51
|
Xu H, Shu SH, Wang D, Chai XQ, Xie YH, Zhou WD. Goal-directed fluid restriction using stroke volume variation and cardiac index during one-lung ventilation: a randomized controlled trial. J Thorac Dis 2017; 9:2992-3004. [PMID: 29221272 DOI: 10.21037/jtd.2017.08.98] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Goal-directed therapy confers a strong prognosis in patients undergoing major cardiac or noncardiac surgery. The present study investigated whether intraoperative goal-directed fluid restriction (GDFR) using stroke volume variation (SVV) and cardiac index could improve oxygenation and postoperative outcome in patients undergoing one-lung ventilation (OLV). Methods A Total of 168 patients scheduled for elective thoracoscopic lobectomy under OLV were randomized into the GDFR protocol (group G) or conventional fluid therapy groups (group C). Patients in group C underwent conventional fluid therapy based on mean arterial pressure (MAP), central venous pressure (CVP), and urine volume, whereas those in group G received GDFR protocol associated with the SVV from 10-13% and the cardiac index was controlled at a minimum of 2.5 L/min/m2. The primary outcome variable was PaO2/FiO2. The secondary outcomes were other pulmonary variables and lung mechanics, inflammatory response, the incidence of postoperative pulmonary complications, and the length of hospital stay. Results During surgery, the PaO2/FiO2 ratio in group G was more than that of group C at 30 and 60 min after OLV, 10 min after re-expansion, and the end of the operation (259±29 vs. 314±34; 253±30 vs. 308±35; 341±34 vs. 394±39; 349±35 vs. 401±39, respectively, all P<0.001). Compared to conventional fluid therapy, GDFR protocol also significantly improved the hemodynamic and lung mechanics with the initiation of OLV. The incidence of postoperative pulmonary complications such as acute lung injury and pneumonia, and the length of hospital stay were decreased by GDFR protocol as compared to conventional fluid therapy (all P<0.05). However, there were no significant differences between groups with respect to the concentration of serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10). Conclusions The GDFR protocol based on SVV and cardiac index applied in patients undergoing OLV improves intraoperative pulmonary oxygenation. It can also reduce the postoperative complications and length of hospital stay. However, the GDFR strategy cannot reduce the local or systemic inflammation. Trial registration Chinese Clinical Trials Register ChiCTR-INR-16008288, Registered 20 April, 2016.
Collapse
Affiliation(s)
- Hui Xu
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Shu-Hua Shu
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Xiao-Qing Chai
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Yan-Hu Xie
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Wei-De Zhou
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| |
Collapse
|
52
|
García-de-la-Asunción J, Bruno L, Perez-Griera J, Galan G, Morcillo A, Wins R, García-Del-Olmo E, Guijarro R, Sarriá B, Martí F, Soro M, Belda FJ. Remote Ischemic Preconditioning Decreases Oxidative Lung Damage After Pulmonary Lobectomy: A Single-Center Randomized, Double-Blind, Controlled Trial. Anesth Analg 2017; 125:499-506. [PMID: 28504995 DOI: 10.1213/ane.0000000000002065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND During lobectomy in patients with lung cancer, the operated lung is often collapsed and hypoperfused. Ischemia/reperfusion injury may then occur when the lung is re-expanded. We hypothesized that remote ischemic preconditioning (RIPC) would decrease oxidative lung damage and improve gas exchange in the postoperative period. METHODS We conducted a single-center, randomized, double-blind trial in patients with nonsmall cell lung cancer undergoing elective lung lobectomy. Fifty-three patients were randomized to receive limb RIPC immediately after anesthesia induction (3 cycles: 5 minutes ischemia/5 minutes reperfusion induced by an ischemia cuff applied on the thigh) and/or control therapy without RIPC. Oxidative stress markers were measured in exhaled breath condensate (EBC) and arterial blood immediately after anesthesia induction