51
|
Galazky I, Kaufmann J, Lorenzl S, Ebersbach G, Gandor F, Zaehle T, Specht S, Stallforth S, Sobieray U, Wirkus E, Casjens F, Heinze HJ, Kupsch A, Voges J. Deep brain stimulation of the pedunculopontine nucleus for treatment of gait and balance disorder in progressive supranuclear palsy: Effects of frequency modulations and clinical outcome. Parkinsonism Relat Disord 2018; 50:81-86. [PMID: 29503154 DOI: 10.1016/j.parkreldis.2018.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/08/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Imke Galazky
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stefan Lorenzl
- Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria; Clinic and Policlinic for Palliative Care, Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Department of Neurology, Agatharied University Hospital, Hausham, Germany
| | - Georg Ebersbach
- Neurological Specialist Hospital for Movement Disorders/Parkinson, Beelitz-Heilstätten, Germany
| | - Florin Gandor
- Neurological Specialist Hospital for Movement Disorders/Parkinson, Beelitz-Heilstätten, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sylke Specht
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sabine Stallforth
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Uwe Sobieray
- German Centre for Neurodegenerative Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Edyta Wirkus
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franziska Casjens
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Behavioural Neurology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39120 Magdeburg, Germany
| | - Andreas Kupsch
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; NEUROLOGY MOVES, Academic Neurological Practice, Bismarckstrasse 45-47, 10627 Berlin, Germany
| | - Jürgen Voges
- German Centre for Neurodegenerative Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Behavioural Neurology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39120 Magdeburg, Germany; Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
52
|
Debû B, De Oliveira Godeiro C, Lino JC, Moro E. Managing Gait, Balance, and Posture in Parkinson's Disease. Curr Neurol Neurosci Rep 2018; 18:23. [PMID: 29623455 DOI: 10.1007/s11910-018-0828-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Postural instability and gait difficulties inexorably worsen with Parkinson's disease (PD) progression and become treatment resistant, with a severe impact on autonomy and quality of life. We review the main characteristics of balance instability, gait disabilities, and static postural alterations in advanced PD, and the available treatment strategies. RECENT FINDINGS It remains very difficult to satisfactorily alleviate gait and postural disturbances in advanced PD. Medical and surgical interventions often fail to provide satisfactory or durable alleviation of these axial symptoms, that may actually call for differential treatments. Exercise and adapted physical activity programs can contribute to improving the patients' condition. Gait, balance, and postural disabilities are often lumped together under the Postural Instability and Gait Difficulties umbrella term. This may lead to sub-optimal patients' management as data suggest that postural, balance, and gait problems might depend on distinct underlying mechanisms. We advocate for a multidisciplinary approach from the day of diagnosis.
Collapse
Affiliation(s)
- Bettina Debû
- University Grenoble Alpes, Grenoble, France.
- INSERM U1216, Grenoble, France.
| | - Clecio De Oliveira Godeiro
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
- Division of Neurology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jarbas Correa Lino
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
- Division of Neurology, CHU Amiens, Amiens, France
| | - Elena Moro
- University Grenoble Alpes, Grenoble, France
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
53
|
Direct localisation of the human pedunculopontine nucleus using MRI: a coordinate and fibre-tracking study. Eur Radiol 2018. [PMID: 29532240 DOI: 10.1007/s00330-017-5299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To image the pedunculopontine tegmental nucleus (PPN), a deep brain stimulation (DBS) target for Parkinson disease, using MRI with validated results. METHODS This study used the MP2RAGE sequence with high resolution and enhanced grey-white matter contrast on a 7-T ultra-high-field MRI system to image the PPN as well as a diffusion spectrum imaging method on a 3-T MRI system to reconstruct the main fibre systems surrounding the PPN. The coordinates of the rostral and caudal PPN poles of both sides were measured in relation to the third and fourth ventricular landmarks on the 7-T image. RESULTS The boundary of the PPN was delineated, and showed morphology consistent with previous histological works. The main fibres around the PPN were reconstructed. The pole coordinate results combined with the fibre spatial relationships validate the imaging results. CONCLUSIONS A practical protocol is provided to directly localise the PPN using MRI; the position and morphology of the PPN can be obtained and validated by locating its poles relative to two ventricular landmarks and by inspecting its spatial relationship with the surrounding fibre systems. This technique can be potentially used in clinics to define the boundary of the PPN before DBS surgery for treatment of Parkinson disease in a more precise and reliable manner. KEY POINTS • Combined information helps localise the PPN as a DBS target for PD patients • Scan the PPN at 7 T and measure its coordinates against different ventricular landmarks • Reconstruct the main fibres around the PPN using diffusion spectrum imaging.
Collapse
|
54
|
Josset N, Roussel M, Lemieux M, Lafrance-Zoubga D, Rastqar A, Bretzner F. Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse. Curr Biol 2018. [PMID: 29526593 DOI: 10.1016/j.cub.2018.02.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mesencephalic locomotor region (MLR) has been initially identified as a supraspinal center capable of initiating and modulating locomotion. Whereas its functional contribution to locomotion has been widely documented throughout the phylogeny from the lamprey to humans, there is still debate about its exact organization. Combining kinematic and electrophysiological recordings in mouse genetics, our study reveals that glutamatergic neurons of the cuneiform nucleus initiate locomotion and induce running gaits, whereas glutamatergic and cholinergic neurons of the pedunculopontine nucleus modulate locomotor pattern and rhythm, contributing to slow-walking gaits. By initiating, modulating, and accelerating locomotion, our study identifies and characterizes distinct neuronal populations of this functional region important to locomotor command.
Collapse
Affiliation(s)
- Nicolas Josset
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Marie Roussel
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Maxime Lemieux
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada
| | - David Lafrance-Zoubga
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Ali Rastqar
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Frederic Bretzner
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
55
|
Cai J, Lee S, Ba F, Garg S, Kim LJ, Liu A, Kim D, Wang ZJ, McKeown MJ. Galvanic Vestibular Stimulation (GVS) Augments Deficient Pedunculopontine Nucleus (PPN) Connectivity in Mild Parkinson's Disease: fMRI Effects of Different Stimuli. Front Neurosci 2018. [PMID: 29541016 PMCID: PMC5835530 DOI: 10.3389/fnins.2018.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Falls and balance difficulties remain a major source of morbidity in Parkinson's Disease (PD) and are stubbornly resistant to therapeutic interventions. The mechanisms of gait impairment in PD are incompletely understood but may involve changes in the Pedunculopontine Nucleus (PPN) and its associated connections. We utilized fMRI to explore the modulation of PPN connectivity by Galvanic Vestibular Stimulation (GVS) in healthy controls (n = 12) and PD subjects even without overt evidence of Freezing of Gait (FOG) while on medication (n = 23). We also investigated if the type of GVS stimuli (i.e., sinusoidal or stochastic) differentially affected connectivity. Approximate PPN regions were manually drawn on T1 weighted images and 58 other cortical and subcortical Regions of Interest (ROI) were obtained by automatic segmentation. All analyses were done in the native subject's space without spatial transformation to a common template. We first used Partial Least Squares (PLS) on a subject-by-subject basis to determine ROIs across subjects that covaried significantly with the voxels within the PPN ROI. We then performed functional connectivity analysis on the PPN-ROI connections. In control subjects, GVS did not have a significant effect on PPN connectivity. In PD subjects, baseline overall magnitude of PPN connectivity was negatively correlated with UPDRS scores (p < 0.05). Both noisy and sinusoidal GVS increased the overall magnitude of PPN connectivity (p = 6 × 10−5, 3 × 10−4, respectively) in PD, and increased connectivity with the left inferior parietal region, but had opposite effects on amygdala connectivity. Noisy stimuli selectively decreased connectivity with basal ganglia and cerebellar regions. Our results suggest that GVS can enhance deficient PPN connectivity seen in PD in a stimulus-dependent manner. This may provide a mechanism through which GVS assists balance in PD, and may provide a biomarker to develop individualized stimulus parameters.
