51
|
Eccentric cross-exercise after anterior cruciate ligament reconstruction: Novel case series to enhance neuroplasticity. Phys Ther Sport 2018; 34:55-65. [PMID: 30223234 DOI: 10.1016/j.ptsp.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Substantial changes in neural function are historically present after anterior cruciate ligament reconstruction (ACLR), and are not rectified with traditional rehabilitation. Cross-exercise is a potential means to enhance neural excitability and improve recovery after ACLR. Hence our purpose, was to detail changes in brain activation, neural excitability and patient-reported outcomes in a cohort that completed an 8-week quadriceps-focused eccentric cross-exercise training program immediately following ACLR. DESIGN Case series. SETTING University. PARTICPANTS Five patients participated in an 8-week (24-session) eccentric cross-exercise intervention after ACLR. MAIN OUTCOME MEASURES Brain activation, neural activity and patient-reported outcomes were evaluated within 2 weeks post-ACLR and again at 10-weeks post-ACLR after the intervention. Each cross-exercise session consisted of 4 sets of 10 isokinetic eccentric contractions at 60 deg/sec with the noninvolved limb. RESULTS Following the intervention, patients demonstrated a facilitated spinal reflexive and muscle activity response from the motor cortex during a time when these measures are known to be depressed. Patients also demonstrated a reduce dependence on frontal cortex activity to generate quadriceps contractions. Further patients reported significant reductions in pain and symptoms and greater knee function. CONCLUSIONS Eccentric cross-exercise after ACLR helps to facilitate positive adaptations in neural function and patient reported outcomes.
Collapse
|
52
|
Maeo S, Shan X, Otsuka S, Kanehisa H, Kawakami Y. Single-joint eccentric knee extension training preferentially trains the rectus femoris within the quadriceps muscles. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sumiaki Maeo
- Ritsumeikan Global Innovation Research Organization; Ritsumeikan University; Kusatsu Shiga Japan
| | - Xiyao Shan
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| | - Shun Otsuka
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| | - Hiroaki Kanehisa
- Department of Sports and Life Science; National Institute of Fitness and Sports in Kanoya; Kanoya Kagoshima Japan
| | - Yasuo Kawakami
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| |
Collapse
|
53
|
Green LA, Gabriel DA. The cross education of strength and skill following unilateral strength training in the upper and lower limbs. J Neurophysiol 2018. [PMID: 29668382 DOI: 10.1152/jn.00116.2018.-cross] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
UNLABELLED Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-wk unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pretraining, posttraining, and following 6 wk of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or nondominant). There were no sex differences in the training response. Cross education of strength at posttraining was 6% ( P < 0.01) in the untrained arm and 13% ( P < 0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm ( P < 0.01) and 14% in the leg ( P < 0.01). There was no difference in strength gains between upper and lower limbs ( P > 0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared with the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude ( P = 0.02) and central activation ( P < 0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs ( P > 0.05). The neuromuscular mechanisms mirrored the force increases at posttraining and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability. NEW & NOTEWORTHY We examined cross education of strength and skill following 6 wk of unilateral training and 6 wk of detraining. A novel finding was the continued increase in contralateral strength following both training and detraining. Neuromuscular adaptations were highly correlated with strength gains in the trained and contralateral limbs. Motor learning was evident in the trained and contralateral limbs during contractions performed without concurrent feedback.
Collapse
Affiliation(s)
- Lara A Green
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| |
Collapse
|
54
|
Frazer AK, Pearce AJ, Howatson G, Thomas K, Goodall S, Kidgell DJ. Determining the potential sites of neural adaptation to cross-education: implications for the cross-education of muscle strength. Eur J Appl Physiol 2018; 118:1751-1772. [PMID: 29995227 DOI: 10.1007/s00421-018-3937-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
Cross-education describes the strength gain in the opposite, untrained limb following a unilateral strength training program. Since its discovery in 1894, several studies now confirm the existence of cross-education in contexts that involve voluntary dynamic contractions, eccentric contraction, electrical stimulation, whole-body vibration and, more recently, following mirror feedback training. Although many aspects of cross-education have been established, the mediating neural mechanisms remain unclear. Overall, the findings of this review show that the neural adaptations to cross-education of muscle strength most likely represent a continuum of change within the central nervous system that involves both structural and functional changes within cortical motor and non-motor regions. Such changes are likely to be the result of more subtle changes along the entire neuroaxis which include, increased corticospinal excitability, reduced cortical inhibition, reduced interhemispheric inhibition, changes in voluntary activation and new regions of cortical activation. However, there is a need to widen the breadth of research by employing several neurophysiological techniques (together) to better understand the potential mechanisms mediating cross-education. This fundamental step is required in order to better prescribe targeted and effective guidelines for the clinical practice of cross-education. There is a need to determine whether similar cortical responses also occur in clinical populations where, perhaps, the benefits of cross-education could be best observed.
Collapse
Affiliation(s)
- Ashlyn K Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia.
| | - Alan J Pearce
- Discipline of Exercise Science, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Dawson J Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia
| |
Collapse
|
55
|
Douglas J, Pearson S, Ross A, McGuigan M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med 2018; 47:917-941. [PMID: 27647157 DOI: 10.1007/s40279-016-0628-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance training is an integral component of physical preparation for athletes. A growing body of evidence indicates that eccentric strength training methods induce novel stimuli for neuromuscular adaptations. OBJECTIVE The purpose of this systematic review was to determine the effects of eccentric training in comparison to concentric-only or traditional (i.e. constrained by concentric strength) resistance training. METHODS Searches were performed using the electronic databases MEDLINE via EBSCO, PubMed and SPORTDiscus via EBSCO. Full journal articles investigating the long-term (≥4 weeks) effects of eccentric training in healthy (absence of injury or illness during the 4 weeks preceding the training intervention), adult (17-35 years), human participants were selected for the systematic review. A total of 40 studies conformed to these criteria. RESULTS Eccentric training elicits greater improvements in muscle strength, although in a largely mode-specific manner. Superior enhancements in power and stretch-shortening cycle (SSC) function have also been reported. Eccentric training is at least as effective as other modalities in increasing muscle cross-sectional area (CSA), while the pattern of hypertrophy appears nuanced and increased CSA may occur longitudinally within muscle (i.e. the addition of sarcomeres in series). There appears to be a preferential increase in the size of type II muscle fibres and the potential to exert a unique effect upon fibre type transitions. Qualitative and quantitative changes in tendon tissue that may be related to the magnitude of strain imposed have also been reported with eccentric training. CONCLUSIONS Eccentric training is a potent stimulus for enhancements in muscle mechanical function, and muscle-tendon unit (MTU) morphological and architectural adaptations. The inclusion of eccentric loads not constrained by concentric strength appears to be superior to traditional resistance training in improving variables associated with strength, power and speed performance.
Collapse
Affiliation(s)
- Jamie Douglas
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,High Performance Sport New Zealand (HPSNZ), AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand.
| | - Simon Pearson
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.,Queensland Academy of Sport, Nathan, QLD, Australia
| | - Angus Ross
- High Performance Sport New Zealand (HPSNZ), AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand
| | - Mike McGuigan
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.,School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
56
|
Hedayatpour N, Izanloo Z, Falla D. The effect of eccentric exercise and delayed onset muscle soreness on the homologous muscle of the contralateral limb. J Electromyogr Kinesiol 2018; 41:154-159. [PMID: 29902705 DOI: 10.1016/j.jelekin.2018.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022] Open
Abstract
High intensity eccentric exercise induces muscle fiber damage and associated delayed-onset muscle soreness (DOMS) resulting in an impaired ability of the muscle to generate voluntary force. This study investigates the extent to which DOMS, induced by high intensity eccentric exercise, can affect the activation and performance of the non-exercised homologous muscle of the contralateral limb. Healthy volunteers performed maximal voluntary contractions of knee extension and sustained isometric knee extension at 50% of maximal force until task failure on both the ipsilateral exercised limb and the contralateral limb. Surface electromyography (EMG) was recorded from the ipsilateral and contralateral knee extensor muscles (vastus medialis, rectus femoris, and vastus lateralis). Maximal isometric knee extension force (13.7% reduction) and time to task failure (38.1% reduction) of the contralateral non-exercised leg decreased immediately after eccentric exercise, and persisted 24 h and 48 h later (p < 0.05). Moreover, the amplitude of muscle activity recorded from the contralateral knee extensor muscles was significantly lower during the post exercise maximal and submaximal contractions following high intensity eccentric exercise of the opposite limb (p < 0.05). Unilateral high intensity eccentric exercise of the quadriceps can contribute to reduced neuromuscular activity and physical work capacity of the non-exercised homologous muscle in the contralateral limb.