and before RIPC and surgery (T0, baseline); during operated lung collapse, immediately before resuming two-lung ventilation (TLV) (T1); immediately after resuming TLV (T2); and 120 minutes after resuming TLV (T3). The primary outcome was 8-isoprostane levels in EBC at T1, T2, and T3. Secondary outcomes included the following: NO2+NO3, H2O2 levels, and pH in EBC and in blood (8-isoprostane, NO2+NO3) and pulmonary gas exchange variables (PaO2/FiO2, A-aDO2, a/A ratio, and respiratory index). RESULTS Patients subjected to RIPC had lower EBC 8-isoprostane levels when compared with controls at T1, T2, and T3 (differences between means and 95% confidence intervals): -15.3 (5.8-24.8), P = .002; -20.0 (5.5-34.5), P = .008; and -10.4 (2.5-18.3), P = .011, respectively. In the RIPC group, EBC NO2+NO3 and H2O2 levels were also lower than in controls at T2 and T1-T3, respectively (all P < .05). Blood levels of 8-isoprostane and NO2+NO3 were lower in the RIPC group at T2 (P < .05). The RIPC group had better PaO2/FiO2 compared with controls at 2 hours, 8 hours, and 24 hours after lobectomy in 95% confidence intervals for differences between means: 78 (10-146), 66 (14-118), and 58 (12-104), respectively. CONCLUSIONS Limb RIPC decreased EBC 8-isoprostane levels and other oxidative lung injury markers during lung lobectomy. RIPC also improved postoperative gas exchange as measured by PaO2/FiO2 ratio.
Collapse
Affiliation(s)
- José García-de-la-Asunción
- From the *Department of Anaesthesiology and Critical Care, Instituto de Investigación Sanitaria (INCLIVA), †Laboratory of Biochemistry, and ‡Department of Thoracic Surgery, Hospital Clínico Universitario de Valencia, Valencia, Spain; §Department of Thoracic Surgery, Consorcio Hospital General Universitario de Valencia, Valencia, Spain; and ‖Department of Pharmacology, University of Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
MicroRNA-21 Is Required for Local and Remote Ischemic Preconditioning in Multiple Organ Protection Against Sepsis*. Crit Care Med 2017; 45:e703-e710. [DOI: 10.1097/ccm.0000000000002363] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
54
|
Ning HJ, Yuan HB, Xu HT, He XY. Propofol reduces hypoxia‑induced autophagic cell death through downregulating HIF 1α in alveolar epithelial type II cells of rats. Mol Med Rep 2017; 16:1509-1515. [PMID: 28586054 DOI: 10.3892/mmr.2017.6697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Propofol (2,6‑diisopropylphenol) exerts protective effects on alveolar epithelial type II (ATII) cells, partly through attenuating hypoxia‑induced apoptosis. Autophagy is involved in the activation of apoptosis. Therefore, the present study investigated the modulating effect of propofol against autophagy in ATII cells under hypoxia. Western blot analysis was performed to detect the protein expression of the autophagy molecular marker, microtubule‑associated protein 1 light chain 3 (LC3)‑II, under various conditions. The effects of propofol on the accumulation of other autophagy‑associated proteins and apoptosis‑associated proteins were also determined using western blot analysis. The interactions between proteins were determined by co‑immunoprecipitation. Apoptosis of the ATII cells was monitored using FITC‑conjugated AV/PI staining. Furthermore, hypoxia‑inducible factor 1α (HIF 1α) small interfering (si) RNA was designed to construct si‑HIF 1α ATII cells. The efficiency of interference was measured using reverse transcription‑quantitative polymerase chain reaction and western blot analyses. Following pre‑treatment with propofol, the hypoxia‑induced accumulation of LC3‑II, HIF 1α and B‑cell lymphoma‑2 interacting protein 3 (Bnip3) were markedly decreased, accompanied with the activation of mammalian target of rapamycin. In addition, cleaved‑poly ADP‑ribose polymerase was suppressed, and hypoxia‑induced autophagic cell death was inhibited by propofol pre‑treatment. HIF 1α was inhibited by si‑HIF 1α, which simultaneously suppressed Bnip3 and LC3‑II under hypoxia. Taken together, propofol reduced hypoxia‑induced autophagic cell death through reducing the expression of HIF 1α in ATII cells, indicating a novel strategy for modulating autophagy via propofol in hypoxic ATII cells.
