Res 2013; 26:342-8. [PMID: 15142331 DOI: 10.1179/016164104225014058] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone) is a free radical scavenger. We tested the hypothesis that combination treatment of Edaravone and recombinant tissue plasminogen activator (tPA) extends the therapeutic time window. Male Wistar rats were subjected to 1.5-, 3.0- or 4.5-hour middle cerebral artery (MCA) occlusion (MCAO) by a nylon thread. Animals were randomly divided into four groups. The Sham group rats were operated without MCAO and drug injection. In the Vehicle-treated group the same volume of saline was given every 1.5 hours from just after MCAO to just before reperfusion. In the Vehicle + tPA-treated group saline injection was given as above and tPA (5 mg/kg, i.v.) was given once just after reperfusion. Edaravone+tPA-treated group: Edaravone (3 mg/kg, i.v.) was given every 1.5 hours instead of saline and tPA injection as above. Survival rate, infarct size and evidence of apoptosis and hemorrhage were examined in the animals. Combining administration of Edaravone+tPA significantly increased survival rate after 3 hours of transient MCAO, and reduced infarct volume after 1.5 hours of transient MCAO compared with the vehicle or vehicle+tPA groups. In Edaravone+tPA-treated group, the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) and 4-hydroxynonenal (4-HNE) positive cells were reduced at 16 hours after 3 hours of transient MCAO, but not in advanced glycation end products (AGEs) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Hemorrhage rate and the area decreased in the Edaravone+tPA-treated group. The combination therapy of Edaravone+tPA increased survival rate, and reduced the infarct volume and hemorrhage with reduction of lipid peroxidation. Therefore, Edaravone combination is expected to extend the therapeutic time window of tPA in the clinical situation.
Collapse
Affiliation(s)
- Wenri Zhang
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikatacho, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Ke XJ, Zhang JJ. Changes in HIF-1α, VEGF, NGF and BDNF levels in cerebrospinal fluid and their relationship with cognitive impairment in patients with cerebral infarction. ACTA ACUST UNITED AC 2013; 33:433-437. [DOI: 10.1007/s11596-013-1137-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Indexed: 11/28/2022]
|
62
|
Xie L, Mao X, Jin K, Greenberg DA. Vascular endothelial growth factor-B expression in postischemic rat brain. Vasc Cell 2013; 5:8. [PMID: 23601533 PMCID: PMC3671984 DOI: 10.1186/2045-824x-5-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/19/2013] [Indexed: 01/27/2023] Open
Abstract
Background Vascular endothelial growth factor-B (VEGF-B) protects against experimental stroke, but the effect of stroke on VEGF-B expression is uncertain. Methods We examined VEGF-B expression by immunohistochemistry in the ischemic border zone 1–7 days after middle cerebral artery occlusion in rats. Results VEGF-B immunoreactivity in the border zone was increased after middle cerebral artery occlusion and was associated with neurons and macrophages/microglia, but not astrocytes or endothelial cells. Conclusions These findings provide additional evidence for a role of VEGF-B in the endogenous response to cerebral ischemia.
Collapse
Affiliation(s)
- Lin Xie
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Xiaoou Mao
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Kunlin Jin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA ; Department of Pharmacology & Neuroscience, University of North Texas, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - David A Greenberg
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| |
Collapse
|
63
|
Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 2013; 70:1753-61. [PMID: 23475070 DOI: 10.1007/s00018-013-1282-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factors (VEGFs) have been shown to participate in atherosclerosis, arteriogenesis, cerebral edema, neuroprotection, neurogenesis, angiogenesis, postischemic brain and vessel repair, and the effects of transplanted stem cells in experimental stroke. Most of these actions involve VEGF-A and the VEGFR-2 receptor, but VEGF-B, placental growth factor, and VEGFR-1 have been implicated in some cases as well. VEGF signaling pathways represent important potential targets for the acute and chronic treatment of stroke.
Collapse
|
64
|
Ara J, Shukla P, Frank M. Enhanced expression of the Flt-1 and Flk-1 receptor tyrosine kinases in a newborn piglet model of ischemic tolerance. J Neurochem 2013. [DOI: 10.1111/jnc.12110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jahan Ara
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| | - Panchanan Shukla
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| | - Melissa Frank
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| |
Collapse
|
65
|
Easton AS. Regulation of permeability across the blood-brain barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:1-19. [PMID: 23397617 DOI: 10.1007/978-1-4614-4711-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier refers to the very low permeability across microvessels in the Central Nervous System (CNS), created by the interaction between vascular endothelial cells and surrounding cells of the neurovascular unit. Permeability can be modulated (increased and decreased) by a variety of factors including inflammatory mediators, inflammatory cells such as neutrophils and through alterations in the phenotype of blood vessels during angiogenesis and apoptosis. In this chapter, some of these factors are discussed as well as the challenge of treating harmful increases in permeability that result in brain swelling (vasogenic cerebral edema).