Collapse
Affiliation(s)
- Nosratollah Hedayatpour
- Center for Biomechanics and Motor Control (BMC), Department of Physical Education and Sport Science, University of Bojnord, Bojnord, Iran
| | - Zahra Izanloo
- Center for Biomechanics and Motor Control (BMC), Department of Physical Education and Sport Science, University of Bojnord, Bojnord, Iran
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom.
| |
Collapse
|
57
|
Manca A, Hortobágyi T, Rothwell J, Deriu F. Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. J Appl Physiol (1985) 2018; 124:1502-1518. [DOI: 10.1152/japplphysiol.01016.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We reviewed the evidence from randomized controlled trials (RCTs) focusing on the neurophysiological adaptations in the untrained side associated with cross-education of strength (CE) and pooled data into definite effect estimates for neurophysiological variables assessed in chronic CE studies. Furthermore, scoping directions for future research were provided to enhance the homogeneity and comparability of studies investigating the neural responses to CE. The magnitude of CE was 21.1 ± 18.2% (mean ± SD; P < 0.0001) in 22 RCTs ( n = 467 subjects) that measured at least 1 neurophysiological variable in the untrained side, including the following: electromyography (EMG; 14 studies); motor evoked potential (MEP; 8 studies); short-interval intracortical inhibition (SICI), recruitment curve, and M wave (6 studies); cortical silent period (cSP; 5 studies); interhemispheric inhibition, intracortical facilitation (ICF), and H reflex (2 studies); and V wave, short-interval ICF, short-latency afferent inhibition, and long-latency afferent inhibition (1 study). Only EMG, MEP, ICF, cSP, and SICI could be included in the meta-analysis (18 studies, n = 387). EMG ( P = 0.26, n = 235) and MEP amplitude ( P = 0.11, n = 145) did not change in the untrained limb after CE. cSP duration ( P = 0.02, n = 114) and SICI ( P = 0.001, n = 95) decreased in the untrained hemisphere according to body region and type and intensity of training. The magnitude of CE did not correlate with changes in these transcranial magnetic stimulation (TMS) measures. The design of this meta-analytical study and the lack of correlations prevented the ability to link mechanistically the observed neurophysiological changes to CE. Notwithstanding the limited amount of data available for pooling, the use of TMS to assess the ipsilateral neurophysiological responses to unilateral training still confirms the central neural origin hypothesis of chronic CE induced by strength training. However, how these neural adaptations contribute to CE remains unclear.
Collapse
Affiliation(s)
- Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
58
|
Zult T, Gokeler A, van Raay JJAM, Brouwer RW, Zijdewind I, Farthing JP, Hortobágyi T. Cross-education does not accelerate the rehabilitation of neuromuscular functions after ACL reconstruction: a randomized controlled clinical trial. Eur J Appl Physiol 2018; 118:1609-1623. [PMID: 29796857 PMCID: PMC6060748 DOI: 10.1007/s00421-018-3892-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/14/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE Cross-education reduces quadriceps weakness 8 weeks after anterior cruciate ligament (ACL) surgery, but the long-term effects are unknown. We investigated whether cross-education, as an adjuvant to the standard rehabilitation, would accelerate recovery of quadriceps strength and neuromuscular function up to 26 weeks post-surgery. METHODS Group allocation was randomized. The experimental (n = 22) and control (n = 21) group received standard rehabilitation. In addition, the experimental group strength trained the quadriceps of the non-injured leg in weeks 1-12 post-surgery (i.e., cross-education). Primary and secondary outcomes were measured in both legs 29 ± 23 days prior to surgery and at 5, 12, and 26 weeks post-surgery. RESULTS The primary outcome showed time and cross-education effects. Maximal quadriceps strength in the reconstructed leg decreased 35% and 12% at, respectively, 5 and 12 weeks post-surgery and improved 11% at 26 weeks post-surgery, where strength of the non-injured leg showed a gradual increase post-surgery up to 14% (all p ≤ 0.015). Limb symmetry deteriorated 9-10% more for the experimental than control group at 5 and 12 weeks post-surgery (both p ≤ 0.030). One of 34 secondary outcomes revealed a cross-education effect: Voluntary quadriceps activation of the reconstructed leg was 6% reduced for the experimental vs. control group at 12 weeks post-surgery (p = 0.023). Both legs improved force control (22-34%) and dynamic balance (6-7%) at 26 weeks post-surgery (all p ≤ 0.043). Knee joint proprioception and static balance remained unchanged. CONCLUSION Standard rehabilitation improved maximal quadriceps strength, force control, and dynamic balance in both legs relative to pre-surgery but adding cross-education did not accelerate recovery following ACL reconstruction.
Collapse
Affiliation(s)
- Tjerk Zult
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Vision and Eye Research Unit, School of Medicine, Anglia Ruskin University, Young Street 213, Cambridge, CB1 1PT, UK.
| | - Alli Gokeler
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos J A M van Raay
- Department of Orthopedic Surgery, Martini Hospital, Groningen, The Netherlands
| | - Reinoud W Brouwer
- Department of Orthopedic Surgery, Martini Hospital, Groningen, The Netherlands
| | - Inge Zijdewind
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
59
|
Unilateral wrist extension training after stroke improves strength and neural plasticity in both arms. Exp Brain Res 2018; 236:2009-2021. [DOI: 10.1007/s00221-018-5275-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/24/2018] [Indexed: 01/13/2023]
|
60
|
Green LA, Gabriel DA. The cross education of strength and skill following unilateral strength training in the upper and lower limbs. J Neurophysiol 2018; 120:468-479. [PMID: 29668382 DOI: 10.1152/jn.00116.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-wk unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pretraining, posttraining, and following 6 wk of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or nondominant). There were no sex differences in the training response. Cross education of strength at posttraining was 6% ( P < 0.01) in the untrained arm and 13% ( P < 0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm ( P < 0.01) and 14% in the leg ( P < 0.01). There was no difference in strength gains between upper and lower limbs ( P > 0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared with the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude ( P = 0.02) and central activation ( P < 0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs ( P > 0.05). The neuromuscular mechanisms mirrored the force increases at posttraining and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability. NEW & NOTEWORTHY We examined cross education of strength and skill following 6 wk of unilateral training and 6 wk of detraining. A novel finding was the continued increase in contralateral strength following both training and detraining. Neuromuscular adaptations were highly correlated with strength gains in the trained and contralateral limbs. Motor learning was evident in the trained and contralateral limbs during contractions performed without concurrent feedback.
Collapse
Affiliation(s)
- Lara A Green
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| |
Collapse
|
61
|
Andrushko JW, Gould LA, Farthing JP. Contralateral effects of unilateral training: sparing of muscle strength and size after immobilization. Appl Physiol Nutr Metab 2018; 43:1131-1139. [PMID: 29800529 DOI: 10.1139/apnm-2018-0073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The contralateral effects of unilateral strength training, known as cross-education of strength, date back well over a century. In the last decade, a limited number of studies have emerged demonstrating the preservation or "sparing" effects of cross-education during immobilization. Recently published evidence reveals that the sparing effects of cross-education show muscle site specificity and involve preservation of muscle cross-sectional area. The new research also demonstrates utility of training with eccentric contractions as a potent stimulus to preserve immobilized limb strength across multiple modes of contraction. The cumulative data in nonclinical settings suggest that cross-education can completely abolish expected declines in strength and muscle size in the range of ∼13% and ∼4%, respectively, after 3-4 weeks of immobilization of a healthy arm. The evidence hints towards the possibility that unique mechanisms may be involved in preservation effects of cross-education, as compared with those that lead to functional improvements under normal conditions. Cross-education effects after strength training appear to be larger in clinical settings, but there is still only 1 randomized clinical trial demonstrating the potential utility of cross-education in addition to standard treatment. More work is necessary in both controlled and clinical settings to understand the potential interaction of neural and muscle adaptations involved in the observed sparing effects, but there is growing evidence to advocate for the clinical utility of cross-education.