Collapse
Affiliation(s)
- Hui-Jie Ning
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Hong-Bin Yuan
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai-Tao Xu
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xing-Ying He
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
55
|
Menting TP, Wever KE, Ozdemir‐van Brunschot DMD, Van der Vliet DJA, Rovers MM, Warle MC. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. Cochrane Database Syst Rev 2017; 3:CD010777. [PMID: 28258686 PMCID: PMC6464274 DOI: 10.1002/14651858.cd010777.pub2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ischaemia reperfusion injury can lead to kidney dysfunction or failure. Ischaemic preconditioning is a short period of deprivation of blood supply to particular organs or tissue, followed by a period of reperfusion. It has the potential to protect kidneys from ischaemia reperfusion injury. OBJECTIVES This review aimed to look at the benefits and harms of local and remote ischaemic preconditioning to reduce ischaemia and reperfusion injury among people with renal ischaemia reperfusion injury. SEARCH METHODS We searched Cochrane Kidney and Transplant's Specialised Register to 5 August 2016 through contact with the Information Specialist using search terms relevant to this review. SELECTION CRITERIA We included all randomised controlled trials measuring kidney function and the role of ischaemic preconditioning in patients undergoing a surgical intervention that induces kidney injury. Kidney transplantation studies were excluded. DATA COLLECTION AND ANALYSIS Studies were assessed for eligibility and quality; data were extracted by two independent authors. We collected basic study characteristics: type of surgery, remote ischaemic preconditioning protocol, type of anaesthesia. We collected primary outcome measurements: serum creatinine and adverse effects to remote ischaemic preconditioning and secondary outcome measurements: acute kidney injury, need for dialysis, neutrophil gelatinase-associated lipocalin, hospital stay and mortality. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) and 95% CI for continuous outcomes. MAIN RESULTS We included 28 studies which randomised a total of 6851 patients. Risk of bias assessment indicated unclear to low risk of bias for most studies. For consistency regarding the direction of effects, continuous outcomes with negative values, and dichotomous outcomes with values less than one favour remote ischaemic preconditioning. Based on high quality evidence, remote ischaemic preconditioning made little or no difference to the reduction of serum creatinine levels at postoperative days one (14 studies, 1022 participants: MD -0.02 mg/dL, 95% CI -0.05 to 0.02; I2 = 21%), two (9 studies, 770 participants: MD -0.04 mg/dL, 95% CI -0.09 to 0.02; I2 = 31%), and three (6 studies, 417 participants: MD -0.05 mg/dL, 95% CI -0.19 to 0.10; I2 = 68%) compared to control.Serious adverse events occurred in four patients receiving remote ischaemic preconditioning by iliac clamping. It is uncertain whether remote ischaemic preconditioning by cuff inflation leads to increased adverse effects compared to control because the certainty of the evidence is low (15 studies, 3993 participants: RR 3.47, 95% CI 0.55 to 21.76; I2 = 0%); only two of 15 studies reported any adverse effects (6/1999 in the remote ischaemic preconditioning group and 1/1994 in the control group), the remaining 13 studies stated no adverse effects were observed in either group.Compared to control, remote ischaemic preconditioning made little or no difference to the need for dialysis (13 studies, 2417 participants: RR 0.85, 95% CI 0.37 to 1.94; I2 = 60%; moderate quality evidence), length of hospital stay (8 studies, 920 participants: MD 0.17 days, 95% CI -0.46 to 0.80; I2 = 49%, high quality evidence), or all-cause mortality (24 studies, 4931 participants: RR 0.86, 95% CI 0.54 to 1.37; I2 = 0%, high quality evidence).Remote ischaemic preconditioning may have slightly improved the incidence of acute kidney injury using either the AKIN (8 studies, 2364 participants: RR 0.76, 95% CI 0.57 to 1.00; I2 = 61%, high quality evidence) or RIFLE criteria (3 studies, 1586 participants: RR 0.91, 95% CI 0.75 to 1.12; I2 = 0%, moderate quality evidence). AUTHORS' CONCLUSIONS Remote ischaemic preconditioning by cuff inflation appears to be a safe method, and probably leads to little or no difference in serum creatinine, adverse effects, need for dialysis, length of hospital stay, death and in the incidence of acute kidney injury. Overall we had moderate-high certainty evidence however the available data does not confirm the efficacy of remote ischaemic preconditioning in reducing renal ischaemia reperfusion injury in patients undergoing major cardiac and vascular surgery in which renal ischaemia reperfusion injury may occur.