Collapse
Affiliation(s)
- Alexander S Easton
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
66
|
Hicks C, Stevanato L, Stroemer RP, Tang E, Richardson S, Sinden JD. In vivo and in vitro characterization of the angiogenic effect of CTX0E03 human neural stem cells. Cell Transplant 2012; 22:1541-52. [PMID: 23067568 DOI: 10.3727/096368912x657936] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CTX0E03 is a human neural stem cell line previously reported to reduce sensory motor deficits in a middle cerebral artery occlusion (MCAo) model of stroke. The objective of this study was to investigate if CTX0E03 treatment promotes angiogenesis. As stroke leads to damage of the vasculature in the brain, angiogenesis may contribute to the functional recovery. To test this hypothesis, the angiogenic activity of CTX0E03 was assessed both in vitro and in vivo. In vitro, CTX0E03 expression of trophic and proangiogenic factors was determined by real-time RT-PCR, Western blot, and ELISA, and its angiogenic activity was investigated in well-established angiogenesis assays. In vivo, angiogenesis was investigated in naive mice and MCAo rat brain and was evaluated by immunohistochemistry (IHC) using Von Willebrand factor (VWF), a marker of blood vessel formation, and BrdU/CD31 double labeling in naive mice only. In vitro results showed that CTX0E03-conditioned medium and coculture significantly increased total tubule formation compared with controls (p=0.002 and p=0.0008, respectively). Furthermore, CTX0E03 cells were found to be in direct association with the tubules by ICC. In vivo CTX0E03-treated brains demonstrated a significant increase in areas occupied by VWF-positive microvessels compared with vehicle-treated naive mice (two-way ANOVA, Interaction p<0.05, Treatment p<0.0001, Time p<0.0) and MCAo rat (p=0.001 unpaired t test, Welch's correction). CTX0E03-treated naive mouse brains showed an increase in BrdU/CD31 colabeling. In conclusion, in vitro CTX0E03 cells express proangiogenic factors and may promote angiogenesis by both release of paracrine factors and direct physical interaction. Furthermore, in vivo CTX0E03-treated rodent brains exhibited a significant increase in microvessels at the site of implantation compared with vehicle-injected groups. Taken together these data suggest that CTX0E03 cell therapy may provide significant benefit to stroke patients through upregulation of angiogenesis in the ischemic brain.
Collapse
Affiliation(s)
- Caroline Hicks
- ReNeuron Limited, Surrey Research Park, Guildford, Surrey, UK
| | | | | | | | | | | |
Collapse
|
67
|
Therapeutic interventions against inflammatory and angiogenic mediators in proliferative diabetic retinopathy. Mediators Inflamm 2012; 2012:629452. [PMID: 23028203 PMCID: PMC3457666 DOI: 10.1155/2012/629452] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/15/2012] [Indexed: 12/20/2022] Open
Abstract
The global prevalence of diabetes is estimated to be 336 million people, with diabetic complications contributing to significant worldwide morbidity and mortality. Diabetic retinopathy results from cumulative microvascular damage to the retina and inflammation is recognized as a critical driver of this disease process. This paper outlines the pathophysiology leading to proliferative diabetic retinopathy and highlights many of the inflammatory, angiogenic, and cytokine mediators implicated in the development and progression of this disease. We focus a detailed discussion on the current targeted therapeutic interventions used to treat diabetic retinopathy.
Collapse
|
68
|
Zhang A, Liang L, Niu H, Xu P, Hao Y. Protective effects of VEGF treatment on focal cerebral ischemia in rats. Mol Med Rep 2012; 6:1315-8. [PMID: 22965224 DOI: 10.3892/mmr.2012.1069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/25/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to determine the effects of VEGF treatment on focal cerebral ischemia in rats. Rats were administered PBS or VEGF at concentrations of 10, 20 or 30 µg/ml. The effects of VEGF on the rat infarct volume and neurological deficits were investigated. Transmission electron microscopy was used to observe the ultrastructure of the cerebral cortex. Treatments with VEGF reduced the infarct volume and improved neurological functions. VEGF increased microvessel generation and also inhibited apoptosis in the cerebral cortex and basal ganglia. For the rats in the 30 µg/ml VEGF group, an even higher number of proliferative endothelial cells were observed by electron microscopy. In conclusion, VEGF treatment has protective effects on focal cerebral ischemia in rats.
Collapse
Affiliation(s)
- Aimei Zhang
- The Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | | | | | | | | |
Collapse
|
69
|
Ma Y, Zechariah A, Qu Y, Hermann DM. Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res 2012; 90:1873-82. [DOI: 10.1002/jnr.23088] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/03/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
|
70
|
Potential Therapeutic Targets for Cerebral Resuscitation After Global Ischemia. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
71
|
Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume. J Cereb Blood Flow Metab 2011; 31:2343-51. [PMID: 21772310 PMCID: PMC3323197 DOI: 10.1038/jcbfm.2011.97] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular endothelial growth factor (VEGF)-induced neovasculature is immature and leaky. We tested if coexpression of angiopoietin-1 (ANG1) with VEGF improves blood-brain barrier (BBB) integrity and VEGF neuroprotective and neurorestorative effects using a permanent distal middle cerebral artery occlusion (pMCAO) model. Adult CD-1 mice were injected with 2 × 10(9) virus genomes of adeno-associated viral vectors expressing VEGF (AAV-VEGF) or ANG1 (AAV-ANG1) individually or together in a 1:1 ratio into the ischemic penumbra 1 hour after pMCAO. AAV-LacZ was used as vector control. Samples were collected 3 weeks later. Compared with AAV-LacZ, coinjection of AAV-VEGF and AAV-ANG1 reduced atrophy volume (46%, P=0.004); injection of AAV-VEGF or AAV-ANG1 individually reduced atrophy volume slightly (36%, P=0.08 and 33%, P=0.09, respectively). Overexpression of VEGF reduced tight junction protein expression and increased Evans blue extravasation. Compared with VEGF expression alone, coexpression of ANG1 with VEGF resulted in upregulation of tight junction protein expression and reduction of Evans blue leakage (AAV-ANG1/AAV-VEGF: 1.4 ± 0.3 versus AAV-VEGF: 2.8 ± 0.7, P=0.001). Coinjection of AAV-VEGF and AAV-ANG1 induced a similar degree of angiogenesis as injection of AAV-VEGF alone (P=0.85). Thus, coexpression of ANG1 with VEGF improved BBB integrity and resulted in better neuroprotection compared with VEGF expression alone.
Collapse
|
72
|
Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KLH, Hutchinson PJ. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 2011; 95:352-72. [PMID: 21939729 DOI: 10.1016/j.pneurobio.2011.09.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 01/31/2023]
Abstract
There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease.