Collapse
Affiliation(s)
- Jiayue Cai
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Soojin Lee
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Pacific Parkinson's Research Centre, Vancouver, BC, Canada
| | - Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Saurabh Garg
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada
| | - Laura J Kim
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada
| | - Aiping Liu
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada.,School of Electronics and Applied Physics, Hefei University of Technology, Hefei, China
| | - Diana Kim
- Department of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Z Jane Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Martin J McKeown
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.,Pacific Parkinson's Research Centre, Vancouver, BC, Canada.,Department of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
56
|
Dayal V, Limousin P, Foltynie T. Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease: The Effect of Varying Stimulation Parameters. JOURNAL OF PARKINSONS DISEASE 2018; 7:235-245. [PMID: 28505983 PMCID: PMC5438474 DOI: 10.3233/jpd-171077] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Subthalamic Nucleus Deep Brain Stimulation (STN DBS) is a well-established and effective treatment modality for selected patients with Parkinson's disease (PD). Since its advent, systematic exploration of the effect of stimulation parameters including the stimulation intensity, frequency, and pulse width have been carried out to establish optimal therapeutic ranges. This review examines published data on these stimulation parameters in terms of efficacy of treatment and adverse effects. Altering stimulation intensity is the mainstay of titration in DBS programming via alterations in voltage or current settings, and is characterised by a lower efficacy threshold and a higher side effect threshold which define the therapeutic window. In addition, much work has been done in exploring the effects of frequency modulation, which may help patients with gait freezing and other axial symptoms. However, there is a paucity of data on the use of ultra-short pulse width settings which are now possible with technological advances. We also discuss current evidence for the use of novel programming techniques including directional and adaptive stimulation, and highlight areas for future research.
Collapse
Affiliation(s)
- Viswas Dayal
- Correspondence to: Dr. Viswas Dayal, Sobell Department of Motor Neuroscience, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Box 146, Queen Square, London, WC1N 3BG, UK. Tel.: +44 0203 4488736; Fax: +44 0203 4488642; E-mail:
| | | | | |
Collapse
|
57
|
Garcia-Rill E, Mahaffey S, Hyde JR, Urbano FJ. Bottom-up gamma maintenance in various disorders. Neurobiol Dis 2018; 128:31-39. [PMID: 29353013 DOI: 10.1016/j.nbd.2018.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/30/2022] Open
Abstract
Maintained gamma band activity is a key element of higher brain function, participating in perception, executive function, and memory. The pedunculopontine nucleus (PPN), as part of the reticular activating system (RAS), is a major source of the "bottom-up" flow of gamma activity to higher regions. However, interruption of gamma band activity is associated with a number of neurological and psychiatric disorders. This review will focus on the role of the PPN in activating higher regions to induce arousal and descending pathways to modulate posture and locomotion. As such, PPN deep brain stimulation (DBS) can not only help regulate arousal and stepping, but continuous application may help maintain necessary levels of gamma band activity for a host of other brain processes. We will explore the potential future applications of PPN DBS for a number of disorders that are characterized by disturbances in gamma band maintenance.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - S Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - F J Urbano
- IFIBYNE (CONICET-UBA), DFBMC, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
58
|
|
59
|
Mazzone P, Vitale F, Capozzo A, Viselli F, Scarnati E. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Improves Static Balance in Parkinson’s Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
60
|
Mole JA, Prangnell SJ. Role of clinical neuropsychology in deep brain stimulation: Review of the literature and considerations for clinicians. APPLIED NEUROPSYCHOLOGY-ADULT 2017; 26:283-296. [PMID: 29236528 DOI: 10.1080/23279095.2017.1407765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deep Brain Stimulation (DBS) is an effective surgical therapy for several neurological movement disorders. The clinical neuropsychologist has a well-established role in the neuropsychological evaluation and selection of surgical candidates. In this article, we argue that the clinical neuropsychologist's role is much broader, when considered in relation to applied psychologists' core competencies. We consider the role of the clinical neuropsychologist in DBS in relation to: assessment, formulation, evaluation and research, intervention or implementation, and communication. For each competence the relevant evidence-base was reviewed. Clinical neuropsychology has a vital role in presurgical assessment of cognitive functioning and psychological, and emotional and behavioral difficulties. Formulation is central to the selection of surgical candidates and crucial to intervention planning. Clinical neuropsychology has a well-established role in postsurgical assessment of cognitive functioning and psychological, emotional, and behavioral outcomes, which is fundamental to evaluation on an individual and service level. The unique contribution clinical neuropsychology makes to pre- and postsurgical interventions is also highlighted. Finally, we discuss how clinical neuropsychology can promote clear and effective communication with patients and between professionals.
Collapse
Affiliation(s)
- Joseph A Mole
- a Russell Cairns Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Simon J Prangnell
- a Russell Cairns Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| |
Collapse
|
61
|
Temporal-Spatial Profiling of Pedunculopontine Galanin-Cholinergic Neurons in the Lactacystin Rat Model of Parkinson's Disease. Neurotox Res 2017; 34:16-31. [PMID: 29218504 DOI: 10.1007/s12640-017-9846-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is conventionally seen as resulting from single-system neurodegeneration affecting nigrostriatal dopaminergic neurons. However, accumulating evidence indicates multi-system degeneration and neurotransmitter deficiencies, including cholinergic neurons which degenerate in a brainstem nucleus, the pedunculopontine nucleus (PPN), resulting in motor and cognitive impairments. The neuropeptide galanin can inhibit cholinergic transmission, while being upregulated in degenerating brain regions associated with cognitive decline. Here we determined the temporal-spatial profile of progressive expression of endogenous galanin within degenerating cholinergic neurons, across the rostro-caudal axis of the PPN, by utilizing the lactacystin-induced rat model of PD. First, we show progressive neuronal death affecting nigral dopaminergic and PPN cholinergic neurons, reflecting that seen in PD patients, to facilitate use of this model for assessing the therapeutic potential of bioactive peptides. Next, stereological analyses of the lesioned brain hemisphere found that the number of PPN cholinergic neurons expressing galanin increased by 11%, compared to sham-lesioned controls, and increasing by a further 5% as the neurodegenerative process evolved. Galanin upregulation within cholinergic PPN neurons was most prevalent closest to the intra-nigral lesion site, suggesting that galanin upregulation in such neurons adapt intrinsically to neurodegeneration, to possibly neuroprotect. This is the first report on the extent and pattern of galanin expression in cholinergic neurons across distinct PPN subregions in both the intact rat CNS and lactacystin-lesioned rats. The findings pave the way for future work to target galanin signaling in the PPN, to determine the extent to which upregulated galanin expression could offer a viable treatment strategy for ameliorating PD symptoms associated with cholinergic degeneration.