Collapse
Affiliation(s)
- Justin W Andrushko
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Layla A Gould
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.,b College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan P Farthing
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| |
Collapse
|
62
|
Colomer-Poveda D, Romero-Arenas S, Hortobagyi T, Márquez G. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. Neurologia 2018; 36:285-297. [PMID: 29305060 DOI: 10.1016/j.nrl.2017.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Unilateral resistance training has been shown to improve muscle strength in both the trained and the untrained limb. One of the most widely accepted theories is that this improved performance is due to nervous system adaptations, specifically in the primary motor cortex. According to this hypothesis, increased corticospinal excitability (CSE), measured with transcranial magnetic stimulation, is one of the main adaptations observed following prolonged periods of training. The principal aim of this review is to determine the degree of adaptation of CSE and its possible functional association with increased strength in the untrained limb. DEVELOPMENT We performed a systematic literature review of studies published between January 1970 and December 2016, extracted from Medline (via PubMed), Ovid, Web of Science, and Science Direct online databases. The search terms were as follows: (transcranial magnetic stimulation OR excitability) AND (strength training OR resistance training OR force) AND (cross transfer OR contralateral limb OR cross education). A total of 10 articles were found. CONCLUSION Results regarding increased CSE were inconsistent. Although the possibility that the methodology had a role in this inconsistency cannot be ruled out, the results appear to suggest that there may not be a functional association between increases in muscle strength and in CSE.
Collapse
Affiliation(s)
- D Colomer-Poveda
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España
| | - S Romero-Arenas
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España
| | - T Hortobagyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Países Bajos
| | - G Márquez
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España.
| |
Collapse
|
63
|
Andrushko JW, Lanovaz JL, Björkman KM, Kontulainen SA, Farthing JP. Unilateral strength training leads to muscle-specific sparing effects during opposite homologous limb immobilization. J Appl Physiol (1985) 2017; 124:866-876. [PMID: 29357520 DOI: 10.1152/japplphysiol.00971.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cross education (CE) occurs after unilateral training whereby performance of the untrained contralateral limb is enhanced. A few studies have shown that CE can preserve or "spare" strength and size of an opposite immobilized limb, but the specificity (i.e., trained homologous muscle and contraction type) of these effects is unknown. The purpose was to investigate specificity of CE "sparing" effects with immobilization. The nondominant forearm of 16 participants was immobilized with a cast, and participants were randomly assigned to a resistance training (eccentric wrist flexion, 3 times/week) or control group for 4 weeks. Pre- and posttesting involved wrist flexors and extensors eccentric, concentric and isometric maximal voluntary contractions (via dynamometer), muscle thickness (via ultrasound), and forearm muscle cross-sectional area (MCSA; via peripheral quantitative computed tomography). Only the training group showed strength preservation across all contractions in the wrist flexors of the immobilized limb (training: -2.4% vs. control: -21.6%; P = 0.04), and increased wrist flexors strength of the nonimmobilized limb (training: 30.8% vs. control: -7.4%; P = 0.04). Immobilized arm MCSA was preserved for the training group only (training: 1.3% vs. control: -2.3%; P = 0.01). Muscle thickness differed between groups for the immobilized (training: 2.8% vs. control: -3.2%; P = 0.01) and nonimmobilized wrist flexors (training: 7.1% vs. control: -3.7%; P = 0.02). Strength preservation was nonspecific to contraction type ( P = 0.69, [Formula: see text] = 0.03) yet specific to the trained flexors muscle. These findings suggest that eccentric training of the nonimmobilized limb can preserve size of the immobilized contralateral homologous muscle and strength across multiple contraction types. NEW & NOTEWORTHY Unilateral strength training preserves strength, muscle thickness, and muscle cross-sectional area in an opposite immobilized limb. The preservation of size and strength was confined to the trained homologous muscle group. However, strength was preserved across multiple contraction types.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Joel L Lanovaz
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Kelsey M Björkman
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Saija A Kontulainen
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
64
|
Ben Othman A, Behm DG, Chaouachi A. Evidence of homologous and heterologous effects after unilateral leg training in youth. Appl Physiol Nutr Metab 2017; 43:282-291. [PMID: 29069548 DOI: 10.1139/apnm-2017-0338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The positive effects of unilateral training on contralateral muscles (cross education) has been demonstrated with adults for over a century. There is limited evidence for cross education of heterologous muscles. Cross education has not been demonstrated with children. It was the objective of this study to investigate cross-education training in children examining ipsilateral and contralateral homologous and heterologous muscles. Forty-eight male children (aged 10-13 years) were assessed for unilateral, ipsilateral and contralateral lower limb strength, power and endurance (1-repetition maximum (RM) leg press, knee extensors (KE) and flexors (KF) maximum voluntary isometric contractions (MVIC), countermovement jump, muscle endurance test (leg press repetitions with 60% 1RM)), and upper body unilateral MVIC elbow flexors (EF) and handgrip strength. An 8-week training program involved 2 unilateral leg press resistance-training groups (high load/low repetitions: 4-8 sets of 5RM, and low load/high repetitions: 1-2 sets of 20RM) and control (untrained) group. All muscles exhibited improvements of 6.1% to 89.1%. The trained limb exhibited greater adaptations than the untrained limb for leg press 1RM (40.3% vs. 25.2%; p = 0.005), and 60% 1RM leg press (104.1% vs. 73.4%; p = 0.0001). The high load/low repetition training induced (p < 0.0001) greater improvements than low load/high repetition with KE, KF, EF MVIC and leg press 1RM. This is the first study to demonstrate cross-education effects with children and that the effects of unilateral training involve both contralateral homologous and heterologous muscles with the greatest strength-training responses from high-load/low-repetition training.
Collapse
Affiliation(s)
- Aymen Ben Othman
- a Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - David G Behm
- c School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Anis Chaouachi
- a Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,b AUT University, Sports Performance Research Institute New Zealand, Auckland, New Zealand
| |
Collapse
|
65
|
The corticospinal responses of metronome-paced, but not self-paced strength training are similar to motor skill training. Eur J Appl Physiol 2017; 117:2479-2492. [DOI: 10.1007/s00421-017-3736-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
66
|
Manca A, Dragone D, Dvir Z, Deriu F. Cross-education of muscular strength following unilateral resistance training: a meta-analysis. Eur J Appl Physiol 2017; 117:2335-2354. [PMID: 28936703 DOI: 10.1007/s00421-017-3720-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/10/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Cross-education (CE) of strength is a well-known phenomenon whereby exercise of one limb can induce strength gains in the contralateral untrained limb. The only available meta-analyses on CE, which date back to a decade ago, estimated a modest 7.8% increase in contralateral strength following unilateral training. However, in recent years new evidences have outlined larger contralateral gains, which deserve to be systematically evaluated. Therefore, the aim of this meta-analysis was to appraise current data on CE and determine its overall magnitude of effect. METHODS Five databases were searched from inception to December 2016. All randomized controlled trials focusing on unilateral resistance training were carefully checked by two reviewers who also assessed the eligibility of the identified trials and extracted data independently. The risk of bias was assessed using the Cochrane Risk-of-Bias tool. RESULTS Thirty-one studies entered the meta-analysis. Data from 785 subjects were pooled and subgroup analyses by body region (upper/lower limb) and type of training (isometric/concentric/eccentric/isotonic-dynamic) were performed. The pooled estimate of CE was a significant 11.9% contralateral increase (95% CI 9.1-14.8; p < 0.00001; upper limb: + 9.4%, p < 0.00001; lower limb: + 16.4%, p < 0.00001). Significant CE effects were induced by isometric (8.2%; p = 0.0003), concentric (11.3%; p < 0.00001), eccentric (17.7%; p = 0.003) and isotonic-dynamic training (15.9%; p < 0.00001), although a high risk of bias was detected across the studies. CONCLUSIONS Unilateral resistance training induces significant contraction type-dependent gains in the contralateral untrained limb. Methodological issues in the included studies are outlined to provide guidance for a reliable quantification of CE in future studies.
Collapse
Affiliation(s)
- A Manca
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro 43/b, 07100, Sassari, Italy
| | - D Dragone
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro 43/b, 07100, Sassari, Italy
| | - Z Dvir
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro 43/b, 07100, Sassari, Italy.
| |
Collapse
|
67
|
Mason J, Frazer AK, Horvath DM, Pearce AJ, Avela J, Howatson G, Kidgell DJ. Ipsilateral corticomotor responses are confined to the homologous muscle following cross-education of muscular strength. Appl Physiol Nutr Metab 2017; 43:11-22. [PMID: 28829918 DOI: 10.1139/apnm-2017-0457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cross-education of strength occurs when strength-training 1 limb increases the strength of the untrained limb and is restricted to the untrained homologous muscle. Cortical circuits located ipsilateral to the trained limb might be involved. We used transcranial magnetic stimulation (TMS) to determine the corticomotor responses from the untrained homologous (biceps brachii) and nonhomologous (flexor carpi radialis) muscle following strength-training of the right elbow flexors. Motor evoked potentials were recorded from the untrained left biceps brachii and flexor carpi radialis during a submaximal contraction from 20 individuals (10 women, 10 men; aged 18-35 years; training group, n = 10; control group, n = 10) before and after 3 weeks of strength-training the right biceps brachii at 80% of 1-repetition maximum. Recruitment-curves for corticomotor excitability and inhibition of the untrained homologous and nonhomologous muscle were constructed and assessed by examining the area under the recruitment curve. Strength-training increased strength of the trained elbow flexors (29%), resulting in an 18% increase in contralateral strength of the untrained elbow flexors (P < 0.0001). The trained wrist flexors increased by 19%, resulting in a 12% increase in strength of the untrained wrist flexors (P = 0.005). TMS showed increased corticomotor excitability and decreased corticomotor inhibition for the untrained homologous muscle (P < 0.05); however, there were no changes in the untrained nonhomologous muscle (P > 0.05). These findings show that the cross-education of muscular strength is spatially distributed; however, the neural adaptations are confined to the motor pathway ipsilateral to the untrained homologous agonist.