Collapse
Affiliation(s)
- Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | | | | | | |
Collapse
|
73
|
Dynamic changes of vascular endothelial growth factor and angiopoietin-1 in association with circulating endothelial progenitor cells after severe traumatic brain injury. ACTA ACUST UNITED AC 2011; 70:1480-4. [PMID: 21817986 DOI: 10.1097/ta.0b013e31821ac9e1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) can promote angiogenesis and vascular stability after brain injury. Circulating endothelial progenitor cells (EPCs) also play a crucial role in neovascularization and tissue repair after traumatic brain injury (TBI). We sought to compare the expression of VEGF and Ang-1 in serum and the circulating EPCs in patients after severe TBI with that of healthy control subjects. METHODS We obtained peripheral blood and serum samples from 21 patients with severe TBI and 11 healthy control subjects. EPCs in blood samples from severe TBI patients and healthy controls were quantified by flow cytometry 1 day, 4 days, 7 days, 14 days, and 21 days after severe TBI. VEGF and Ang-1 were measured by enzyme linked immunosorbent assay at the same time points. RESULTS Compared with control subjects, circulating EPCs in patients with severe TBI decreased 4 days (p < 0.05), but increased 7 days and 14 days (p < 0.05) after TBI. VEGF increased significantly during the follow-up period (p < 0.05). Ang-1 increased gradually and reached peak at 7 days and 14 days after TBI. The circulating EPCs were significantly correlated with VEGF and Ang-1 at 7 days and 14 days after severe TBI. CONCLUSIONS Our results suggest that the increased VEGF and Ang-1 are closely related to increase in circulating EPCs in response to severe TBI, which may be needed for vascular repairs after severe TBI.
Collapse
|
74
|
Zhu JM, Zhao YY, Chen SD, Zhang WH, Lou L, Jin X. Functional recovery after transplantation of neural stem cells modified by brain-derived neurotrophic factor in rats with cerebral ischaemia. J Int Med Res 2011; 39:488-98. [PMID: 21672352 DOI: 10.1177/147323001103900216] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Functional recovery after transplantation of brain-derived neurotrophic factor (BDNF)-modified neural stem cells (NSCs) was evaluated in a rat model of cerebral ischaemia damage induced by temporary middle cerebral artery occlusion (tMCAO). Western blotting and enzyme-linked immunosorbent assay demonstrated upregulated BDNF protein expression by rat embryonic NSCs transfected with the human BDNF gene (BDNF-NSCs). BDNF-NSCs stimulated neurite outgrowth in cocultured dorsal root ganglion neurons, suggesting that BDNF increased neurogenesis in vitro. In vivo, BDNF promoted recovery of tMCAO. Phosphate-buffered saline, untransformed NSCs or BDNF-NSCs were introduced into the penumbra zone of the right striatum of tMCAO rats and neurological function deficit was assessed for up to 12 weeks using the neurological severity score (NSS). The NSS was significantly lower in the BDNF-NSC transfected transplant group than in all the other groups from week 10. BDNF-NSCs recovered 1 week after transplantation expressed BDNF protein. Transplanted NSCs had differentiated into mature neurons 12 weeks after transplantation. Transgenic NSCs have potential as a therapeutic agent for brain ischaemia.
Collapse
Affiliation(s)
- J M Zhu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
75
|
Wang CY, Yang HB, Hsu HS, Chen LL, Tsai CC, Tsai KS, Yew TL, Kao YH, Hung SC. Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. J Tissue Eng Regen Med 2011; 6:559-69. [PMID: 21916015 DOI: 10.1002/term.461] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/13/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022]
Affiliation(s)
| | - Hsiao-Bai Yang
- Department of Pathology; Ton-yen General Hospital; Taiwan; Republic of China
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine; National Yang-Ming University; Taiwan; Republic of China
| | - Ling-Lan Chen
- Stem Cell Laboratory, Department of Medical Research and Education; Taipei Veterans General Hospital; Taiwan; Republic of China
| | | | - Kuo-Shu Tsai
- Stem Cell Laboratory, Department of Medical Research and Education; Taipei Veterans General Hospital; Taiwan; Republic of China
| | - Tu-Lai Yew
- Stem Cell Laboratory, Department of Medical Research and Education; Taipei Veterans General Hospital; Taiwan; Republic of China
| | - Yi-Hsuan Kao
- Institute of Biomedical Imaging and Radiological Sciences; National Yang-Ming University; Taiwan; Republic of China
| | | |
Collapse
|
76
|
Lanfranconi S, Locatelli F, Corti S, Candelise L, Comi GP, Baron PL, Strazzer S, Bresolin N, Bersano A. Growth factors in ischemic stroke. J Cell Mol Med 2011; 15:1645-87. [PMID: 20015202 PMCID: PMC4373358 DOI: 10.1111/j.1582-4934.2009.00987.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/26/2009] [Indexed: 12/31/2022] Open
Abstract
Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects.
Collapse
Affiliation(s)
- S Lanfranconi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - F Locatelli
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - S Corti
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - L Candelise
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - G P Comi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - P L Baron
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - S Strazzer
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - N Bresolin
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - A Bersano
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
77
|
Hypoxic-preconditioning induces neuroprotection against hypoxia–ischemia in newborn piglet brain. Neurobiol Dis 2011; 43:473-85. [DOI: 10.1016/j.nbd.2011.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 11/20/2022] Open
|
78
|
Kawabe J, Koda M, Hashimoto M, Fujiyoshi T, Furuya T, Endo T, Okawa A, Yamazaki M. Neuroprotective effects of granulocyte colony-stimulating factor and relationship to promotion of angiogenesis after spinal cord injury in rats: laboratory investigation. J Neurosurg Spine 2011; 15:414-21. [PMID: 21721873 DOI: 10.3171/2011.5.spine10421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Granulocyte colony-stimulating factor (G-CSF) has neuroprotective effects on the CNS. The authors have previously demonstrated that G-CSF also exerts neuroprotective effects in experimental spinal cord injury (SCI) by enhancing migration of bone marrow-derived cells into the damaged spinal cord, increasing glial differentiation of bone marrow-derived cells, enhancing antiapoptotic effects on both neurons and oligodendrocytes, and by reducing demyelination and expression of inflammatory cytokines. Because the degree of angiogenesis in the subacute phase after SCI correlates with regenerative responses, it is possible that G-CSF's neuroprotective effects after SCI are due to enhancement of angiogenesis. The aim of this study was to assess the effects of G-CSF on the vascular system after SCI. METHODS A contusive SCI rat model was used and the animals were randomly allocated to either a G-CSF-treated group or a control group. Integrity of the blood-spinal cord barrier was evaluated by measuring the degree of edema in the cord and the volume of extravasation. For histological evaluation, cryosections were immunostained with anti-von Willebrand factor and the number of vessels was counted to assess revascularization. Real-time reverse transcriptase polymerase chain reaction was performed to assess expression of angiogenic cytokines, and recovery of motor function was assessed with function tests. RESULTS In the G-CSF-treated rats, the total number of vessels with a diameter > 20 μm was significantly larger and expression of angiogenic cytokines was significantly higher than those in the control group. The G-CSF-treated group showed significantly greater recovery of hindlimb function than the control group. CONCLUSIONS These results suggest that G-CSF exerts neuroprotective effects via promotion of angiogenesis after SCI.