Collapse
Affiliation(s)
- Theo P Menting
- Radboud University Nijmegen Medical CentreDepartment of SurgeryGeert Grooteplein Zuid 10NijmegenGelderlandNetherlands6525 GA
| | - Kimberley E Wever
- Radboud University Nijmegen Medical CentreDepartment of SurgeryGeert Grooteplein Zuid 10NijmegenGelderlandNetherlands6525 GA
| | - Denise MD Ozdemir‐van Brunschot
- Radboud University Nijmegen Medical CentreDepartment of SurgeryGeert Grooteplein Zuid 10NijmegenGelderlandNetherlands6525 GA
| | - Daan JA Van der Vliet
- Radboud University Nijmegen Medical CentreDepartment of SurgeryGeert Grooteplein Zuid 10NijmegenGelderlandNetherlands6525 GA
| | - Maroeska M Rovers
- Radboud University Nijmegen Medical CentreDepartment of Operating RoomsHp 630, route 631PO Box 9101NijmegenNetherlands6500 HB
| | - Michiel C Warle
- Radboud University Nijmegen Medical CentreDepartment of SurgeryGeert Grooteplein Zuid 10NijmegenGelderlandNetherlands6525 GA
| | | |
Collapse
|
56
|
Gielis JF, Beckers PAJ, Briedé JJ, Cos P, Van Schil PE. Oxidative and nitrosative stress during pulmonary ischemia-reperfusion injury: from the lab to the OR. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:131. [PMID: 28462211 DOI: 10.21037/atm.2017.03.32] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative and nitrosative stress are an umbrella term for pathophysiological processes that involve free radical generation during inflammation. In this review, the involvement of reactive oxygen and nitrogen species is evaluated during lung ischemia-reperfusion injury (LIRI) from a surgical point of view. The main biochemical and cellular mechanisms behind free radical generation are discussed, together with surgical procedures that may cause reperfusion injury. Finally, different therapeutic strategies are further explored. A literature search was performed, searching for "lung ischemia reperfusion injury", "reperfusion injury", "large animal model" and different search terms for each section: "surgery", "treatment", "cellular mechanism", or "enzyme". Although reperfusion injury is not an uncommon entity and there is a lot of evidence concerning myocardial ischemia-reperfusion injury, in the lung this phenomenon is less extensively described and studies in large animals are not easy to come by. With increasing number of patients on waiting lists for lung transplant, awareness for this entity should all but rise.
Collapse
Affiliation(s)
- Jan F Gielis
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium.,Laboratory for Microbiology, Parasitology and Hygiene, Antwerp University, Antwerp, Belgium
| | - Paul A J Beckers
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Jacco J Briedé
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, Antwerp University, Antwerp, Belgium
| | - Paul E Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
57
|
Abstract
Anthracycline chemotherapy maintains a prominent role in treating many forms of cancer. Cardiotoxic side effects limit their dosing and improved cancer outcomes expose the cancer survivor to increased cardiovascular morbidity and mortality. The basic mechanisms of cardiotoxicity may involve direct pathways for reactive oxygen species generation and topoisomerase 2 as well as other indirect pathways. Cardioprotective treatments are few and those that have been examined include renin angiotensin system blockade, beta blockers, or the iron chelator dexrazoxane. New treatments exploiting the ErbB or other novel pro-survival pathways, such as conditioning, are on the cardioprotection horizon. Even in the forthcoming era of targeted cancer therapies, the substantial proportion of today's anthracycline-treated cancer patients may become tomorrow's cardiac patient.