Collapse
Affiliation(s)
- Joel Mason
- a Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne 3155, Australia
| | - Ashlyn K Frazer
- a Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne 3155, Australia
| | - Deanna M Horvath
- b Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne 3086, Australia
| | - Alan J Pearce
- c Discipline of Sport & Exercise Science, School of Allied Health, La Trobe University, Melbourne 3086, Australia
| | - Janne Avela
- d Department of Biology and Physical Activity, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Glyn Howatson
- e Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK.,f Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| | - Dawson J Kidgell
- a Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne 3155, Australia
| |
Collapse
|
68
|
Hyldahl RD, Chen TC, Nosaka K. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exerc Sport Sci Rev 2017; 45:24-33. [PMID: 27782911 DOI: 10.1249/jes.0000000000000095] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Skeletal muscle adapts to exercise-induced damage by orchestrating several but still poorly understood mechanisms that endow protection from subsequent damage. Known widely as the repeated bout effect, we propose that neural adaptations, alterations to muscle mechanical properties, structural remodeling of the extracellular matrix, and biochemical signaling work in concert to coordinate the protective adaptation.
Collapse
Affiliation(s)
- Robert D Hyldahl
- 1Department of Exercise Sciences, Brigham Young University, Provo, UT; 2Department of Physical Education, National Taiwan Normal University, Taipei City, Taiwan; and 3Centre for Exercise and Sports Sciences, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | |
Collapse
|
69
|
Hedayatpour N, Golestani A, Izanloo Z, Meghdadi M. Unilateral leg resistance training improves time to task failure of the contralateral untrained leg. ACTA GYMNICA 2017. [DOI: 10.5507/ag.2017.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
70
|
Leslie AW, Lanovaz JL, Andrushko JW, Farthing JP. Flexibility training and the repeated-bout effect: priming interventions prior to eccentric training of the knee flexors. Appl Physiol Nutr Metab 2017; 42:1044-1053. [PMID: 28609641 DOI: 10.1139/apnm-2017-0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both the repeated-bout effect and increased flexibility have been linked to reduced muscle damage, fatigue, and strength loss after intense eccentric exercise. Our purpose was to compare the eccentric-training (ECC) response after first priming the muscles with either static flexibility training or a single intense bout of eccentric exercise. Twenty-five participants were randomly assigned to flexibility training (n = 8; 3×/week; 30 min/day), a single bout of intense eccentric exercise (n = 9), or no intervention (control; n = 8) during a 4-week priming phase, prior to completing a subsequent 4-week period of eccentric training of the knee flexors. Testing was completed prior to the priming phase, before ECC, during acute ECC (0 h, 24 h, and 48 h after bouts 1 and 4), and after ECC. Measures included muscle thickness (MT; via ultrasound); isometric, concentric, and eccentric strength; muscle power (dynamometer); electromyography; range of motion; optimal angle of peak torque; and soreness (visual analog scale). Flexibility training and single-bout groups had 47% less soreness at 48 h after the first bout of ECC compared with control (p < 0.05). The flexibility training group had 10% less soreness at 48 h after the fourth ECC bout compared with both the single-bout and control groups (p < 0.05). Isometric strength loss was attenuated for the flexibility training group (-9%) after the fourth ECC bout compared with control (-19%; p < 0.05). All groups had similar increases in strength, MT, and power after ECC (p < 0.05). Prior flexibility training may be more effective than a single session of eccentric exercise in reducing adverse symptoms during the acute stages of eccentric training; however, these benefits did not translate into greater performance after training.
Collapse
Affiliation(s)
- Andrew W Leslie
- College of Kinesiology, 87 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.,College of Kinesiology, 87 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Joel L Lanovaz
- College of Kinesiology, 87 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.,College of Kinesiology, 87 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Justin W Andrushko
- College of Kinesiology, 87 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.,College of Kinesiology, 87 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Jonathan P Farthing
- College of Kinesiology, 87 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.,College of Kinesiology, 87 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| |
Collapse
|
71
|
Abstract
Context: Neuromuscular alterations are a major causal factor of primary and secondary injuries. Though injury prevention programs have experienced some success, rates of injuries have not declined, and after injury, individuals often return to activity with functionality below clinical recommendations. Considering alternative therapies to the conventional concentric exercise approach, such as one that can target neuromuscular injury risk and postinjury alterations, may provide for more effective injury prevention and rehabilitation protocols. Evidence Acquisition: Peer-reviewed sources available on the Web of Science and MEDLINE databases from 2000 through 2016 were gathered using searches associated with the keywords eccentric exercise, injury prevention, and neuromuscular control. Hypothesis: Eccentric exercise will reduce injury risk by targeting specific neural and morphologic alterations that precipitate neuromuscular dysfunction. Study Design: Clinical review. Level of Evidence: Level 4. Results: Neuromuscular control is influenced by alterations in muscle morphology and neural activity. Eccentric exercise beneficially modifies several underlying factors of muscle morphology (fiber typing, cross-sectional area, working range, and pennation angle), and emerging evidence indicates that eccentric exercise is also beneficial to peripheral and central neural activity (alpha motorneuron recruitment/firing, sarcolemma activity, corticospinal excitability, and brain activation). Conclusion: There is mounting evidence that eccentric exercise is not only a therapeutic intervention influencing muscle morphology but also targets unique alterations in neuromuscular control, influencing injury risk.
Collapse
Affiliation(s)
- Lindsey K Lepley
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Adam S Lepley
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - James A Onate
- School of Health and Rehabilitative Sciences, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio
| |
Collapse
|
72
|
Collins BW, Lockyer EJ, Button DC. Prescribing cross-education of strength: Is it time? Muscle Nerve 2017; 56:684-685. [PMID: 28407340 DOI: 10.1002/mus.25665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Brandon W Collins
- Human Neurophysiology Laboratory, School of Human Kinetics and Recreation, St. John's, Newfoundland, Canada
| | - Evan J Lockyer
- Human Neurophysiology Laboratory, School of Human Kinetics and Recreation, St. John's, Newfoundland, Canada
| | - Duane C Button
- Human Neurophysiology Laboratory, School of Human Kinetics and Recreation, St. John's, Newfoundland, Canada.,BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|
73
|
Hedayatpour N, Golestani A, Izanloo Z, Sepehri A, Kamali M. Time to task failure of the contralateral untrained limb after high load-low repetition eccentric and low load-high repetition resistance training. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700020003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
74
|
Hendy AM, Lamon S. The Cross-Education Phenomenon: Brain and Beyond. Front Physiol 2017; 8:297. [PMID: 28539892 PMCID: PMC5423908 DOI: 10.3389/fphys.2017.00297] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
Objectives: Unilateral resistance training produces strength gains in the untrained homologous muscle group, an effect termed “cross-education.” The observed strength transfer has traditionally been considered a phenomenon of the nervous system, with few studies examining the contribution of factors beyond the brain and spinal cord. In this hypothesis and theory article, we aim to discuss further evidence for structural and functional adaptations occurring within the nervous, muscle, and endocrine systems in response to unilateral resistance training. The limitations of existing cross-education studies will be explored, and novel potential stakeholders that may contribute to the cross-education effect will be identified. Design: Critical review of the literature. Method: Search of online databases. Results: Studies have provided evidence that functional reorganization of the motor cortex facilitates, at least in part, the effects of cross-education. Cross-activation of the “untrained” motor cortex, ipsilateral to the trained limb, plays an important role. While many studies report little or no gains in muscle mass in the untrained limb, most experimental designs have not allowed for sensitive or comprehensive investigation of structural changes in the muscle. Conclusions: Increased neural drive originating from the “untrained” motor cortex contributes to the cross-education effect. Adaptive changes within the muscle fiber, as well as systemic and hormonal factors require further investigation. An increased understanding of the physiological mechanisms contributing to cross-education will enable to more effectively explore its effects and potential applications in rehabilitation of unilateral movement disorders or injury.