Collapse
Affiliation(s)
- Junko Kawabe
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Minutoli L, Antonuccio P, Squadrito F, Bitto A, Nicotina PA, Fazzari C, Polito F, Marini H, Bonvissuto G, Arena S, Morgia G, Romeo C, Caputi AP, Altavilla D. Effects of polydeoxyribonucleotide on the histological damage and the altered spermatogenesis induced by testicular ischaemia and reperfusion in rats. ACTA ACUST UNITED AC 2011; 35:133-44. [PMID: 21651579 DOI: 10.1111/j.1365-2605.2011.01194.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of polydeoxyribonucleotide (PDRN), an agonist of the A2A adenosine receptors which when activated positively influences sperm activity, were tested in an experimental testicular ischaemia/reperfusion injury model. Anaesthetized male Sprague-Dawley rats were subjected to testicular torsion-induced ischaemia, followed by reperfusion (TI/R). Immediately after detorsion, randomized animals, including SHAM, received intraperitoneal injections of: (i) vehicle (1 mL/kg 0.9% NaCl solution); (ii) PDRN (8 mg/kg); (iii) DMPX (3,7-dimethyl-1-propargilxanthine, 0.1 mg/kg); or (iv) PDRN (8 mg/kg) + DMPX (0.1 mg/kg). Animals were euthanized at 1, 7 and 30 days following reperfusion. Vascular endothelial growth factor (VEGF) expression is normally associated with adenosine A2A receptor stimulation. After treatment, VEGF mRNA/protein expression quantified by qPCR and Western blot, vascular endothelial growth factor receptor-1 (VEGFR1) and endothelial nitric oxide synthase (eNOS) mRNA measured by qPCR, VEGF and VEGFR1 assessed using immunohistochemical methods, histological staining and spermatogenic activity were all analysed. Testis ischaemia-reperfusion (TI/R) injury caused increases in VEGF mRNA and protein, VEGFR1 and eNOS mRNA, histological damage and reduced spermatogenic activity. Immunostaining showed a lower expression of VEGF in germinal epithelial cells and a strong expression of VEGFR1 in Leydig cells after TI/R. PDRN administration increased significantly VEGF message/protein, VEGFR1 and eNOS message, decreased histological damage and ameliorated spermatogenic activity. PDRN might be useful in the management of testicular torsion.
Collapse
Affiliation(s)
- L Minutoli
- Section of Pharmacology, Department of Experimental and Clinical Medicine and Pharmacology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Ma Y, Qu Y, Fei Z. Vascular endothelial growth factor in cerebral ischemia. J Neurosci Res 2011; 89:969-78. [DOI: 10.1002/jnr.22628] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 12/28/2022]
|
81
|
Fan YY, Hu WW, Dai HB, Zhang JX, Zhang LY, He P, Shen Y, Ohtsu H, Wei EQ, Chen Z. Activation of the central histaminergic system is involved in hypoxia-induced stroke tolerance in adult mice. J Cereb Blood Flow Metab 2011; 31:305-14. [PMID: 20588322 PMCID: PMC3049494 DOI: 10.1038/jcbfm.2010.94] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We hypothesized that activation of the central histaminergic system is required for neuroprotection induced by hypoxic preconditioning. Wild-type (WT) and histidine decarboxylase knockout (HDC-KO) mice were preconditioned by 3 hours of hypoxia (8% O(2)) and, 48 hours later, subjected to 30 minutes of middle cerebral artery (MCA) occlusion, followed by 24 hours of reperfusion. Hypoxic preconditioning improved neurologic function and decreased infarct volume in WT or HDC-KO mice treated with histamine, but not in HDC-KO or WT mice treated with α-fluoromethylhistidine (α-FMH, an inhibitor of HDC). Laser-Doppler flowmetry analysis showed that hypoxic preconditioning ameliorated cerebral blood flow (CBF) in the periphery of the MCA territory during ischemia in WT mice but not in HDC-KO mice. Histamine decreased in the cortex of WT mice after 2, 3, and 4 hours of hypoxia, and HDC activity increased after 3 hours of hypoxia. Vascular endothelial growth factor (VEGF) mRNA and protein expressions showed a greater increase after hypoxia than those in HDC-KO or α-FMH-treated WT mice. In addition, the VEGF receptor-2 antagonist SU1498 prevented the protective effect of hypoxic preconditioning in infarct volume and reversed increased peripheral CBF in WT mice. Therefore, endogenous histamine is an essential mediator of hypoxic preconditioning. It may function by enhancing hypoxia-induced VEGF expression.