Collapse
Affiliation(s)
- John V McGowan
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Robin Chung
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Angshuman Maulik
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Izabela Piotrowska
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - J Malcolm Walker
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK.
| |
Collapse
|
58
|
Kim TK, Min JJ, Cho YJ, Hausenloy DJ, Ahn H, Kim KH, Hwang HY, Hong DM, Jeon Y. Effects of delayed remote ischemic preconditioning on peri-operative myocardial injury in patients undergoing cardiac surgery — A randomized controlled trial. Int J Cardiol 2017; 227:511-515. [DOI: 10.1016/j.ijcard.2016.10.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/30/2016] [Indexed: 01/03/2023]
|
59
|
García-de-la-Asunción J, García-del-Olmo E, Galan G, Guijarro R, Martí F, Badenes R, Perez-Griera J, Duca A, Delgado C, Carbonell J, Belda J. Glutathione oxidation correlates with one-lung ventilation time and PO2/FiO2 ratio during pulmonary lobectomy. Redox Rep 2016; 21:219-26. [PMID: 26795138 PMCID: PMC6837706 DOI: 10.1080/13510002.2015.1101890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES During lung lobectomy, the operated lung completely collapses with simultaneous hypoxic pulmonary vasoconstriction, followed by expansion and reperfusion. Here, we investigated glutathione oxidation and lipoperoxidation in patients undergoing lung lobectomy, during one-lung ventilation (OLV) and after resuming two-lung ventilation (TLV), and examined the relationship with OLV duration. METHODS We performed a single-centre, observational, prospective study in 32 patients undergoing lung lobectomy. Blood samples were collected at five time-points: T0, pre-operatively; T1, during OLV, 5 minutes before resuming TLV; and T2, T3, and T4, respectively, 5, 60, and 180 minutes after resuming TLV. Samples were tested for reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione redox potential, and malondialdehyde (MDA). RESULTS GSSG and MDA blood levels increased at T1, and increased further at T2. OLV duration directly correlated with marker levels at T1 and T2. Blood levels of GSH and glutathione redox potential decreased at T1-T3. GSSG, oxidized glutathione/total glutathione ratio, and MDA levels were inversely correlated with arterial blood PO2/FiO2 at T1 and T2. DISCUSSION During lung lobectomy and OLV, glutathione oxidation, and lipoperoxidation marker blood levels increase, with further increases after resuming TLV. Oxidative stress degree was directly correlated with OLV duration, and inversely correlated with arterial blood PO2/FiO2.
Collapse
Affiliation(s)
- José García-de-la-Asunción
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Eva García-del-Olmo
- Department of Thoracic Surgery, Consorcio Hospital General Universitario de Valencia, Spain
| | - Genaro Galan
- Department of Thoracic Surgery, Hospital Clínico Universitario de Valencia, Spain
| | - Ricardo Guijarro
- Department of Thoracic Surgery, Consorcio Hospital General Universitario de Valencia, Spain
| | - Francisco Martí
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Rafael Badenes
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Jaume Perez-Griera
- Laboratory of Biochemistry, Hospital Clínico Universitario de Valencia, Spain
| | - Alejandro Duca
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Carlos Delgado
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Jose Carbonell
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| | - Javier Belda
- Department of Anesthesiology and Critical Care, Hospital Clínico Universitario de Valencia. Instituto de Investigación Sanitaria (INCLIVA), Spain
| |
Collapse
|
60
|
Abstract
OBJECTIVE In this study, we will review the most recently proposed mechanisms for remote ischemic preconditioning and summarize the past 10 years of clinical studies, as well as potential reasons for why, despite over 20 years of research on remote ischemic preconditioning, it is not routinely used in the pediatric critical care patient. In addition, future directions for remote ischemic preconditioning research will be discussed. DATA SOURCES We searched the PubMed database for relevant literature. STUDY SELECTION AND DATA EXTRACTION In PubMed, the search terms "ischemic preconditioning" and "remote preconditioning" were used. Randomized controlled trials published from 2006 until the present time that used a blood pressure cuff to induce remote ischemic preconditioning were included. We also reviewed the reference lists of the articles found in the PubMed search and included those thought to contribute to the objectives. All studies pertaining to remote ischemic preconditioning that included pediatric patients were reviewed. DATA SYNTHESIS AND CONCLUSIONS Differences in study outcomes in the effect of remote ischemic preconditioning on organ protection have been reported and may have played a large role in limiting the translation of findings into routine clinical practice. Ongoing efforts to protocolize the remote ischemic preconditioning technique in large multicenter trials with clearly delineated patient risk groups, including the use of biomarkers for enrichment, may help to ultimately determine if this procedure can be safely and effectively used for critically ill children.