Collapse
|
62
|
Thevathasan W, Debu B, Aziz T, Bloem BR, Blahak C, Butson C, Czernecki V, Foltynie T, Fraix V, Grabli D, Joint C, Lozano AM, Okun MS, Ostrem J, Pavese N, Schrader C, Tai CH, Krauss JK, Moro E. Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: A clinical review. Mov Disord 2017; 33:10-20. [DOI: 10.1002/mds.27098] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Wesley Thevathasan
- Department of Medicine; Royal Melbourne Hospital, University of Melbourne, Australia and the Bionics Institute of Australia; Melbourne Australia
| | - Bettina Debu
- Movement Disorders Center; Division of Neurology, Centre Hospitalier Universitaire (CHU) Grenoble, Grenoble Alpes University; Grenoble France
| | - Tipu Aziz
- Department of Neurosurgery; John Radcliffe Hospital, University of Oxford; Oxford UK
| | - Bastiaan R. Bloem
- Department of Neurology; Donders Institute for Brain, Cognition and Behaviour, Radboud University; Nijmegen the Netherlands
| | - Christian Blahak
- Department of Neurology; Universitätsmedizin Mannheim, University of Heidelberg; Heidelberg Germany
| | - Christopher Butson
- Department of Bioengineering; Scientific Computing and Imaging Institute, University of Utah; Salt Lake City USA
| | - Virginie Czernecki
- Department of Neurology; Institut de Cerveau et de la Moelle épinière, Sorbonne Universités, University Pierre-and-Marie-Curie (UPMC) Université; Paris France
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience; University College London (UCL) Institute of Neurology; United Kingdom
| | - Valerie Fraix
- Movement Disorders Center; Division of Neurology, Centre Hospitalier Universitaire (CHU) Grenoble, Grenoble Alpes University; Grenoble France
| | - David Grabli
- Department of Neurology; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtière University Hospital; Paris France
| | - Carole Joint
- Department of Neurosurgery; John Radcliffe Hospital, University of Oxford; Oxford UK
| | - Andres M. Lozano
- Department of Neurosurgery; Toronto Western Hospital, University of Toronto; Toronto Canada
| | - Michael S. Okun
- Departments of Neurology and Neurosurgery; University of Florida Center for Movement Disorders; Gainesville Florida USA
| | - Jill Ostrem
- Department of Neurology; UCSF Movement Disorder and Neuromodulation Center, University of California; San Francisco USA
| | - Nicola Pavese
- Institute of Neuroscience; Newcastle University; Newcastle upon Tyne UK
- Department of Clinical Medicine; Centre for Functionally Integrative Neuroscience, University of Aarhus; Aarhus Denmark
- Department of Neurology; Hannover Medical School; Hannover Germany
| | | | - Chun-Hwei Tai
- Department of Neurology; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei Taiwan
| | - Joachim K. Krauss
- Department of Neurosurgery; Hannover Medical School; Hannover Germany
| | - Elena Moro
- Movement Disorders Center; Division of Neurology, Centre Hospitalier Universitaire (CHU) Grenoble, Grenoble Alpes University; Grenoble France
| | | |
Collapse
|
63
|
On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates. J Neurosci 2017; 36:4917-29. [PMID: 27147647 DOI: 10.1523/jneurosci.2514-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The mesencephalic reticular formation (MRF) is formed by the pedunculopontine and cuneiform nuclei, two neuronal structures thought to be key elements in the supraspinal control of locomotion, muscle tone, waking, and REM sleep. The role of MRF has also been advocated in modulation of state of arousal leading to transition from wakefulness to sleep and it is further considered to be a main player in the pathophysiology of gait disorders seen in Parkinson's disease. However, the existence of a mesencephalic locomotor region and of an arousal center has not yet been demonstrated in primates. Here, we provide the first extensive electrophysiological mapping of the MRF using extracellular recordings at rest and during locomotion in a nonhuman primate (NHP) (Macaca fascicularis) model of bipedal locomotion. We found different neuronal populations that discharged according to a phasic or a tonic mode in response to locomotion, supporting the existence of a locomotor neuronal circuit within these MRF in behaving primates. Altogether, these data constitute the first electrophysiological characterization of a locomotor neuronal system present within the MRF in behaving NHPs under normal conditions, in accordance with several studies done in different experimental animal models. SIGNIFICANCE STATEMENT We provide the first extensive electrophysiological mapping of the two major components of the mesencephalic reticular formation (MRF), namely the pedunculopontine and cuneiform nuclei. We exploited a nonhuman primate (NHP) model of bipedal locomotion with extracellular recordings in behaving NHPs at rest and during locomotion. Different MRF neuronal groups were found to respond to locomotion, with phasic or tonic patterns of response. These data constitute the first electrophysiological evidences of a locomotor neuronal system within the MRF in behaving NHPs.
Collapse
|
64
|
Locomozione: fisiologia, metodi di analisi e classificazione dei principali disturbi. Neurologia 2017. [DOI: 10.1016/s1634-7072(17)85553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
65
|
Deep Brain Stimulation in Parkinson's Disease: New and Emerging Targets for Refractory Motor and Nonmotor Symptoms. PARKINSONS DISEASE 2017; 2017:5124328. [PMID: 28761773 PMCID: PMC5518514 DOI: 10.1155/2017/5124328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by bradykinesia, tremor, rigidity, and postural instability (PI), in addition to numerous nonmotor manifestations. Many pharmacological therapies now exist to successfully treat PD motor symptoms; however, as the disease progresses, it often becomes challenging to treat with medications alone. Deep brain stimulation (DBS) has become a crucial player in PD treatment, particularly for patients who have disabling motor complications from medical treatment. Well-established DBS targets include the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and to a lesser degree the ventral intermediate nucleus (VIM) of the thalamus. Studies of alternative DBS targets for PD are ongoing, the majority of which have shown some clinical benefit; however, more carefully designed and controlled studies are needed. In the present review, we discuss the role of these new and emerging DBS targets in treating refractory axial motor symptoms and other motor and nonmotor symptoms (NMS).
Collapse
|
66
|
Noga BR, Sanchez FJ, Villamil LM, O'Toole C, Kasicki S, Olszewski M, Cabaj AM, Majczyński H, Sławińska U, Jordan LM. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion. Front Neural Circuits 2017; 11:34. [PMID: 28579945 PMCID: PMC5437718 DOI: 10.3389/fncir.2017.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/28/2017] [Indexed: 11/28/2022] Open
Abstract
Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Christopher O'Toole
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Stefan Kasicki
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Maciej Olszewski
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Anna M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
67
|
Effect of low versus high frequency stimulation on freezing of gait and other axial symptoms in Parkinson patients with bilateral STN DBS: a mini-review. Transl Neurodegener 2017; 6:13. [PMID: 28529730 PMCID: PMC5437495 DOI: 10.1186/s40035-017-0083-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
Some studies have shown that low frequency stimulation (LFS, most commonly 60 Hz), compared to high frequency stimulation (HFS, most commonly 130 Hz), has beneficial effects, short-term or even long-term, on improving freezing of gait (FOG) and other axial symptoms, including speech and swallowing function, in Parkinson disease (PD) patients with bilateral subthalamic nucleus deep brain stimulation (STN DBS). However, other studies failed to confirm this. It seems not clear what determines the difference in response to LFS. Differences in study design, such as presence or absence of FOG, exact LFS used (60 Hz versus 80 Hz), study size, open label versus randomized double blind assessment, retrospective versus prospective evaluation, medication On or Off state, total electric energy delivered maintained or not with the change in frequency, and the location of active contacts could all potentially affect the results. This mini-review goes over the literature with the aforementioned factors in mind, focusing on the effect of LFS versus HFS on FOG and other axial symptoms in PD with bilateral STN DBS, in an effort to extract the essential data to guide our clinical management of axial symptoms and explore the potential underlying mechanisms as well. Overall, LFS of 60 Hz seems to be consistently effective in patients with FOG at the usual HFS in regards to improving FOG, speech, swallowing function and other axial symptoms, though LFS could reduce tremor control in some patients. Whether LFS simply addresses the axial symptoms in the context of HFS or has other beneficial effects requires further studies, along with the mechanism.