Collapse
Affiliation(s)
- Yan-ying Fan
- Department of Pharmacology, Institute of Neuroscience, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Herrera JJ, Sundberg LM, Zentilin L, Giacca M, Narayana PA. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury. J Neurotrauma 2010; 27:2067-76. [PMID: 20799882 DOI: 10.1089/neu.2010.1403] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) results in immediate disruption of the spinal vascular network, triggering an ischemic environment and initiating secondary degeneration. Promoting angiogenesis and vascular stability through the induction of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1), respectively, provides a possible therapeutic approach in treating SCI. We examined whether supplementing the injured environment with these two factors, which are significantly reduced following injury, has an effect on lesion size and functional outcome. Sustained delivery of both VEGF(165) and Ang-1 was realized using viral vectors based on the adeno-associated virus (AAV), which were injected directly into the lesion epicenter immediately after injury. Our results indicate that the combined treatment with VEGF and Ang-1 resulted in both reduced hyperintense lesion volume and vascular stabilization, as determined by magnetic resonance imaging (MRI). Western blot analysis indicated that the viral vector expression was maintained into the chronic phase of injury, and that the use of the AAV vectors did not exacerbate infiltration of microglia into the lesion epicenter. The combined treatment with AAV-VEGF and AAV-Ang-1 improved locomotor recovery in the chronic phase of injury. These results indicate that combining angiogenesis with vascular stabilization may have potential therapeutic applications following SCI.
Collapse
Affiliation(s)
- Juan J Herrera
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
83
|
Kang SK, Kang KS, Jee MK, Kim BS. Vascular Endothelial Growth Factor/Kinase Insult Domain Receptor (KDR)/Fetal Liver Kinase 1 (FLK1)–Mediated Skin-Epithelial Progenitor Cells Reprogramming. Tissue Eng Part A 2010; 16:2687-97. [DOI: 10.1089/ten.tea.2010.0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Soo Kyung Kang
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyung Sun Kang
- Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Min Ki Jee
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Bong Sun Kim
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
84
|
Emerich DF, Silva E, Ali O, Mooney D, Bell W, Yu SJ, Kaneko Y, Borlongan C. Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplant 2010; 19:1063-71. [PMID: 20412616 DOI: 10.3727/096368910x498278] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent proangiogenic peptide and its administration has been considered as a potential neuroprotective strategy following cerebral stroke. Because VEGF has a short half-life and limited access to the brain parenchyma following systemic administration, approaches are being developed to deliver it directly to the site of infarction. In the present study, VEGF was incorporated into a sustained release hydrogel delivery system to examine its potential benefits in a rat model of cerebral ischemia. The hydrogel loaded with VEGF (1 μg) was stereotaxically injected into the striatum of adult rats 15 min prior to a 1-h occlusion of the middle cerebral artery. Two days after surgery, animals were tested for motor function using the elevated bias swing test (EBST) and Bederson neurological battery. Control animals received either stroke alone, stroke plus injections of a blank gel, or a single bolus injection of VEGF (1 μg). Behavioral testing confirmed that the MCA occlusion resulted in significant deficits in the the EBST and Bederson tests. In contrast, the performance of animals receiving VEGF gels was significantly improved relative to controls, with only modest impairments observed. Cerebral infarction analyzed using 2,3,5-triphenyl-tetrazolium chloride staining confirmed that the VEGF gels significantly and potently reduced the lesion volume. No neurological or histological benefits were conferred by either blank gel or bolus VEGF injections. These data demonstrate that VEGF, delivered from a hydrogel directly to the brain, can induce significant functional and structural protection from ischemic damage in a rat model of stroke.
Collapse
|
85
|
Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis 2010; 6:107-14. [PMID: 20885857 PMCID: PMC2901814 DOI: 10.4161/org.6.2.11687] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 12/27/2022] Open
Abstract
Vascular endothelial growth factor (VEGF, VEGFA) is critical for blood vessel growth in the developing and adult nervous system of vertebrates. Several recent studies demonstrate that VEGF also promotes neurogenesis, neuronal patterning, neuroprotection and glial growth. For example, VEGF treatment of cultured neurons enhances survival and neurite growth independently of blood vessels. Moreover, evidence is emerging that VEGF guides neuronal migration in the embryonic brain and supports axonal and arterial co-patterning in the developing skin. Even though further work is needed to understand the various roles of VEGF in the nervous system and to distinguish direct neuronal effects from indirect, vessel-mediated effects, VEGF can be considered a promising tool to promote neuronal health and nerve repair.
Collapse
Affiliation(s)
- Jeffrey M Rosenstein
- Department of Anatomy and Cell Biology; The George Washington University Medical Center; Washington, DC USA
| | - Janette M Krum
- Department of Anatomy and Cell Biology; The George Washington University Medical Center; Washington, DC USA
| | | |
Collapse
|
86
|
Abstract
Neonatal brain injury is an important cause of death and disability, with pathways of oxidant stress, inflammation, and excitotoxicity that lead to damage that progresses over a long period of time. Therapies have classically targeted individual pathways during early phases of injury, but more recent therapies such as growth factors may also enhance cell proliferation, differentiation, and migration over time. More recent evidence suggests combined therapy may optimize repair, decreasing cell injury while increasing newly born cells.
Collapse
Affiliation(s)
| | - Donna M. Ferriero
- Department of Pediatrics; University of California, San Francisco (FFG, DMF)
- Department of Neurology; University of California, San Francisco (DMF)
| |
Collapse
|
87
|
Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab 2009; 29:1620-43. [PMID: 19654590 DOI: 10.1038/jcbfm.2009.100] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurovascular remodeling has been recently recognized as a promising target for neurologic therapies. Hopes have emerged that, by stimulating vessel growth, it may be possible to stabilize brain perfusion, and at the same time promote neuronal survival, brain plasticity, and neurologic recovery. In this review, we outline the role of vascular endothelial growth factor (VEGF) in the ischemic brain, analyzing how this growth factor contributes to brain remodeling. Studies with therapeutic VEGF administration resulted in quite variable results depending on the route and time point of delivery. Local VEGF administration consistently enhanced neurologic recovery, whereas acute intravenous delivery exacerbated brain infarcts due to enhanced brain edema. Future studies should answer the following questions: (1) whether increased vessel density translates into improvements in blood flow in the hemodynamically compromised brain; (2) how VEGF influences brain plasticity and contributes to motor and nonmotor recovery; (3) what are the actions of VEGF not only in young animals with preserved vasculature, on which previous studies have been conducted, but also in aged animals and in animals with preexisting atherosclerosis; and (4) whether the effects of VEGF can be mimicked by pharmacological compounds or by cell-based therapies. Only on the basis of such information can more definite conclusions be made with regard to whether the translation of therapeutic angiogenesis into clinics is promising.