Collapse
|
61
|
Sedaghat Z, Kadkhodaee M, Seifi B, Salehi E. Hind limb perconditioning renoprotection by modulation of inflammatory cytokines after renal ischemia/reperfusion. Ren Fail 2016; 38:655-662. [PMID: 26982574 DOI: 10.3109/0886022x.2016.1155387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose Renal ischemia/reperfusion (I/R) injury is a common clinical problem associated with significant mortality and morbidity. One newly described strategy to reduce this damage is remote perconditioning (RPEC), in which short-time ischemia of a limb during renal ischemia reduces the I/R-induced kidney injury. This study aimed to assess whether RPEC confer protection through changes in pro-inflammatory mediators. Methods Rats were subjected to right nephrectomy and randomized into: sham (no intervention), I/R (subjected to 45-min left renal ischemia) and RPEC group (subjected to four cycles of 5-min I/R of the femoral artery administered during renal ischemia). After 24-h, blood, urine, and kidney samples were collected. Biochemical indicators of renal dysfunction were measured in the cases of Neutrophil gelatinase-associated lipocalin (NGAL), and N-acetyl-B-diglucosaminidase (NAG) activity. Inflammatory cytokines [interleukin (IL)-6 and tumor necrosis factor-alpha, TNF-α] expression in the renal tissues as well as Periodic acid-Schiff stained histological sections were evaluated. Results I/R resulted in renal dysfunction, as evidenced by higher renal NGAL expression and urinary NAG activities. This was accompanied by increased TNF-α and IL-6 expressions as well as histological changes in this group. However, RPEC improved renal histology and function compared with the I/R group. Furthermore, the RPEC group showed decreases in TNF-α and IL-6 expression. Conclusions These results suggest that RPEC reduces the dysfunction and injury associated with I/R of the kidney. This technique reduced the pro-inflammatory cytokine in the kidney. RPEC could be a promising strategy against I/R-induced acute kidney injury partly by down-regulation of inflammatory mediators.