Collapse
|
68
|
Blanco-Lezcano L, Jimenez-Martin J, Díaz-Hung ML, Alberti-Amador E, Wong-Guerra M, González-Fraguela ME, Estupiñán-Díaz B, Serrano-Sánchez T, Francis-Turner L, Delgado-Ocaña S, Núñez-Figueredo Y, Vega-Hurtado Y, Fernández-Jiménez I. Motor dysfunction and alterations in glutathione concentration, cholinesterase activity, and BDNF expression in substantia nigra pars compacta in rats with pedunculopontine lesion. Neuroscience 2017; 348:83-97. [DOI: 10.1016/j.neuroscience.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
69
|
Jia F, Hu W, Zhang J, Wagle Shukla A, Almeida L, Meng FG, Okun MS, Li L. Variable frequency stimulation of subthalamic nucleus in Parkinson's disease: Rationale and hypothesis. Parkinsonism Relat Disord 2017; 39:27-30. [PMID: 28392298 DOI: 10.1016/j.parkreldis.2017.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/27/2017] [Accepted: 03/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wei Hu
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Jianguo Zhang
- Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Aparna Wagle Shukla
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Leonardo Almeida
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Michael S Okun
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA.
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China; Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China; Man-machine-environment Engineering Institute, School of Aerospace Engineering, Tsinghua University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
70
|
Kundishora AJ, Gummadavelli A, Ma C, Liu M, McCafferty C, Schiff ND, Willie JT, Gross RE, Gerrard J, Blumenfeld H. Restoring Conscious Arousal During Focal Limbic Seizures with Deep Brain Stimulation. Cereb Cortex 2017; 27:1964-1975. [PMID: 26941379 PMCID: PMC5964488 DOI: 10.1093/cercor/bhw035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Impaired consciousness occurs suddenly and unpredictably in people with epilepsy, markedly worsening quality of life and increasing risk of mortality. Focal seizures with impaired consciousness are the most common form of epilepsy and are refractory to all current medical and surgical therapies in about one-sixth of cases. Restoring consciousness during and following seizures would be potentially transformative for these individuals. Here, we investigate deep brain stimulation to improve level of conscious arousal in a rat model of focal limbic seizures. We found that dual-site stimulation of the central lateral nucleus of the intralaminar thalamus (CL) and the pontine nucleus oralis (PnO) bilaterally during focal limbic seizures restored normal-appearing cortical electrophysiology and markedly improved behavioral arousal. In contrast, single-site bilateral stimulation of CL or PnO alone was insufficient to achieve the same result. These findings support the "network inhibition hypothesis" that focal limbic seizures impair consciousness through widespread inhibition of subcortical arousal. Driving subcortical arousal function would be a novel therapeutic approach to some forms of refractory epilepsy and may be compatible with devices already in use for responsive neurostimulation. Multisite deep brain stimulation of subcortical arousal structures may benefit not only patients with epilepsy but also those with other disorders of consciousness.
Collapse
Affiliation(s)
| | - Abhijeet Gummadavelli
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | - Nicholas D. Schiff
- Department of Neurology, Weill-Cornell Medical College, New York, NY 10021, USA
| | | | - Robert E. Gross
- Department of Neurological Surgery
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Jason Gerrard
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology
- Department of Neuroscience
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
71
|
Stefani A, Trendafilov V, Liguori C, Fedele E, Galati S. Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson's disease: Focus on neurochemistry. Prog Neurobiol 2017; 151:157-174. [PMID: 28159574 DOI: 10.1016/j.pneurobio.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) has become a standard therapy for Parkinson's disease (PD) and it is also currently under investigation for other neurological and psychiatric disorders. Although many scientific, clinical and ethical issues are still unresolved, DBS delivered into the subthalamic nucleus (STN) has improved the quality of life of several thousands of patients. The mechanisms underlying STN-DBS have been debated extensively in several reviews; less investigated are the biochemical consequences, which are still under scrutiny. Crucial and only partially understood, for instance, are the complex interplays occurring between STN-DBS and levodopa (LD)-centred therapy in the post-surgery follow-up. The main goal of this review is to address the question of whether an improved motor control, based on STN-DBS therapy, is also achieved through the additional modulation of other neurotransmitters, such as noradrenaline (NA) and serotonin (5-HT). A critical issue is to understand not only acute DBS-mediated effects, but also chronic changes, such as those involving cyclic nucleotides, capable of modulating circuit plasticity. The present article will discuss the neurochemical changes promoted by STN-DBS and will document the main results obtained in microdialysis studies. Furthermore, we will also examine the preliminary achievements of voltammetry applied to humans, and discuss new hypothetical investigational routes, taking into account novel players such as glia, or subcortical regions such as the pedunculopontine (PPN) area. Our further understanding of specific changes in brain chemistry promoted by STN-DBS would further disseminate its utilisation, at any stage of disease, avoiding an irreversible lesioning approach.
Collapse
Affiliation(s)
- A Stefani
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - V Trendafilov
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - C Liguori
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - E Fedele
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - S Galati
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland.
| |
Collapse
|
72
|
Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm (Vienna) 2017; 125:471-483. [PMID: 28084536 DOI: 10.1007/s00702-017-1678-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022]
Abstract
Patients with Parkinson's disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.
Collapse
|
73
|
Ren ZW, Li YJ, Yu T, Ni DY, Zhang GJ, Du W, Piao YY, Zhou XX. High-frequency and brief-pulse stimulation pulses terminate cortical electrical stimulation-induced afterdischarges. Neural Regen Res 2017; 12:938-944. [PMID: 28761427 PMCID: PMC5514869 DOI: 10.4103/1673-5374.208576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brief-pulse stimulation at 50 Hz has been shown to terminate afterdischarges observed in epilepsy patients. However, the optimal pulse stimulation parameters for terminating cortical electrical stimulation-induced afterdischarges remain unclear. In the present study, we examined the effects of different brief-pulse stimulation frequencies (5, 50 and 100 Hz) on cortical electrical stimulation-induced afterdischarges in 10 patients with refractory epilepsy. Results demonstrated that brief-pulse stimulation could terminate cortical electrical stimulation-induced afterdischarges in refractory epilepsy patients. In conclusion, (1) a brief-pulse stimulation was more effective when the afterdischarge did not extend to the surrounding brain area. (2) A higher brief-pulse stimulation frequency (especially 100 Hz) was more likely to terminate an afterdischarge. (3) A low current intensity of brief-pulse stimulation was more likely to terminate an afterdischarge
Collapse
Affiliation(s)
- Zhi-Wei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yong-Jie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Duan-Yu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guo-Jun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Du
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yuan-Yuan Piao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiao-Xia Zhou
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
74
|
Sébille SB, Belaid H, Philippe AC, André A, Lau B, François C, Karachi C, Bardinet E. Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates. Neuroimage 2016; 147:66-78. [PMID: 27956208 DOI: 10.1016/j.neuroimage.2016.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/26/2023] Open
Abstract
The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information.