Collapse
|
88
|
Hashimoto H, Ishikawa T, Yamaguchi K, Shiotani M, Fujisawa M. Experimental ischaemia-reperfusion injury induces vascular endothelial growth factor expression in the rat testis. Andrologia 2009; 41:216-21. [PMID: 19601932 DOI: 10.1111/j.1439-0272.2009.00918.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Testicular torsion causes ischaemia-reperfusion (I-R) injury of testis and might lead to male infertility. Its injury initiates a pathophysiological cascade, including an activation of inflammatory cytokines and generation of nitric oxide and other reactive oxygen species. Vascular endothelial growth factor (VEGF) mediates angiogenesis and promotes endothelial cell survival. The aim of our study was to investigate the time course expression of VEGF, VEGF-receptor (R)1, VEGF-R2, nitric oxide synthases (NOS) in experimental I-R injury of rat testis. In torsion side testis, the expression of VEGF protein and mRNA significantly increased in a time-dependent manner (P < 0.001 and P < 0.001, respectively). Although the expression of VEGF-R1 mRNA was increased in a similar way (P < 0.001), VEGF-R2 mRNA expression was not detected. In immunohistochemistry, the increase in VEGF protein staining was observed in testicular vascular endothelial cells and germ cells at 24 h after reperfusion. Significant activation of inducible NOS and endothelial NOS was investigated at 12 and 24 h after reperfusion (P < 0.01 and P < 0.001, respectively). This is the first report to show the time course expression of VEGF in experimental I-R rat testis.
Collapse
Affiliation(s)
- H Hashimoto
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, 650-z0017 Japan
| | | | | | | | | |
Collapse
|
89
|
Yang JP, Liu HJ, Wang ZL, Cheng SM, Cheng X, Xu GL, Liu XF. The dose-effectiveness of intranasal VEGF in treatment of experimental stroke. Neurosci Lett 2009; 461:212-6. [PMID: 19559076 DOI: 10.1016/j.neulet.2009.06.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/26/2009] [Accepted: 06/19/2009] [Indexed: 01/19/2023]
Abstract
The aim of the present study was to assess the dose-effectiveness of intranasal (IN) vascular endothelial growth factor (VEGF)in the treatment of experimental stroke. Sprague-Dawley rats were randomized into four groups as IN low (100 microg/ml), IN middle (200 microg/ml) and IN high (500 microg/ml) VEGF-treated group, and IN saline-treated group (n=12), given recombinant human VEGF 165 or saline intranasally. Focal cerebral ischemia was induced by transient (90 min) middle cerebral artery occlusion (MCAO) method. Behavioral neurological deficits were assessed 1, 7 and 14 d after the onset of MCAO. Rats were sacrificed at 14 d, the brain sections were stained and an image analysis system was used to calculate the infarct volume. Microvessels were labeled by FITC-dextran and the segment lengths, diameters and number of microvessels were measured by Image Pro-Plus Version 6.0 software. Fourteen days post MCAO, infarct volume significantly reduced (P<0.01) in rats which received the middle dose of IN VEGF when compared to IN saline. And middle dose of VEGF significantly improved behavioral recovery (P<0.01). No significant difference in the behavioral recovery and infarct volume was observed between the saline-treated group and the low or high VEGF-treated groups (P>0.05). Compared to IN saline, middle and high doses of VEGF significantly increased the segment length, diameter and number of microvessels (P<0.01). No significant difference in the segment length, diameter and number of microvessels was observed between the IN saline-treated group and the low VEGF-treated group (P>0.05). The middle dose of IN VEGF was most effective on reducing infarct volume, improving behavioral recovery and enhancing angiogenesis in stroke brain, which can be used in the following treatments to further evaluate the effect of VEGF.
Collapse
Affiliation(s)
- Ji-Ping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
90
|
Wang YQ, Cui HR, Yang SZ, Sun HP, Qiu MH, Feng XY, Sun FY. VEGF enhance cortical newborn neurons and their neurite development in adult rat brain after cerebral ischemia. Neurochem Int 2009; 55:629-36. [PMID: 19540294 DOI: 10.1016/j.neuint.2009.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 12/16/2022]
Abstract
To study the effect of VEGF overexpression on development of cortical newborn neurons in the brains after stroke, we injected human VEGF(165)-expressive plasmids (phVEGF) into the lateral ventricle of rat brains with a transient middle cerebral artery occlusion (MCAO). An injection of phVEGF significantly promoted angiogenesis (BrdU(+)-von Willebrand's factor(+)) and reduced infarct volume in the rat brain after MCAO. Single labeling of 5'-bromodeoxyuridine (BrdU) and double staining of BrdU with lineage-specific neuronal markers were used to indicate the proliferated cells and maturation of newborn neurons in the brain section of rats at 2, 4, and 8 weeks after MCAO. The results showed that BrdU positive (BrdU(+)) cells existed in ipsilateral frontal cortex within 8 weeks after MCAO and reached the maximum at 2 weeks of reperfusion. The phVEGF treatment significantly increased BrdU(+) cells compared with the control plasmid (pEGFP) injection. Cortical neurogenesis was indicated by the presence of newborn immature (BrdU(+)-Tuj1(+)), newborn mature (BrdU(+)-MAP-2(+)), and newborn GABAergic (BrdU(+)-GAD67(+)) neurons. All these neurons declined within 8 weeks after MCAO in the controls. Injection of phVEGF significantly increased BrdU(+)-Tuj1(+) neurons at 2 weeks, and BrdU(+)-MAP-2(+) neurons and BrdU(+)-GAD67(+) neurons at 4 and 8 weeks, respectively after MCAO. Moreover, phVEGF treatment significantly increased neurite length and branch numbers of BrdU(+)-MAP-2(+) newborn neurons compared with pEGFP treatment. These results demonstrate that VEGF enhances maturation of stroke-induced cortical neurogenesis and dendritic formation of newborn neurons in adult mammalian brains.