Collapse
Affiliation(s)
- Zahra Sedaghat
- a Department of Physiology, School of Medicine , Bushehr University of Medical Sciences , Bushehr , Iran
- b Department of Physiology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mehri Kadkhodaee
- b Department of Physiology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Behjat Seifi
- b Department of Physiology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Eisa Salehi
- c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
62
|
The effect of propofol on the expression of rabbit ischemia reperfusion injury-related proteins. Cell Biochem Biophys 2016; 71:1165-70. [PMID: 25384616 DOI: 10.1007/s12013-014-0325-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To investigate the effect of propofol on the expression of rabbit ischemia-reperfusion injury-related proteins and the mechanism involved. Thirty healthy adult New Zealand rabbit were selected. After establishment of liver I/R model, the rabbits were divided into group A (sham operation group), group B (control group using saline), and group C (propofol group) with ten rabbits in each group. The total protein concentration, differentially expressed protein spots and the difference of apoptotic proteins expression levels among the three groups were compared. The total protein concentrations in group A, B, and C were 0.778, 0.835, and 0.765 μg/μl, respectively, and the protein concentration in group B was significantly higher than group A and C (p < 0.05), with no significant difference between group A and C (p > 0.05); results analyzed by PDQuest software showed that the average number of protein spots and matching ratio had no significant difference among the three groups (p > 0.05); MALDI-TOF-MS mass spectrometry identified 16 differentially expressed protein spots; the numbers of Caspase-3 positive cells in group B and C were significantly higher than those in group A, and the numbers of Bcl-2 and Bax positive cells in group B and C were significantly lower than those in group A (p < 0.05); the number of Capase-3 positive cells in group C was significantly higher than those in group B, and the number of Bcl-2 positive cells in group C was significantly lower than those in group B (p < 0.05). The numbers of Bax positive cells had no significant difference between group B and C (p > 0.05); densities of Caspase-3, Bcl-2 and Bax in group B and C were significantly higher than those in group A (p < 0.05); Western blotting results from the comparison of the number of positive cells between group B and C was in accordance to the result obtained from immunohistochemistry. After I/R injury in rabbit, there was deregulation of various proteins such as Caspase-3, Bcl-2 and Bax, which was an important factor contributing to liver injury even systematic disease. Propofol could regulate the expression of I/R injury-related proteins and inhibit the attack of free radical to liver, having a remarkable advantage in preventing I/R injury and controlling the development of I/R injury. This study provides an effective theoretical basis for the prevention and treatment of I/R injury.
Collapse
|
63
|
Brower RG, Antonelli M. What's new in ARDS: can we prevent it? Intensive Care Med 2016; 42:772-774. [PMID: 26932347 DOI: 10.1007/s00134-016-4280-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/16/2016] [Indexed: 11/24/2022]
Affiliation(s)
- Roy G Brower
- Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, A. Gemelli University Hospital, Catholic University of Rome, Largo A. Gemelli, 8, 00168, Rome, Italy.
| |
Collapse
|
64
|
|
65
|
Chung R, Maulik A, Hamarneh A, Hochhauser D, Hausenloy DJ, Walker JM, Yellon DM. Effect of Remote Ischaemic Conditioning in Oncology Patients Undergoing Chemotherapy: Rationale and Design of the ERIC-ONC Study--A Single-Center, Blinded, Randomized Controlled Trial. Clin Cardiol 2016; 39:72-82. [PMID: 26807534 PMCID: PMC4864751 DOI: 10.1002/clc.22507] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/15/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer survival continues to improve, and thus cardiovascular consequences of chemotherapy are increasingly important determinants of long‐term morbidity and mortality. Conventional strategies to protect the heart from chemotherapy have important hemodynamic or myelosuppressive side effects. Remote ischemic conditioning (RIC) using intermittent limb ischemia‐reperfusion reduces myocardial injury in the setting of percutaneous coronary intervention. Anthracycline cardiotoxicity and ischemia‐reperfusion injury share common biochemical pathways in cardiomyocytes. The potential for RIC as a novel treatment to reduce subclinical myocyte injury in chemotherapy has never been explored and will be investigated in the Effect of Remote Ischaemic Conditioning in Oncology (ERIC‐ONC) trial (clinicaltrials.gov NCT 02471885). The ERIC‐ONC trial is a single‐center, blinded, randomized, sham‐controlled study. We aim to recruit 128 adult oncology patients undergoing anthracycline‐based chemotherapy treatment, randomized in a 1:1 ratio into 2 groups: (1) sham procedure or (2) RIC, comprising 4, 5‐minute cycles of upper arm blood pressure cuff inflations and deflations, immediately before each cycle of chemotherapy. The primary outcome measure, defining cardiac injury, will be high‐sensitivity troponin‐T over 6 cycles of chemotherapy and 12 months follow‐up. Secondary outcome measures will include clinical, electrical, structural, and biochemical endpoints comprising major adverse cardiovascular clinical events, incidence of cardiac arrhythmia over 14 days at cycle 5/6, echocardiographic ventricular function, N‐terminal pro‐brain natriuretic peptide levels at 3 months follow‐up, and changes in mitochondrial DNA, micro‐RNA, and proteomics after chemotherapy. The ERIC‐ONC trial will determine the efficacy of RIC as a novel, noninvasive, nonpharmacological, low‐cost cardioprotectant in cancer patients undergoing anthracycline‐based chemotherapy.