Collapse
Affiliation(s)
- Ashlee M Hendy
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin UniversityGeelong, VIC, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin UniversityGeelong, VIC, Australia
| |
Collapse
|
75
|
Boyes NG, Yee P, Lanovaz JL, Farthing JP. Cross-education after high-frequency versus low-frequency volume-matched handgrip training. Muscle Nerve 2017; 56:689-695. [PMID: 28249351 DOI: 10.1002/mus.25637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Cross-education training programs cause interlimb asymmetry of strength and hypertrophy. We examined the cross-education effects from a high-frequency (HF) versus a low-frequency (LF) volume-matched handgrip training program on interlimb asymmetry. METHODS Right-handed participants completed either HF (n = 10; 2 × 6 repetitions 10 times per week) or LF (n = 9; 5 × 8 repetitions 3 times per week) training. Testing occurred twice before and once after 4 weeks of right-handed isometric handgrip training totaling 120 weekly repetitions. Measures were maximal isometric handgrip and wrist flexion torque, muscle thickness, and muscle activation (electromyography; EMG). RESULTS Grip strength was greater in both limbs posttraining, pooled across groups (P < 0.001). Trained limb muscle thickness increased in both groups (P < 0.05; untrained, P = 0.897). EMG and wrist flexion torque did not change (all P > 0.103). DISCUSSION Both LF and HF induced cross-education of grip strength to the untrained limb, but HF did not reduce asymmetry. These findings have implications for injury rehabilitation. Muscle Nerve 56: 689-695, 2017.
Collapse
Affiliation(s)
- Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, Saskatchewan, Canada, S7N 5B2
| | - Peter Yee
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, Saskatchewan, Canada, S7N 5B2
| | - Joel L Lanovaz
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, Saskatchewan, Canada, S7N 5B2
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, Saskatchewan, Canada, S7N 5B2
| |
Collapse
|
76
|
Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, González-Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport 2017; 20:943-951. [PMID: 28385560 DOI: 10.1016/j.jsams.2017.03.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 01/24/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The purpose of this meta-analysis was to examine the effect of flywheel (FW) resistance training with Eccentric Overload (FW-EOT) on muscle size and functional capacities (i.e. strength and power) in athletes and healthy subjects, and to compare FW-induced adaptations with those triggered by traditional resistance exercise interventions. DESIGN A systematic review and meta-analysis of randomised controlled trials. METHODS A search of electronic databases [PubMed, MEDLINE (SportDiscus), Web of Science, Scopus and PEDro] was conducted to identify all publications employing FW-EOT up to April 30, 2016. Outcomes were analyzed as continuous outcomes using a random effects model to calculate a standardized mean difference (SMD) and 95% CI. A total of 9 studies with 276 subjects and 92 effect sizes met the inclusion criteria and were included in the statistical analyses. RESULTS The overall pooled estimate from the main effects analysis was 0.63 (95% CI 0.49-0.76) with a significant (p<0.001) Z overall effect of 9.17. No significant heterogeneity (p value=0.78) was found. The meta-analysis showed significant differences between FW-EOT vs. conventional resistance training in concentric and eccentric strength, muscle power, muscle hypertrophy, vertical jump height and running speed, favoring FW-EOT. CONCLUSIONS This meta-analysis provides evidence supporting the superiority of FW-EOT, compared with traditional weight-stack exercise, to promote skeletal muscle adaptations in terms of strength, power and size in healthy subjects and athletes.
Collapse
Affiliation(s)
| | - David García-López
- Department of Health Sciences, European University Miguel de Cervantes, Spain
| | | | | | | | - José A de Paz
- Institute of Biomedicine (IBIOMED), University of León, Spain
| |
Collapse
|
77
|
Frazer AK, Williams J, Spittle M, Kidgell DJ. Cross-education of muscular strength is facilitated by homeostatic plasticity. Eur J Appl Physiol 2017; 117:665-677. [DOI: 10.1007/s00421-017-3538-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
78
|
Tallent J, Goodall S, Gibbon KC, Hortobágyi T, Howatson G. Enhanced Corticospinal Excitability and Volitional Drive in Response to Shortening and Lengthening Strength Training and Changes Following Detraining. Front Physiol 2017; 8:57. [PMID: 28223941 PMCID: PMC5293799 DOI: 10.3389/fphys.2017.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
There is a limited understanding of the neurological adaptations responsible for changes in strength following shortening and lengthening resistance training and subsequent detraining. The aim of the study was to investigate differences in corticospinal and spinal responses to resistance training of the tibialis anterior muscle between shortening or lengthening muscle contractions for 4 weeks and after 2 weeks of detraining. Thirty-one untrained individuals were assigned to either shortening or lengthening isokinetic resistance training (4 weeks, 3 days/weeks) or a non-training control group. Transcranial magnetic stimulation and peripheral nerve stimulation (PNS) were used to assess corticospinal and spinal changes, respectively, at pre-, mid-, post-resistance training and post detraining. Greater increases changes (P < 0.01) in MVC were found from the respective muscle contraction training. Motor evoked potentials (expressed relative to background EMG) significantly increased in lengthening resistance training group under contraction intensities ranging from 25 to 80% of the shortening and lengthening contraction intensity (P < 0.01). In the shortening resistance training group increases were only seen at 50 and 80% of both contraction type. Volitional drive (V-wave) showed a greater increase following lengthening resistance training (57%) during maximal lengthening contractions compared to maximal shortening contractions following shortening resistance training (23%; P < 0.001). During the detraining period MVC and V-wave did not change (P > 0.05), although MEP amplitude decreased during the detraining period (P < 0.01). No changes in H-reflex were found pre to post resistance training or post detraining. Modulation in V-wave appeared to be contraction specific, whereby greatest increases occurred following lengthening resistance training. Strength and volitional drive is maintained following 2 weeks detraining, however corticospinal excitability appears to decrease when the training stimulus is withdrawn.
Collapse
Affiliation(s)
- Jamie Tallent
- Department of Sport, Exercise and Rehabilitation, Northumbria UniversityNewcastle-upon-Tyne, UK; School of Sport, Health and Applied Science, St Mary's UniversityTwickenham, UK
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle-upon-Tyne, UK
| | - Karl C Gibbon
- Department of Advanced Health Science, Buckinghamshire New University High Wycombe, UK
| | - Tibor Hortobágyi
- Department of Sport, Exercise and Rehabilitation, Northumbria UniversityNewcastle-upon-Tyne, UK; Faculty of Medical Sciences, University of GroningenGroningen, Netherlands
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria UniversityNewcastle-upon-Tyne, UK; Water Research Group, School of Environmental Sciences and Development, Northwest UniversityPotchefstroom, South Africa
| |
Collapse
|
79
|
Wages NP, Beck TW, Ye X, Carr JC. Unilateral fatiguing exercise and its effect on ipsilateral and contralateral resting mechanomyographic mean frequency between aerobic populations. Physiol Rep 2017; 5:e13151. [PMID: 28242828 PMCID: PMC5328779 DOI: 10.14814/phy2.13151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022] Open
Abstract
The purpose of this investigation was to establish a better understanding of contralateral training and its effects between homologous muscles following unilateral fatiguing aerobic exercise during variable resting postural positions, and to determine if any observable disparities could be attributed to the differences between the training ages of the participants. Furthermore, we hypothesized that we would observe a contralateral cross-over effect for both groups, with the novice trained group having the higher mechanomyographic mean frequency values in both limbs, across all resting postural positions. Twenty healthy male subjects exercised on an upright cycle ergometer, using only their dominate limb, for 30 min at 60% of their VO2 peak. Resting electromyographic and mechanomyographic signals were measured prior to and following fatiguing aerobic exercise. We found that there were resting mechanomyographic mean frequency differences of approximately 1.9 ± 0.8% and 0.9 ± 0.7%; 9.1 ± 0.3% and 10.2 ± 3.7%; 2 ± 1.8% and 3 ± 1.4%; and 0.9 ± 0.6% and 0.2 ± 1.3% between the novice and advanced trained groups (for the upright sitting position with legs extended 180°; upright sitting position with legs bent 90°; lying supine position with legs extended 180°; and lying supine with legs bent 90°, respectively), from the dominant and nondominant limbs, respectively. We have concluded that despite the relative matching of exercise intensity between groups, acute responses to contralateral training become less accentuated as one progresses in training age. Additionally, our results lend support to the notion that there are multiple, overlapping neural and mechanical mechanisms concurrently contributing to the contralateral cross-over effects observed across the postexercise resting time course.