Collapse
Affiliation(s)
- Sophie B Sébille
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
| | - Hayat Belaid
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Anne-Charlotte Philippe
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
| | - Arthur André
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Brian Lau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
| | - Chantal François
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
| | - Carine Karachi
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Eric Bardinet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France.
| |
Collapse
|
75
|
Pienaar IS, Vernon A, Winn P. The Cellular Diversity of the Pedunculopontine Nucleus: Relevance to Behavior in Health and Aspects of Parkinson's Disease. Neuroscientist 2016; 23:415-431. [PMID: 27932591 DOI: 10.1177/1073858416682471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The pedunculopontine nucleus (PPN) is a rostral brainstem structure that has extensive connections with basal ganglia nuclei and the thalamus. Through these the PPN contributes to neural circuits that effect cortical and hippocampal activity. The PPN also has descending connections to nuclei of the pontine and medullary reticular formations, deep cerebellar nuclei, and the spinal cord. Interest in the PPN has increased dramatically since it was first suggested to be a novel target for treating patients with Parkinson's disease who are refractory to medication. However, application of frequency-specific electrical stimulation of the PPN has produced inconsistent results. A central reason for this is that the PPN is not a heterogeneous structure. In this article, we review current knowledge of the neurochemical identity and topographical distribution of neurons within the PPN of both humans and experimental animals, focusing on studies that used neuronally selective targeting strategies to ascertain how the neurochemical heterogeneity of the PPN relates to its diverse functions in relation to movement and cognitive processes. If the therapeutic potential of the PPN is to be realized, it is critical to understand the complex structure-function relationships that exist here.
Collapse
Affiliation(s)
- Ilse S Pienaar
- 1 Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Cane Road, London, UK.,2 Faculty of Health and Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Anthony Vernon
- 3 Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip Winn
- 4 Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
76
|
Takakusaki K, Takahashi M, Obara K, Chiba R. Neural substrates involved in the control of posture. Adv Robot 2016. [DOI: 10.1080/01691864.2016.1252690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Mirai Takahashi
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuhiro Obara
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Ryosuke Chiba
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
77
|
Jha A, Litvak V, Taulu S, Thevathasan W, Hyam JA, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, Friston K, Brown P. Functional Connectivity of the Pedunculopontine Nucleus and Surrounding Region in Parkinson's Disease. Cereb Cortex 2016; 27:54-67. [PMID: 28316456 PMCID: PMC5357066 DOI: 10.1093/cercor/bhw340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deep brain stimulation of the pedunculopontine nucleus and surrounding region (PPNR) is a novel treatment strategy for gait freezing in Parkinson's disease (PD). However, clinical results have been variable, in part because of the paucity of functional information that might help guide selection of the optimal surgical target. In this study, we use simultaneous magnetoencephalography and local field recordings from the PPNR in seven PD patients, to characterize functional connectivity with distant brain areas at rest. The PPNR was preferentially coupled to brainstem and cingulate regions in the alpha frequency (8-12 Hz) band and to the medial motor strip and neighboring areas in the beta (18-33 Hz) band. The distribution of coupling also depended on the vertical distance of the electrode from the pontomesencephalic line: most effects being greatest in the middle PPNR, which may correspond to the caudal pars dissipata of the pedunculopontine nucleus. These observations confirm the crucial position of the PPNR as a functional node between cortical areas such as the cingulate/ medial motor strip and other brainstem nuclei, particularly in the dorsal pons. In particular they suggest a special role for the middle PPNR as this has the greatest functional connectivity with other brain regions.
Collapse
Affiliation(s)
- Ashwani Jha
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Vladimir Litvak
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Samu Taulu
- I-LABS MEG Brain Imaging Center, University of Washington, Seattle, WA, USA.,Department of Physics, University of Washington, Seattle, WA, USA
| | - Wesley Thevathasan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jonathan A Hyam
- Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Marko Bogdanovic
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
78
|
Efficacy and Safety of Pedunculopontine Nuclei (PPN) Deep Brain Stimulation in the Treatment of Gait Disorders: A Meta-Analysis of Clinical Studies. Can J Neurol Sci 2016; 43:120-6. [PMID: 26786642 DOI: 10.1017/cjn.2015.318] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Pedunculopontine nucleus (PPN) has complex reciprocal connections with basal ganglia, especially with internal globus pallidus and substantia nigra, and it has been postulated that PPN stimulation may improve gait instability and freezing of gait. In this meta-analysis, we will assess the evidence for PPN deep brain stimulation in treatment of gait and motor abnormalities especially focusing on Parkinson disease patients. METHODS PubMed and Scopus electronic databases were searched for related studies published before February 2014. Medline (1966-2014), Embase (1974-2010), CINAHL, Web of Science, Scopus bibliographic, and Google Scholar databases (1960-2014) were also searched for studies investigating effect of PPN deep brain stimulation in treatment of postural and postural instability and total of ten studies met the inclusion criteria for this analysis. RESULTS Our findings showed a significant improvement in postural instability (p<0.001) and motor symptoms of Parkinson disease on and off medications (p<0.05), but failed to show improvement in freezing of gait. CONCLUSIONS Despite significant improvement in postural instability observed in included studies, evidence from current literature is not sufficient to generalize these findings to the majority of patients.
Collapse
|
79
|
Nagy AM, Tolleson CM. Rescue Procedures after Suboptimal Deep Brain Stimulation Outcomes in Common Movement Disorders. Brain Sci 2016; 6:brainsci6040046. [PMID: 27740598 PMCID: PMC5187560 DOI: 10.3390/brainsci6040046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) is a unique, functional neurosurgical therapy indicated for medication refractory movement disorders as well as some psychiatric diseases. Multicontact electrodes are placed in "deep" structures within the brain with targets varying depending on the surgical indication. An implanted programmable pulse generator supplies the electrodes with a chronic, high frequency electrical current that clinically mimics the effects of ablative lesioning techniques. DBS's efficacy has been well established for its movement disorder indications (Parkinson's disease, essential tremor, and dystonia). However, clinical outcomes are sometimes suboptimal, even in the absence of common, potentially reversible complications such as hardware complications, infection, poor electrode placement, and poor programming parameters. This review highlights some of the rescue procedures that have been explored in suboptimal DBS cases for Parkinson's disease, essential tremor, and dystonia. To date, the data is limited and difficult to generalize, but a large majority of published reports demonstrate positive results. The decision to proceed with such treatments should be made on a case by case basis. Larger studies are needed to clearly establish the benefit of rescue procedures and to establish for which patient populations they may be most appropriate.