Collapse
Affiliation(s)
- Yong-Quan Wang
- Department of Neurobiology, Institute for Biomedical Science, Shanghai Medical College of Fudan University, PR China
| | | | | | | | | | | | | |
Collapse
|
91
|
Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 2009; 89:607-48. [PMID: 19342615 DOI: 10.1152/physrev.00031.2008] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of the nervous and vascular systems constitutes primary events in the evolution of the animal kingdom; the former provides electrical stimuli and coordination, while the latter supplies oxygen and nutrients. Both systems have more in common than originally anticipated. Perhaps the most striking observation is that angiogenic factors, when deregulated, contribute to various neurological disorders, such as neurodegeneration, and might be useful for the treatment of some of these pathologies. The prototypic example of this cross-talk between nerves and vessels is the vascular endothelial growth factor or VEGF. Although originally described as a key angiogenic factor, it is now well established that VEGF also plays a crucial role in the nervous system. We describe the molecular properties of VEGF and its receptors and review the current knowledge of its different functions and therapeutic potential in the nervous system during development, health, disease and in medicine.
Collapse
|
92
|
Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol 2009; 117:481-96. [PMID: 19142647 DOI: 10.1007/s00401-009-0483-6] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 01/19/2023]
Abstract
Though the vascular system of the adult brain is extremely stable under normal baseline conditions, endothelial cells start to proliferate in response to brain ischemia. The induction of angiogenesis, primarily in the ischemic boundary zone, enhances oxygen and nutrient supply to the affected tissue. Additionally, the generation of new blood vessels facilitates highly coupled neurorestorative processes including neurogenesis and synaptogenesis which in turn lead to improved functional recovery. To take advantage of angiogenesis as a therapeutic concept for stroke treatment, the knowledge of the precise molecular mechanisms is mandatory. Especially, since a couple of growth factors involved in post-ischemic angiogenesis may have detrimental adverse effects in the brain by increasing vascular permeability. This article summarizes the knowledge of molecular mechanisms of angiogenesis following cerebral ischemia. Finally, experimental pharmacological and cellular approaches to stimulate and enhance post-ischemic angiogenesis are discussed.
Collapse
Affiliation(s)
- Heike Beck
- Institute of Cardiovascular Physiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Marchioninistr. 27, 81377, Munich, Germany.
| | | |
Collapse
|
93
|
Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 2009; 8:139-52. [PMID: 19165233 DOI: 10.1038/nrd2761] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells in the human body need oxygen to function and survive, and severe deprivation of oxygen, as occurs in ischaemic heart disease and stroke, is a major cause of mortality. Nevertheless, other organisms, such as the fossorial mole rat or diving seals, have acquired the ability to survive in conditions of limited oxygen supply. Hypoxia tolerance also allows the heart to survive chronic oxygen shortage, and ischaemic preconditioning protects tissues against lethal hypoxia. The recent discovery of a new family of oxygen sensors--including prolyl hydroxylase domain-containing proteins 1-3 (PHD1-3)--has yielded exciting novel insights into how cells sense oxygen and keep oxygen supply and consumption in balance. Advances in understanding of the role of these oxygen sensors in hypoxia tolerance, ischaemic preconditioning and inflammation are creating new opportunities for pharmacological interventions for ischaemic and inflammatory diseases.
Collapse
|
94
|
Öz Oyar E, Kardeş Ö, Korkmaz A, Ömeroğlu S. Effects of Vascular Endothelial Growth Factor on Ischemic Spinal Cord Injury Caused by Aortic Cross-Clamping in Rabbits. J Surg Res 2009; 151:94-9. [DOI: 10.1016/j.jss.2008.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/29/2022]
|
95
|
Scharfman HE, MacLusky NJ. Estrogen-growth factor interactions and their contributions to neurological disorders. Headache 2008; 48 Suppl 2:S77-89. [PMID: 18700946 DOI: 10.1111/j.1526-4610.2008.01200.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Estrogen has diverse and powerful effects in the brain, including actions on neurons, glia, and the vasculature. It is not surprising, therefore, that there are many changes in the female brain as serum estradiol levels rise and fall during the normal ovarian cycle. At times of life when estradiol levels change dramatically, such as puberty, postpartum, or menopause, there also are dramatic changes in the central nervous system. Changes that occur because of fluctuations in serum estrogen levels are potentially relevant to neurological disorders because symptoms often vary with the time of the ovarian cycle. Moreover, neurological disorders (eg, seizures and migraine) often increase in frequency in women when estradiol levels change. In this review, the contribution of 2 growth factors targeted by estrogen, the neurotrophin brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), will be discussed. Estrogen-sensitive response elements are present on the genes for both BDNF and VEGF, and they are potent modulators of neuronal, glial, and vascular function, making them logical candidates to mediate the multitude of effects of estrogen. In addition, BDNF induces neuropeptide Y, which has diverse actions that are relevant to estrogen action and to the same neurological disorders.