Collapse
Affiliation(s)
- Nathan P Wages
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Travis W Beck
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Xin Ye
- Department of Health, Exercise Science and Recreation Management, University of Mississippi, University, Mississippi
| | - Joshua C Carr
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
80
|
Prieske O, Aboodarda SJ, Benitez Sierra JA, Behm DG, Granacher U. Slower but not faster unilateral fatiguing knee extensions alter contralateral limb performance without impairment of maximal torque output. Eur J Appl Physiol 2017; 117:323-334. [PMID: 28078451 DOI: 10.1007/s00421-016-3524-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023]
Abstract
PURPOSE The purpose of the present study was to examine the effects of unilateral fatigue of the knee extensors at different movement velocities on neuromuscular performance in the fatigued and non-fatigued leg. METHODS Unilateral fatigue of the knee extensors was induced in 11 healthy young men (23.7 ± 3.8 years) at slower (60°/s; FAT60) and faster movement velocities (240°/s; FAT240) using an isokinetic dynamometer. A resting control (CON) condition was included. The fatigue protocols consisted of five sets of 15 maximal concentric knee extensions using the dominant leg. Before and after fatigue, peak isokinetic torque (PIT) and time to PIT (TTP) of the knee extensors as well as electromyographic (EMG) activity of vastus medialis, vastus lateralis, and biceps femoris muscles were assessed at 60 and 240°/s movement velocities in the fatigued and non-fatigued leg. RESULTS In the fatigued leg, significantly greater PIT decrements were observed following FAT60 and FAT240 (11-19%) compared to CON (3-4%, p = .002, d = 2.3). Further, EMG activity increased in vastus lateralis and biceps femoris muscle following FAT240 only (8-28%, 0.018 ≤ p ≤ .024, d = 1.8). In the non-fatigued leg, shorter TTP values were found after the FAT60 protocol (11-15%, p = .023, d = 2.4). No significant changes were found for EMG data in the non-fatigued leg. CONCLUSION The present study revealed that both slower and faster velocity fatiguing contractions failed to show any evidence of cross-over fatigue on PIT. However, unilateral knee extensor fatigue protocols conducted at slower movement velocities (i.e., 60°/s) appear to modulate torque production on the non-fatigued side (evident in shorter TTP values).
Collapse
Affiliation(s)
- Olaf Prieske
- Division of Training and Movement Science, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany.
| | | | - José A Benitez Sierra
- Division of Training and Movement Science, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NF, Canada
| | - Urs Granacher
- Division of Training and Movement Science, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany
| |
Collapse
|
81
|
Nagamori A, Valero-Cuevas FJ, Finley JM. Unilateral Eccentric Contraction of the Plantarflexors Leads to Bilateral Alterations in Leg Dexterity. Front Physiol 2016; 7:582. [PMID: 27965588 PMCID: PMC5127811 DOI: 10.3389/fphys.2016.00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 11/13/2022] Open
Abstract
Eccentric contractions can affect musculotendon mechanical properties and disrupt muscle proprioception, but their behavioral consequences are poorly understood. We tested whether repeated eccentric contractions of plantarflexor muscles of one leg affected the dexterity of either leg. Twenty healthy male subjects (27.3 ± 4.0 yrs) compressed a compliant and slender spring prone to buckling with each isolated leg. The maximal instability they could control (i.e., the maximal average sustained compression force, or lower extremity dexterity force, LEDforce) quantified the dexterity of each leg. We found that eccentric contractions did not affect LEDforce, but reduced force variability (LEDSD). Surprisingly, LEDforce increased in the non-exposed, contralateral leg. These effects were specific to exposure to eccentric contractions because an effort-matched exposure to walking did not affect leg dexterity. In the exposed leg, eccentric contractions (i) reduced voluntary error corrections during spring compressions (i.e., reduced 0.5–4 Hz power of LEDforce); (ii) did not change spinal excitability (i.e., unaffected H-reflexes); and (iii) changed the structure of the neural drive to the α-motoneuron pool (i.e., reduced EMG power within the 4–8 Hz physiological tremor band). These results suggest that repeated eccentric contractions alter the feedback control for dexterity in the exposed leg by reducing muscle spindle sensitivity. Moreover, the unexpected improvement in LEDforce in the non-exposed contralateral leg was likely a consequence of crossed-effects on its spinal and supraspinal feedback control. We discuss the implications of these bilateral effects of unilateral eccentric contractions, their effect on spinal and supraspinal control of dynamic foot-ground interactions, and their potential to facilitate rehabilitation from musculoskeletal and neuromotor impairments.
Collapse
Affiliation(s)
- Akira Nagamori
- Division of Biokinesiology and Physical Therapy, University of Southern California Los Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern CaliforniaLos Angeles, CA, USA; Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - James M Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
82
|
Beyer KS, Fukuda DH, Boone CH, Wells AJ, Townsend JR, Jajtner AR, Gonzalez AM, Fragala MS, Hoffman JR, Stout JR. Short-Term Unilateral Resistance Training Results in Cross Education of Strength Without Changes in Muscle Size, Activation, or Endocrine Response. J Strength Cond Res 2016; 30:1213-23. [PMID: 26466136 DOI: 10.1519/jsc.0000000000001219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J Strength Cond Res 30(5): 1213-1223, 2016-The purpose of this study was to assess the cross education of strength and changes in the underlying mechanisms (muscle size, activation, and hormonal response) after a 4-week unilateral resistance training (URT) program. A group of 9 untrained men completed a 4-week URT program on the dominant leg (DOM), whereas cross education was measured in the nondominant leg (NON); and were compared with a control group (n = 8, CON). Unilateral isometric force (PKF), leg press (LP) and leg extension (LE) strength, muscle size (by ultrasonography) and activation (by electromyography) of the rectus femoris and vastus lateralis, and the hormonal response (testosterone, growth hormone, insulin, and insulin-like growth factor-1) were tested pretraining and posttraining. Group × time interactions were present for PKF, LP, LE, and muscle size in DOM and for LP in NON. In all interactions, the URT group improved significantly better than CON. There was a significant acute hormonal response to URT, but no chronic adaptation after the 4-week training program. Four weeks of URT resulted in an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response.
Collapse
Affiliation(s)
- Kyle S Beyer
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Cross-education of wrist extensor strength is not influenced by non-dominant training in right-handers. Eur J Appl Physiol 2016; 116:1757-69. [DOI: 10.1007/s00421-016-3436-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/11/2016] [Indexed: 11/26/2022]
|
84
|
ZULT TJERK, GOODALL STUART, THOMAS KEVIN, SOLNIK STANISLAW, HORTOBÁGYI TIBOR, HOWATSON GLYN. Mirror Training Augments the Cross-education of Strength and Affects Inhibitory Paths. Med Sci Sports Exerc 2016; 48:1001-13. [DOI: 10.1249/mss.0000000000000871] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
85
|
Ehrensberger M, Simpson D, Broderick P, Monaghan K. Cross-education of strength has a positive impact on post-stroke rehabilitation: a systematic literature review. Top Stroke Rehabil 2016; 23:126-35. [DOI: 10.1080/10749357.2015.1112062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
86
|
Coratella G, Milanese C, Schena F. Cross-education effect after unilateral eccentric-only isokinetic vs dynamic constant external resistance training. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0244-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Leung M, Rantalainen T, Teo WP, Kidgell D. Motor cortex excitability is not differentially modulated following skill and strength training. Neuroscience 2015; 305:99-108. [DOI: 10.1016/j.neuroscience.2015.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/08/2023]
|
88
|
Pairot de Fontenay B, Argaud S, Blache Y, Monteil K. Contralateral limb deficit seven months after ACL-reconstruction: an analysis of single-leg hop tests. Knee 2015; 22:309-12. [PMID: 25981951 DOI: 10.1016/j.knee.2015.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Following ACL-reconstruction, the non-injured leg (NIL) is used as a reference to assess injured leg (IL) recovery. However, deficits have been reported in the NIL questioning its use as a reference. The aim of this study is to assess whether NIL deficits are present while jumping after ACL-reconstruction. METHODS Thirteen males who had undergone ACL-reconstruction and 16 healthy subjects took part in the experiment. Jumping performance was assessed during a single and a triple hop for distance. Jumping performance, kinematic and kinetic data were recorded during single leg squat jumps. Values for both the NIL and the IL were compared to those of a control group (CG). RESULTS Jumping performance for single and triple hop for distance and single leg squat jump was lower in the NIL than in the CG (p=0.004, p=0.002, and p=0.016, respectively). During the squat jump, the knee joint was more extended and the ankle plantar-flexion was greater at take-off while the peak total moment was 15% lower in the NIL than in the CG (p=0.002, p=0.002, and p=0.009, respectively). We found consistent evolutions in the NIL and the IL compared to the CG for jumping performance, initial joint angles, and peak total moment during the squat jump, but the opposite was found for the ankle and knee joint angles at squat jump take-off. CONCLUSIONS Jumping strategies are impaired in the NIL after ACL-R during jump tasks with some deficits matching those observed in the IL and some specific to the NIL. LEVEL OF EVIDENCE III, Case control study.