Collapse
Affiliation(s)
- Adam M Nagy
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, A-0118 Medical Center North, Nashville, TN 37232, USA.
| | - Christopher M Tolleson
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, A-0118 Medical Center North, Nashville, TN 37232, USA.
| |
Collapse
|
80
|
Snijders AH, Takakusaki K, Debu B, Lozano AM, Krishna V, Fasano A, Aziz TZ, Papa SM, Factor SA, Hallett M. Physiology of freezing of gait. Ann Neurol 2016; 80:644-659. [DOI: 10.1002/ana.24778] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Anke H. Snijders
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior; Radboud University Medical Center; Nijmegen the Netherlands
- Maasziekenhuis Pantein; Boxmeer the Netherlands
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering; Asahikawa Medical University; Asahikawa Japan
| | - Bettina Debu
- Joseph Fourier University, Grenoble Universities; Grenoble France
| | - Andres M. Lozano
- Division of Neurosurgery; University of Toronto; Toronto Ontario Canada
| | - Vibhor Krishna
- Division of Neurosurgery; University of Toronto; Toronto Ontario Canada
- Department of Neurosurgery; Ohio State University; Columbus OH
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
| | - Tipu Z. Aziz
- John Radcliffe Hospital; Headington Oxford United Kingdom
| | - Stella M. Papa
- Department of Neurology, Jean and Paul Amos Parkinson's Disease and Movement Disorders Center; Emory University School of Medicine; Atlanta GA
| | - Stewart A. Factor
- Department of Neurology, Jean and Paul Amos Parkinson's Disease and Movement Disorders Center; Emory University School of Medicine; Atlanta GA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda MD
| |
Collapse
|
81
|
Baizabal-Carvallo JF, Alonso-Juarez M. Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat Disord 2016; 31:14-22. [DOI: 10.1016/j.parkreldis.2016.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
|
82
|
Urbano FJ, Luster BR, D'Onofrio S, Mahaffey S, Garcia-Rill E. Recording Gamma Band Oscillations in Pedunculopontine Nucleus Neurons. J Vis Exp 2016. [PMID: 27684729 DOI: 10.3791/54685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Synaptic efferents from the PPN are known to modulate the neuronal activity of several intralaminar thalamic regions (e.g., the centrolateral/parafascicular; Cl/Pf nucleus). The activation of either the PPN or Cl/Pf nuclei in vivo has been described to induce the arousal of the animal and an increment in gamma band activity in the cortical electroencephalogram (EEG). The cellular mechanisms for the generation of gamma band oscillations in Reticular Activating System (RAS) neurons are the same as those found to generate gamma band oscillations in other brains nuclei. During current-clamp recordings of PPN neurons (from parasagittal slices from 9 - 25 day-old rats), the use of depolarizing square steps rapidly activated voltage-dependent potassium channels that prevented PPN neurons from being depolarized beyond -25 mV. Injecting 1 - 2 sec long depolarizing current ramps gradually depolarized PPN membrane potential resting values towards 0 mV. However, injecting depolarizing square pulses generated gamma-band oscillations of membrane potential that showed to be smaller in amplitude compared to the oscillations generated by ramps. All experiments were performed in the presence of voltage-gated sodium channels and fast synaptic receptors blockers. It has been shown that the activation of high-threshold voltage-dependent calcium channels underlie gamma-band oscillatory activity in PPN neurons. Specific methodological and pharmacological interventions are described here, providing the necessary tools to induce and sustain PPN subthreshold gamma band oscillation in vitro.
Collapse
Affiliation(s)
| | - Brennon R Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences
| | - Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences;
| |
Collapse
|
83
|
Wang M, Jiang S, Yuan Y, Zhang L, Ding J, Wang J, Zhang J, Zhang K, Wang J. Alterations of functional and structural connectivity of freezing of gait in Parkinson’s disease. J Neurol 2016; 263:1583-92. [DOI: 10.1007/s00415-016-8174-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 11/24/2022]
|
84
|
Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S. The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state. J Neural Transm (Vienna) 2016; 123:667-678. [PMID: 27216823 DOI: 10.1007/s00702-016-1577-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
The mesencephalic reticular formation (MRF) mainly composed by the pedunculopontine and the cuneiform nuclei is involved in the control of several fundamental brain functions such as locomotion, rapid eye movement sleep and waking state. On the one hand, the role of MRF neurons in locomotion has been investigated for decades in different animal models, including in behaving nonhuman primate (NHP) using extracellular recordings. On the other hand, MRF neurons involved in the control of waking state have been consistently shown to constitute the cholinergic component of the reticular ascending system. However, a dual control of the locomotion and waking state by the same groups of neurons in NHP has never been demonstrated in NHP. Here, using microelectrode recordings in behaving NHP, we recorded 38 neurons in the MRF that were followed during transition between wakefulness (TWS) and sleep, i.e., until the emergence of sleep episodes characterized by typical cortical slow wave activity (SWA). We found that the MRF neurons, mainly located in the pedunculopontine nucleus region, modulated their activity during TWS with a decrease in firing rate during SWA. Of interest, we could follow some MRF neurons from locomotion to SWA and found that they also modulated their firing rate during locomotion and TWS. These new findings confirm the role of MRF neurons in both functions. They suggest that the MRF is an integration center that potentially allows to fine tune waking state and locomotor signals in order to establish an efficient locomotion.
Collapse
Affiliation(s)
- Laurent Goetz
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Brigitte Piallat
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Manik Bhattacharjee
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Hervé Mathieu
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France.,Unité Mixte de Service IRMaGe, Grenoble Alpes Hospital, 38000, Grenoble, France.,Unité Mixte de Service 3552, CNRS, 38000, Grenoble, France
| | - Olivier David
- University of Grenoble Alpes, 38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Stéphan Chabardès
- University of Grenoble Alpes, 38000, Grenoble, France. .,INSERM, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France. .,Clinique de neurochirurgie Pôle PALCROS, CHU Grenoble Alpes, 38000, Grenoble, France.
| |
Collapse
|
85
|
di Biase L, Fasano A. Low-frequency deep brain stimulation for Parkinson's disease: Great expectation or false hope? Mov Disord 2016; 31:962-7. [PMID: 27173938 DOI: 10.1002/mds.26658] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 12/28/2022] Open
Abstract
The long-term efficacy of subthalamic deep brain stimulation for Parkinson's disease is not always retained, and many patients lose the improvement achieved during the "second honeymoon" following surgery. Deep brain stimulation is a versatile tool, as stimulation parameters may undergo a fine-tuning depending on clinical needs. Among them, frequency is the parameter that leads to more complex scenarios because there is no generalizable relationship between its modulation and the overall clinical response, which also depends on the specific considered sign. High-frequency stimulation (>100 Hz) has shown to be effective in improving most parkinsonian signs, particularly the levodopa-responsive ones. However, its effect on axial signs (such as balance, gait, speech, or swallowing) may not be sustained, minimal, or even detrimental. For these reasons, several studies have explored the effectiveness of low-frequency stimulation (generally 60 or 80 Hz). Methods, results, and especially interpretations of these studies are quite variable. Although the use of low-frequency stimulation certainly opens new avenues in the field of deep brain stimulation, after having gathered all the available evidence in patients with subthalamic implants, our conclusion is that it might be clinically useful mainly when it lessens the detrimental effects of high-frequency stimulation. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Neurology Unit, Campus Bio-Medico University of Rome, Rome, Italy.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
86
|
Strumpf H, Noesselt T, Schoenfeld MA, Voges J, Panther P, Kaufmann J, Heinze HJ, Hopf JM. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus (PPN) Influences Visual Contrast Sensitivity in Human Observers. PLoS One 2016; 11:e0155206. [PMID: 27167979 PMCID: PMC4864298 DOI: 10.1371/journal.pone.0155206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/26/2016] [Indexed: 01/24/2023] Open
Abstract
The parapontine nucleus of the thalamus (PPN) is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC). Given the existence and abundance of projections to visual sensory structures, it is likely that activity in the PPN has some modulatory influence on visual sensory selection. Here we address this possibility by measuring the visual discrimination performance (luminance contrast thresholds) in a group of patients with Parkinson’s Disease (PD) treated with deep-brain stimulation (DBS) of the PPN to control gait and postural motor deficits. In each patient we measured the luminance-contrast threshold of being able to discriminate an orientation-target (Gabor-grating) as a function of stimulation frequency (high 60Hz, low 8/10, no stimulation). Thresholds were determined using a standard staircase-protocol that is based on parameter estimation by sequential testing (PEST). We observed that under low frequency stimulation thresholds increased relative to no and high frequency stimulation in five out of six patients, suggesting that DBS of the PPN has a frequency-dependent impact on visual selection processes at a rather elementary perceptual level.