Collapse
Affiliation(s)
- Helen E Scharfman
- Nathan Kline Institute for Psychiatric Research & New York University School of Medicine, Orangeburg, NY 10962, USA
| | | |
Collapse
|
96
|
Guzman MJ, Crisostomo PR, Wang M, Markel TA, Wang Y, Meldrum DR. Vascular Endothelial Growth Factor Improves Myocardial Functional Recovery Following Ischemia/Reperfusion Injury. J Surg Res 2008; 150:286-92. [DOI: 10.1016/j.jss.2007.12.772] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/12/2007] [Accepted: 12/06/2007] [Indexed: 12/13/2022]
|
97
|
Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, Suh-Kim H. Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 2008; 40:387-97. [PMID: 18779651 DOI: 10.3858/emm.2008.40.4.387] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) secrete bioactive factors that exert diverse responses in vivo. In the present study, we explored mechanism how MSCs may lead to higher functional recovery in the animal stroke model. Bone marrow-derived MSCs were transplanted into the brain parenchyma 3 days after induction of stroke by occluding middle cerebral artery for 2 h. Stoke induced proliferation of resident neural stem cells in subventricular zone. However, most of new born cells underwent cell death and had a limited impact on functional recovery after stroke. Transplantation of MSCs enhanced proliferation of endogenous neural stem cells while suppressing the cell death of newly generated cells. Thereby, newborn cells migrated toward ischemic territory and differentiated in ischemic boundaries into doublecortin+ neuroblasts at higher rates in animals with MSCs compared to control group. The present study indicates that therapeutic effects of MSCs are at least partly ascribed to dual functions of MSCs by enhancing endogenous neurogenesis and protecting newborn cells from deleterious environment. The results reinforce the prospects of clinical application using MSCs in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Seung-Wan Yoo
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-749, Korea
| | | | | | | | | | | | | |
Collapse
|
98
|
Foster KA, Regan HK, Danziger AP, Detwiler T, Kwon N, Rickert K, Lynch JJ, Regan CP. Attenuation of edema and infarct volume following focal cerebral ischemia by early but not delayed administration of a novel small molecule KDR kinase inhibitor. Neurosci Res 2008; 63:10-6. [PMID: 18951929 DOI: 10.1016/j.neures.2008.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/10/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Vascular endothelial growth factor (VEGF) may mediate increases in vascular permeability and hence plasma extravasation and edema following cerebral ischemia. To better define the role of VEGF in edema, we examined the effectiveness of a novel small molecule KDR kinase inhibitor Compound-1 in reducing edema and infarct volume following focal cerebral ischemia in studies utilizing treatment regimens initiated both pre- and post-ischemia, and with study durations of 24-72 h. Rats were subjected to 90 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. Pretreatment with Compound-1 (40 mg/kg p.o.) starting 0.5h before occlusion significantly reduced infarct volume at 72 h post-MCAO (vehicle, 194.1+/-22.9 mm(3) vs. Compound-1, 127.6+/-22.8mm(3) and positive control MK-801, 104.4+/-22.6mm(3), both p<0.05 compared to vehicle control), whereas Compound-1 treatment initiated at 2h after occlusion did not affect infarct volume. Compound-1 pretreatment also significantly reduced brain water content at 24h (vehicle, 80.3+/-0.2% vs. Compound-1, 79.7+/-0.2%, p<0.05) but not at 72 h after MCAO. These results demonstrate that early pretreatment administration of a KDR kinase inhibitor elicited an early, transient decrease in edema and subsequent reduction in infarct volume, implicating VEGF as a mediator of stroke-related vascular permeability and ischemic injury.
Collapse
Affiliation(s)
- Kelley A Foster
- Department of Schizophrenia Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Hao Q, Liu J, Pappu R, Su H, Rola R, Gabriel RA, Lee CZ, Young WL, Yang GY. Contribution of bone marrow-derived cells associated with brain angiogenesis is primarily through leukocytes and macrophages. Arterioscler Thromb Vasc Biol 2008; 28:2151-7. [PMID: 18802012 DOI: 10.1161/atvbaha.108.176297] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE We investigated the role of bone marrow-derived cells (BMDCs) in an angiogenic focus, induced by VEGF stimulation. METHODS AND RESULTS BM from GFP donor mice was isolated and transplanted into lethally irradiated recipients. Four weeks after transplantation, groups of mice received adeno-associated viral vector (AAV)-VEGF or AAV-lacZ gene (control) injection and were euthanized at 1 to 24 weeks. BMDCs were characterized by double-labeled immunostaining. The function of BMDCs was further examined through matrix metalloproteinase (MMP)-2 and -9 activity. We found that capillary density increased after 2 weeks, peaked at 4 weeks (P<0.01), and sustained up to 24 weeks after gene transfer. GFP-positive BMDCs infiltration in the angiogenic focus began at 1 week, peaked at 2 weeks, and decreased thereafter. The GFP-positive BMDCs were colocalized with CD45 (94%), CD68 (71%), 5% Vimentin (5%), CD31/von Willebrand factor (vWF) (1%), and alpha-smooth muscle actin (alpha -SMA, 0.5%). Infiltrated BMDCs expressed MMP-9. MMP-9 KO mice confirmed the dependence of the angiogenic response on MMP-9 availability. CONCLUSIONS Nearly all BMDCs in the angiogenic focus showed expression for leukocytes/macrophages, indicating that BMDCs minimally incorporated into the neovasculature. Colocalization of MMPs with GFP suggests that BMDCs play a critical role in VEGF-induced angiogenic response through up-regulation of MMPs.
Collapse
Affiliation(s)
- Qi Hao
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008; 32:200-19. [PMID: 18790057 DOI: 10.1016/j.nbd.2008.08.005] [Citation(s) in RCA: 757] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/29/2008] [Accepted: 08/10/2008] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels, providing a dynamic interface between the peripheral circulation and the central nervous system. The tight junctions (TJs) between the endothelial cells serve to restrict blood-borne substances from entering the brain. Under ischemic stroke conditions decreased BBB TJ integrity results in increased paracellular permeability, directly contributing to cerebral vasogenic edema, hemorrhagic transformation, and increased mortality. This loss of TJ integrity occurs in a phasic manner, which is contingent on several interdependent mechanisms (ionic dysregulation, inflammation, oxidative and nitrosative stress, enzymatic activity, and angiogenesis). Understanding the inter-relation of these mechanisms is critical for the development of new therapies. This review focuses on those aspects of ischemic stroke impacting BBB TJ integrity and the principle regulatory pathways, respective to the phases of paracellular permeability.
Collapse
Affiliation(s)
- Karin E Sandoval
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
| | | |
Collapse
|