Collapse
Affiliation(s)
- Benoît Pairot de Fontenay
- Université de Lyon, Université Claude Bernard Lyon 1, CRIS EA 647 Laboratoire de la Performance Motrice, Mentale et du Matériel (P3M) France.
| | - Sebastien Argaud
- Université de Lyon, Université Claude Bernard Lyon 1, CRIS EA 647 Laboratoire de la Performance Motrice, Mentale et du Matériel (P3M) France
| | - Yoann Blache
- Université de Lyon, Université Claude Bernard Lyon 1, CRIS EA 647 Laboratoire de la Performance Motrice, Mentale et du Matériel (P3M) France
| | - Karine Monteil
- Université de Lyon, Université Claude Bernard Lyon 1, CRIS EA 647 Laboratoire de la Performance Motrice, Mentale et du Matériel (P3M) France
| |
Collapse
|
89
|
Hosseinzadeh M, Samani A, Andersen OK, Nosaka K, Arendt-Nielsen L, Madeleine P. Ipsilateral resistance exercise prevents exercise-induced central sensitization in the contralateral limb: a randomized controlled trial. Eur J Appl Physiol 2015; 115:2253-62. [DOI: 10.1007/s00421-015-3205-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022]
|
90
|
Kidgell DJ, Frazer AK, Daly RM, Rantalainen T, Ruotsalainen I, Ahtiainen J, Avela J, Howatson G. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience 2015; 300:566-75. [PMID: 26037804 DOI: 10.1016/j.neuroscience.2015.05.057] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 10/23/2022]
Abstract
AIM Strength training of one limb results in a substantial increase in the strength of the untrained limb, however, it remains unknown what the corticospinal responses are following either eccentric or concentric strength training and how this relates to the cross-education of strength. The aim of this study was to determine if eccentric or concentric unilateral strength training differentially modulates corticospinal excitability, inhibition and the cross-transfer of strength. METHODS Changes in contralateral (left limb) concentric strength, eccentric strength, motor-evoked potentials, short-interval intracortical inhibition and silent period durations were analyzed in groups of young adults who exercised the right wrist flexors with either eccentric (N=9) or concentric (N=9) contractions for 12 sessions over 4weeks. Control subjects (N=9) did not train. RESULTS Following training, both groups exhibited a significant strength gain in the trained limb (concentric group increased concentric strength by 64% and eccentric group increased eccentric strength by 62%) and the extent of the cross-transfer of strength was 28% and 47% for the concentric and eccentric group, respectively, which was different between groups (P=0.031). Transcranial magnetic stimulation revealed that eccentric training reduced intracortical inhibition (37%), silent period duration (15-27%) and increased corticospinal excitability (51%) compared to concentric training for the untrained limb (P=0.033). There was no change in the control group. CONCLUSION The results show that eccentric training uniquely modulates corticospinal excitability and inhibition of the untrained limb to a greater extent than concentric training. These findings suggest that unilateral eccentric contractions provide a greater stimulus in cross-education paradigms and should be an integral part of the rehabilitative process following unilateral injury to maximize the response.
Collapse
Affiliation(s)
- D J Kidgell
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, Australia.
| | - A K Frazer
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - R M Daly
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - T Rantalainen
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - I Ruotsalainen
- Department of Biology and Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - J Ahtiainen
- Department of Biology and Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - J Avela
- Department of Biology and Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - G Howatson
- Department of Sport Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK; Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|
91
|
Urbin MA, Harris-Love ML, Carter AR, Lang CE. High-Intensity, Unilateral Resistance Training of a Non-Paretic Muscle Group Increases Active Range of Motion in a Severely Paretic Upper Extremity Muscle Group after Stroke. Front Neurol 2015; 6:119. [PMID: 26074871 PMCID: PMC4445317 DOI: 10.3389/fneur.2015.00119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Limited rehabilitation strategies are available for movement restoration when paresis is too severe following stroke. Previous research has shown that high-intensity resistance training of one muscle group enhances strength of the homologous, contralateral muscle group in neurologically intact adults. How this “cross education” phenomenon might be exploited to moderate severe weakness in an upper extremity muscle group after stroke is not well understood. The primary aim of this study was to examine adaptations in force-generating capacity of severely paretic wrist extensors resulting from high intensity, dynamic contractions of the non-paretic wrist extensors. A secondary, exploratory aim was to probe neural adaptations in a subset of participants from each sample using a single-pulse, transcranial magnetic stimulation (TMS) protocol. Separate samples of neurologically intact controls (n = 7) and individuals ≥4 months post stroke (n = 6) underwent 16 sessions of training. Following training, one-repetition maximum of the untrained wrist extensors in the control group and active range of motion of the untrained, paretic wrist extensors in the stroke group were significantly increased. No changes in corticospinal excitability, intracortical inhibition, or interhemispheric inhibition were observed in control participants. Both stroke participants who underwent TMS testing, however, exhibited increased voluntary muscle activation following the intervention. In addition, motor-evoked potentials that were unobtainable prior to the intervention were readily elicited afterwards in a stroke participant. Results of this study demonstrate that high-intensity resistance training of a non-paretic upper extremity muscle group can enhance voluntary muscle activation and force-generating capacity of a severely paretic muscle group after stroke. There is also preliminary evidence that corticospinal adaptations may accompany these gains.
Collapse
Affiliation(s)
- M A Urbin
- Program in Physical Therapy, Washington University School of Medicine , St. Louis, MO , USA
| | - Michelle L Harris-Love
- Georgetown University Medical Center, MedStar National Rehabilitation Hospital , Washington, DC , USA
| | - Alex R Carter
- Department of Neurology, Washington University School of Medicine , St. Louis, MO , USA
| | - Catherine E Lang
- Program in Physical Therapy, Washington University School of Medicine , St. Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St. Louis, MO , USA ; Program in Occupational Therapy, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
92
|
Song Y, Forsgren S, Liu JX, Yu JG, Stål P. Unilateral muscle overuse causes bilateral changes in muscle fiber composition and vascular supply. PLoS One 2014; 9:e116455. [PMID: 25545800 PMCID: PMC4278887 DOI: 10.1371/journal.pone.0116455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/08/2014] [Indexed: 12/28/2022] Open
Abstract
Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1 w, 3 w and 6 w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3 w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6 w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Ji-Guo Yu
- Department of Surgical and Perioperative Sciences, Sports Medicine Unit, Umeå University, Umeå, Sweden
| | - Per Stål
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
93
|
Fernandez-Gonzalo R, Nissemark C, Åslund B, Tesch PA, Sojka P. Chronic stroke patients show early and robust improvements in muscle and functional performance in response to eccentric-overload flywheel resistance training: a pilot study. J Neuroeng Rehabil 2014; 11:150. [PMID: 25359231 PMCID: PMC4236468 DOI: 10.1186/1743-0003-11-150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Resistance exercise comprising eccentric (ECC) muscle actions enhances muscle strength and function to aid stroke patients in conducting daily tasks. The purpose of this study was to assess the efficacy of a novel ECC-overload flywheel resistance exercise paradigm to induce muscle and functional performance adaptations in chronic stroke patients. METHODS Twelve patients (~8 years after stroke onset) performed 4 sets of 7 coupled concentric (CON) and ECC actions using the affected limb on a flywheel leg press (LP) device twice weekly for 8 weeks. Maximal CON and ECC isokinetic torque at 30, 60 and 90°/s, isometric knee extension and LP force, and CON and ECC peak power in LP were measured before and after training. Balance (Berg Balance Scale, BBS), gait (6-Min Walk test, 6MWT; Timed-Up-and-Go, TUG), functional performance (30-s Chair-Stand Test, 30CST), spasticity (Modified Ashworth Scale) and perceived participation (Stroke Impact Scale, SIS) were also determined. RESULTS CON and ECC peak power increased in both the trained affected (34 and 44%; P < 0.01), and the untrained, non-affected leg (25 and 34%; P < 0.02). Power gains were greater (P = 0.008) for ECC than CON actions. ECC isokinetic torque at 60 and 90°/s increased in the affected leg (P < 0.04). The increase in isometric LP force for the trained, affected leg across tests ranged 10-20% (P < 0.05). BBS (P = 0.004), TUG (P = 0.018), 30CST (P = 0.024) and SIS (P = 0.058) scores improved after training. 6MWT and spasticity remained unchanged. CONCLUSIONS This novel, short-term ECC-overload flywheel RE training regime emerges as a valid, safe and viable method to improve muscle function, balance, gait and functional performance in men and women suffering from chronic stroke.