Collapse
Affiliation(s)
| | - Toemme Noesselt
- Institute for Biological Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Mircea Ariel Schoenfeld
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Kliniken Schmieder, Allensbach, Germany
| | - Jürgen Voges
- Clinic for Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Patricia Panther
- Clinic for Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Joern Kaufmann
- Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens-Max Hopf
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
87
|
Hickey P, Stacy M. Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease. Front Neurosci 2016; 10:173. [PMID: 27199637 PMCID: PMC4848307 DOI: 10.3389/fnins.2016.00173] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
Parkinson disease (PD) is a chronic and progressive movement disorder classically characterized by slowed voluntary movements, resting tremor, muscle rigidity, and impaired gait and balance. Medical treatment is highly successful early on, though the majority of people experience significant complications in later stages. In advanced PD, when medications no longer adequately control motor symptoms, deep brain stimulation (DBS) offers a powerful therapeutic alternative. DBS involves the surgical implantation of one or more electrodes into specific areas of the brain, which modulate or disrupt abnormal patterns of neural signaling within the targeted region. Outcomes are often dramatic following DBS, with improvements in motor function and reductions motor complications having been repeatedly demonstrated. Given such robust responses, emerging indications for DBS are being investigated. In parallel with expansions of therapeutic scope, advancements within the areas of neurosurgical technique and the precision of stimulation delivery have recently broadened as well. This review focuses on the revolutionary addition of DBS to the therapeutic armamentarium for PD, and summarizes the technological advancements in the areas of neuroimaging and biomedical engineering intended to improve targeting, programming, and overall management.
Collapse
Affiliation(s)
- Patrick Hickey
- Department of Neurology, Duke University Medical CenterDurham, NC, USA
| | | |
Collapse
|
88
|
Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 2016; 13:264-83. [PMID: 26956115 PMCID: PMC4824026 DOI: 10.1007/s13311-016-0426-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
89
|
Movement disorders induced by deep brain stimulation. Parkinsonism Relat Disord 2016; 25:1-9. [DOI: 10.1016/j.parkreldis.2016.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/24/2022]
|
90
|
Gut NK, Winn P. The pedunculopontine tegmental nucleus-A functional hypothesis from the comparative literature. Mov Disord 2016; 31:615-24. [PMID: 26880095 PMCID: PMC4949639 DOI: 10.1002/mds.26556] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nadine K Gut
- Biozentrum, University of Basel, Basel, Switzerland
| | - Philip Winn
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
91
|
Mazzone P, Vilela Filho O, Viselli F, Insola A, Sposato S, Vitale F, Scarnati E. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum. J Neural Transm (Vienna) 2016; 123:751-767. [DOI: 10.1007/s00702-016-1518-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022]
|
92
|
Understanding the human pedunculopontine nucleus in Parkinson’s disease. J Neural Transm (Vienna) 2016; 123:769-774. [DOI: 10.1007/s00702-016-1505-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
93
|
Merging DBS with viral vector or stem cell implantation: "hybrid" stereotactic surgery as an evolution in the surgical treatment of Parkinson's disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15051. [PMID: 26817024 PMCID: PMC4714520 DOI: 10.1038/mtm.2015.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder that is currently managed using a broad array of symptom-based strategies. However, targeting its molecular origins represents the potential to discover disease-modifying therapies. Deep brain stimulation (DBS), a highly successful treatment modality for PD symptoms, addresses errant electrophysiological signaling pathways in the basal ganglia. In contrast, ongoing clinical trials testing gene and cell replacement therapies propose to protect or restore neuronal-based physiologic dopamine transmission in the striatum. Given promising new platforms to enhance target localization—such as interventional MRI-guided stereotaxy—the opportunity now exists to create hybrid therapies that combine DBS with gene therapy and/or cell implantation. In this mini-review, we discuss approaches used for central nervous system biologic delivery in PD patients in previous trials and propose a new set of strategies based on novel molecular targets. A multifaceted approach, if successful, may not only contribute to our understanding of PD pathology but could introduce a new era of disease modification.
Collapse
|
94
|
Insola A, Padua L, Mazzone P, Valeriani M. Low- and high-frequency subcortical SEP amplitude reduction during pure passive movement. Clin Neurophysiol 2015; 126:2366-75. [DOI: 10.1016/j.clinph.2015.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
|
95
|
Brandmeir NJ, Brandmeir CL, Kuzma K, McInerney J. A Prospective Evaluation of an Outpatient Assessment of Postural Instability to Predict Risk of Falls in Patients with Parkinson's Disease Presenting for Deep Brain Stimulation. Mov Disord Clin Pract 2015; 3:151-155. [PMID: 30713907 DOI: 10.1002/mdc3.12257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 11/11/2022] Open
Abstract
Background Postural instability (PI) and falls, major causes of morbidity in patients with PD, are often overlooked. DBS is a mainstay therapy for Parkinson's disease (PD) and has been purported to both worsen and improve PI. An effective PI evaluation that can predict fall risk in patients with PD presenting for DBS is needed. Methods Forty-nine consecutive patients with PD were enrolled. Self-reported falls were the gold standard. Tests evaluated were the Berg Balance Scale (BBS), Timed-Up-and-Go (TUG), Pull Test, and Biodex Balance System Sway Index on firm (SI-FIRM) and soft (SI-SOFT) surfaces. Results The best single tests for fall risk were the BBS and SI-FIRM, each with sensitivities of 79% and specificities of 60% and 65%, respectively. When the evaluation was combined into a composite measure requiring four positive tests out of five, the sensitivity was 72% and specificity was 80%. Conclusions A simple, efficient outpatient physical therapy assessment is effective in diagnosing fall risk in patients with PD.
Collapse
Affiliation(s)
- Nicholas J Brandmeir
- Department of Neurosurgery Penn State Milton S. Hershey Medical Center Hershey Pennsylvania USA
| | - Cheryl L Brandmeir
- Department of Therapy Services Penn State Milton S. Hershey Medical Center Hershey Pennsylvania USA
| | - Kristine Kuzma
- Department of Neurosurgery Penn State Milton S. Hershey Medical Center Hershey Pennsylvania USA
| | - James McInerney
- Department of Neurosurgery Penn State Milton S. Hershey Medical Center Hershey Pennsylvania USA
| |
Collapse
|
96
|
Blumenfeld Z, Brontë-Stewart H. High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson's Disease. Neuropsychol Rev 2015; 25:384-97. [PMID: 26608605 DOI: 10.1007/s11065-015-9308-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
Abstract
High frequency (HF) deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD). It effectively treats the cardinal motor signs of PD, including tremor, bradykinesia, and rigidity. The most common neural target is the subthalamic nucleus, located within the basal ganglia, the region most acutely affected by PD pathology. Using chronically-implanted DBS electrodes, researchers have been able to record underlying neural rhythms from several nodes in the PD network as well as perturb it using DBS to measure the ensuing neural and behavioral effects, both acutely and over time. In this review, we provide an overview of the PD neural network, focusing on the pathophysiological signals that have been recorded from PD patients as well as the mechanisms underlying the therapeutic benefits of HF DBS. We then discuss evidence for the relationship between specific neural oscillations and symptoms of PD, including the aberrant relationships potentially underlying functional connectivity in PD as well as the use of different frequencies of stimulation to more specifically target certain symptoms. Finally, we briefly describe several current areas of investigation and how the ability to record neural data in ecologically-valid settings may allow researchers to explore the relationship between brain and behavior in an unprecedented manner, culminating in the future automation of neurostimulation therapy for the treatment of a variety of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zack Blumenfeld
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Helen Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
- Stanford University School of Medicine, Rm A343, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
97
|
Ryczko D, Auclair F, Cabelguen JM, Dubuc R. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod. J Comp Neurol 2015; 524:1361-83. [PMID: 26470600 PMCID: PMC5019149 DOI: 10.1002/cne.23911] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023]
Abstract
In vertebrates, stimulation of the mesencephalic locomotor region (MLR) on one side evokes symmetrical locomotor movements on both sides. How this occurs was previously examined in detail in a swimmer using body undulations (lamprey), but in tetrapods the downstream projections from the MLR to brainstem neurons are not fully understood. Here we examined the brainstem circuits from the MLR to identified reticulospinal neurons in the salamander Notophthalmus viridescens. Using neural tracing, we show that the MLR sends bilateral projections to the middle reticular nucleus (mRN, rostral hindbrain) and the inferior reticular nucleus (iRN, caudal hindbrain). Ca2+ imaging coupled to electrophysiology in in vitro isolated brains revealed very similar responses in reticulospinal neurons on both sides to a unilateral MLR stimulation. As the strength of MLR stimulation was increased, the responses increased in size in reticulospinal neurons of the mRN and iRN, but the responses in the iRN were smaller. Bath‐application or local microinjections of glutamatergic antagonists markedly reduced reticulospinal neuron responses, indicating that the MLR sends glutamatergic inputs to reticulospinal neurons. In addition, reticulospinal cells responded to glutamate microinjections and the size of the responses paralleled the amount of glutamate microinjected. Immunofluorescence coupled with anatomical tracing confirmed the presence of glutamatergic projections from the MLR to reticulospinal neurons. Overall, we show that the brainstem circuits activated by the MLR in the salamander are organized similarly to those previously described in lampreys, indicating that the anatomo‐physiological features of the locomotor drive are well conserved in vertebrates. J. Comp. Neurol. 524:1361–1383, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Francois Auclair
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Marie Cabelguen
- INSERM U862 - Neurocentre Magendie, Motor System Diseases Team, Bordeaux Cedex, France
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Québec, Canada
| |
Collapse
|
98
|
Ahmed H, Field W, Hayes MT, Lopez WOC, McDannold N, Mukundan S, Tierney TS. Evolution of Movement Disorders Surgery Leading to Contemporary Focused Ultrasound Therapy for Tremor. Magn Reson Imaging Clin N Am 2015; 23:515-22. [PMID: 26499271 PMCID: PMC6191836 DOI: 10.1016/j.mric.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Progressively less invasive neurosurgical approaches for the treatment of movement disorders have evolved, beginning with open craniotomy for placement of lesions within pyramidal structures followed by refined stereotactic ablation of extrapyramidal targets that encouraged nondestructive electrode stimulation of deep brain structures. A noninvasive approach using transcranial high-energy focused ultrasound has emerged for the treatment of intractable tremor. The ability to target discreet intracranial sites millimeters in size through the intact skull using focused acoustic energy marks an important milestone in movement disorders surgery. This article describes the evolution of magnetic resonance-guided focused ultrasound for ventrolateral thalamotomy for tremor.
Collapse
Affiliation(s)
- Hena Ahmed
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - Wesley Field
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - Michael T Hayes
- Department of Neurology, South Shore Hospital, 55 Fogg Road, Weymouth, MA 02190, USA
| | - William Omar Contreras Lopez
- Division of Functional Neurosurgery, Institute of Psychiatry, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455 - Cerqueira César São Paulo, Brazil
| | - Nathan McDannold
- Division of Neuroradiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - Srinivasan Mukundan
- Division of Neuroradiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - Travis S Tierney
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA.
| |
Collapse
|
99
|
Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2015; 123:695-729. [PMID: 26497023 PMCID: PMC4919383 DOI: 10.1007/s00702-015-1475-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023]
Abstract
The lateral part of the mesopontine tegmentum contains functionally important structures involved in the control of posture and gait. Specifically, the mesencephalic locomotor region, which may consist of the cuneiform nucleus and pedunculopontine tegmental nucleus (PPN), occupies the interest with respect to the pathophysiology of posture-gait disorders. The purpose of this article is to review the mechanisms involved in the control of postural muscle tone and locomotion by the mesopontine tegmentum and the pontomedullary reticulospinal system. To make interpretation and discussion more robust, the above issue is considered largely based on our findings in the experiments using decerebrate cat preparations in addition to the results in animal experimentations and clinical investigations in other laboratories. Our investigations revealed the presence of functional topographical organizations with respect to the regulation of postural muscle tone and locomotion in both the mesopontine tegmentum and the pontomedullary reticulospinal system. These organizations were modified by neurotransmitter systems, particularly the cholinergic PPN projection to the pontine reticular formation. Because efferents from the forebrain structures as well as the cerebellum converge to the mesencephalic and pontomedullary reticular formation, changes in these organizations may be involved in the appropriate regulation of posture-gait synergy depending on the behavioral context. On the other hand, abnormal signals from the higher motor centers may produce dysfunction of the mesencephalic-reticulospinal system. Here we highlight the significance of elucidating the mechanisms of the mesencephalic-reticulospinal control of posture and locomotion so that thorough understanding of the pathophysiological mechanisms of posture-gait disorders can be made.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan.
| | - Ryosuke Chiba
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
100
|
Li M, Zhang W. Oscillations in pedunculopontine nucleus in Parkinson's disease and its relationship with deep brain stimulation. Front Neural Circuits 2015; 9:47. [PMID: 26388741 PMCID: PMC4556974 DOI: 10.3389/fncir.2015.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/21/2015] [Indexed: 11/22/2022] Open
Abstract
The recent development of deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) for the treatment of parkinsonian patients, particularly those in advanced stages with axial symptoms, has ignited interest into the study of this brain nucleus. In contrast to the extensively studied alterations of neural activity that occur in the basal ganglia in Parkinson’s disease (PD), our understanding of the activity of the PPN remains insufficient. In recent years, however, a series of studies recording oscillatory activity in the PPN of parkinsonian patients have made important findings. Here, we briefly review recent studies that explore the different kinds of oscillations observed in the PPN of parkinsonian patients, and how they underlie the pathophysiology of PD and the efficacy of PPN-DBS in these disorders.
Collapse
Affiliation(s)
- Min Li
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Wangming Zhang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| |
Collapse
|