Collapse
|
94
|
Zult T, Howatson G, Kádár EE, Farthing JP, Hortobágyi T. Role of the mirror-neuron system in cross-education. Sports Med 2014; 44:159-78. [PMID: 24122078 DOI: 10.1007/s40279-013-0105-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present review proposes the untested hypothesis that cross-education performed with a mirror increases the transfer of motor function to the resting limb compared with standard cross-education interventions without a mirror. The hypothesis is based on neuroanatomical evidence suggesting an overlap in activated brain areas when a unilateral motor task is performed with and without a mirror in the context of cross-education of the upper extremities. The review shows that the mirror-neuron system (MNS), connecting sensory neurons responding to visual properties of an observed action and motor neurons that discharge action potentials during the execution of a similar action, has the potential to enhance cross-education.
Collapse
|
95
|
Abstract
The "restoring symmetry" hypothesis poses that cross-education of strength--a crossed-limb adaptation after unilateral training--is best applied to clinical conditions presenting with asymmetries. Cross-education mechanisms should be viewed as evolutionarily conserved circuits that have a small impact on daily life but a meaningful impact for rehabilitation. Two recently published examples are hemiparesis after stroke and unilateral orthopedic injury.
Collapse
Affiliation(s)
- Jonathan P Farthing
- 1College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan; and 2Rehabilitation Neuroscience Laboratory, 3Centre for Biomedical Research, 4Division of Medical Sciences, and 5School of Exercise Science, Physical and Health Education, University of Victoria, Victoria; and 6Human Discovery Science, International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada
| | | |
Collapse
|
96
|
Lepley LK, Palmieri-Smith RM. Cross-education strength and activation after eccentric exercise. J Athl Train 2014; 49:582-9. [PMID: 25117873 DOI: 10.4085/1062-6050-49.3.24] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT After injury, eccentric exercise of the injured limb is often contraindicated. Cross-education training, whereby the uninvolved limb is exercised, is an alternative that may improve quadriceps muscle strength and activation in the unexercised limb. OBJECTIVE To determine the effect of eccentric exercise on quadriceps strength and activation gains in the unexercised limb. PATIENTS OR OTHER PARTICIPANTS Eighteen healthy individuals were randomly assigned to an eccentric training group or a control group. INTERVENTION(S) Quadriceps strength and activation measures were collected at preintervention, midintervention, and postintervention. Eccentric training participants exercised their dominant limb with a dynamometer in eccentric mode at 60°/s, 3 times per week for 8 weeks. MAIN OUTCOME MEASURE(S) Quadriceps strength was quantified at 30° and 60°/s in concentric and eccentric modes. Quadriceps activation was assessed using the burst superimposition technique and quantified via the central activation ratio. A 2 × 3 repeated-measures analysis of variance was used to detect the effects of group and testing session on quadriceps strength and activation. Where appropriate, post hoc Bonferroni multiple-comparisons procedures were used. RESULTS We found greater eccentric strength in the unexercised limbs of eccentric training participants between preintervention and midintervention and between preintervention and postintervention (preintervention to midintervention: 30°/s P = .05; preintervention to postintervention: 30°/s P = .02, 60°/s P = .02). No differences were noted in concentric strength (P > .05). An overall trend toward greater quadriceps activation in the unexercised knee was detected between preintervention and postintervention (P = .063), with the eccentric training group demonstrating a strong effect (Cohen d = 0.83). Control strength did not change (P > .05). CONCLUSIONS Exercising with eccentric actions resulted in mode-specific and velocity-specific gains in quadriceps strength in the unexercised limb. A trend toward greater quadriceps activation in the unexercised knee was noted, suggesting that strength gains may have occurred because of enhanced neural activity. This type of therapy may be a useful addition to rehabilitation programs designed to improve quadriceps strength.
Collapse
|
97
|
Issurin VB. Training transfer: scientific background and insights for practical application. Sports Med 2014; 43:675-94. [PMID: 23633165 DOI: 10.1007/s40279-013-0049-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Training transfer as an enduring, multilateral, and practically important problem encompasses a large body of research findings and experience, which characterize the process by which improving performance in certain exercises/tasks can affect the performance in alternative exercises or motor tasks. This problem is of paramount importance for the theory of training and for all aspects of its application in practice. Ultimately, training transfer determines how useful or useless each given exercise is for the targeted athletic performance. The methodological background of training transfer encompasses basic concepts related to transfer modality, i.e., positive, neutral, and negative; the generalization of training responses and their persistence over time; factors affecting training transfer such as personality, motivation, social environment, etc. Training transfer in sport is clearly differentiated with regard to the enhancement of motor skills and the development of motor abilities. The studies of bilateral skill transfer have shown cross-transfer effects following one-limb training associated with neural adaptations at cortical, subcortical, spinal, and segmental levels. Implementation of advanced sport technologies such as motor imagery, biofeedback, and exercising in artificial environments can facilitate and reinforce training transfer from appropriate motor tasks to targeted athletic performance. Training transfer of motor abilities has been studied with regard to contralateral effects following one limb training, cross-transfer induced by arm or leg training, the impact of strength/power training on the preparedness of endurance athletes, and the impact of endurance workloads on strength/power performance. The extensive research findings characterizing the interactions of these workloads have shown positive transfer, or its absence, depending on whether the combinations conform to sport-specific demands and physiological adaptations. Finally, cross-training as a form of concurrent exercising in different athletic disciplines has been examined in reference to the enhancement of general fitness, the preparation of recreational athletes, and the preparation of athletes for multi-sport activities such as triathlon, duathlon, etc.
Collapse
|
98
|
Optimizing the benefits of exercise on physical function in older adults. PM R 2013; 6:528-43. [PMID: 24361365 DOI: 10.1016/j.pmrj.2013.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023]
Abstract
As the number of older adults continues to rise worldwide, the prevention of physical disability among seniors is an increasingly important public health priority. Physical exercise is among the best known methods of preventing disability, but accumulating evidence indicates that considerable variability exists in the responsiveness of older adults to standard training regimens. Accordingly, a need exists to develop tailored interventions to optimize the beneficial effects of exercise on the physical function of older adults at risk for becoming disabled. The present review summarizes the available literature related to the use of adjuvant or alternative strategies intended to enhance the efficacy of exercise in improving the physical function of older adults. Within this work, we also discuss potential future research directions in this area.
Collapse
|
99
|
Heales LJ, Lim ECW, Hodges PW, Vicenzino B. Sensory and motor deficits exist on the non-injured side of patients with unilateral tendon pain and disability—implications for central nervous system involvement: a systematic review with meta-analysis. Br J Sports Med 2013; 48:1400-6. [DOI: 10.1136/bjsports-2013-092535] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
100
|
Gianola S, Pecoraro V, Lambiase S, Gatti R, Banfi G, Moja L. Efficacy of muscle exercise in patients with muscular dystrophy: a systematic review showing a missed opportunity to improve outcomes. PLoS One 2013; 8:e65414. [PMID: 23894268 PMCID: PMC3680476 DOI: 10.1371/journal.pone.0065414] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/25/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Although muscular dystrophy causes muscle weakness and muscle loss, the role of exercise in the management of this disease remains controversial. OBJECTIVE The purpose of this systematic review is to evaluate the role of exercise interventions on muscle strength in patients with muscular dystrophy. METHODS We performed systematic electronic searches in Medline, Embase, Web of Science, Scopus and Pedro as well as a list of reference literature. We included trials assessing muscle exercise in patients with muscular dystrophy. Two reviewers independently abstracted data and appraised risk of bias. RESULTS We identified five small (two controlled and three randomized clinical) trials comprising 242 patients and two ongoing randomized controlled trials. We were able to perform two meta-analyses. We found an absence of evidence for a difference in muscle strength (MD 4.18, 95% CIs - 2.03 to 10.39; p = 0.91) and in endurance (MD -0.53, 95% CIs -1.11 to 0.05; p = 0.26). In both, the direction of effects favored muscle exercise. CONCLUSIONS The first included trial about the efficacy of muscular exercise was published in 1978. Even though some benefits of muscle exercise were consistently reported across studies, the benefits might be due to the small size of studies and other biases. Detrimental effects are still possible. After several decades of research, doctors cannot give advice and patients are, thus, denied basic information. A multi-center randomized trial investigating the strength of muscles, fatigue, and functional limitations is needed.
Collapse
Affiliation(s)
- Silvia Gianola
- Clinical Epidemiology Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
| | | | | | | | | | | |
Collapse
|