Collapse
Affiliation(s)
- Robin Chung
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Angshuman Maulik
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Ashraf Hamarneh
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Daniel Hochhauser
- Research Department of Oncology, The Cancer Institute, University College London, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom.,Cardiovascular and Metabolic Disorders Program, Duke University-National University of Singapore Medical School, Singapore
| | - J Malcolm Walker
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| |
Collapse
|
66
|
Propofol Suppressed Hypoxia/Reoxygenation-Induced Apoptosis in HBVSMC by Regulation of the Expression of Bcl-2, Bax, Caspase3, Kir6.1, and p-JNK. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1518738. [PMID: 27057270 PMCID: PMC4736333 DOI: 10.1155/2016/1518738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/05/2015] [Accepted: 11/29/2015] [Indexed: 12/29/2022]
Abstract
Recent studies have found that propofol may protect brain from cerebral ischemic-reperfusion injury. However, the underlying mechanism remains unclear. The effects of propofol were evaluated in HBVSMC after hypoxia/reoxygenation (H/R). Cell viability and levels of SOD, LDH, and MDA were measured. Apoptosis was detected by flow cytometry. The levels of Bax, Bcl-2, Caspase3, Sur2b, Kir6.1, JNK, p-JNK, mTOR, and p-mTOR proteins were measured by western blotting. H/R decreased cell viability and SOD activity and increased LDH leakage and MDA content in HBVSMC, all of which were significantly reversed by propofol. Propofol suppressed the levels of H/R-induced apoptosis. The expression of Bcl-2 and p-mTOR was significantly downregulated and the expression levels of Bax, Caspase3, Kir6.1, and p-JNK were upregulated following H/R injury. The ratio of p-JNK/JNK was increased; however, that of p-mTOR/mTOR decreased correspondingly. The effects on the expression of these proteins were reversed by propofol treatment. SP600125 enhanced and Everolimus attenuated the effect of propofol. These findings suggested that the protective effect of propofol against H/R injury in the HBVSMC was through the inhibition of apoptosis by inducing the expression of Bcl-2 and p-mTOR as well as inhibiting the expression levels of Bax, Caspase3, Kir6.1, and p-JNK.
Collapse
|
67
|
Lohser J, Slinger P. Lung Injury After One-Lung Ventilation: A Review of the Pathophysiologic Mechanisms Affecting the Ventilated and the Collapsed Lung. Anesth Analg 2015. [PMID: 26197368 DOI: 10.1213/ane.0000000000000808] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung injury is the leading cause of death after thoracic surgery. Initially recognized after pneumonectomy, it has since been described after any period of 1-lung ventilation (OLV), even in the absence of lung resection. Overhydration and high tidal volumes were thought to be responsible at various points; however, it is now recognized that the pathophysiology is more complex and multifactorial. All causative mechanisms known to trigger ventilator-induced lung injury have been described in the OLV setting. The ventilated lung is exposed to high strain secondary to large, nonphysiologic tidal volumes and loss of the normal functional residual capacity. In addition, the ventilated lung experiences oxidative stress, as well as capillary shear stress because of hyperperfusion. Surgical manipulation and/or resection of the collapsed lung may induce lung injury. Re-expansion of the collapsed lung at the conclusion of OLV invariably induces duration-dependent, ischemia-reperfusion injury. Inflammatory cytokines are released in response to localized injury and may promote local and contralateral lung injury. Protective ventilation and volatile anesthesia lessen the degree of injury; however, increases in biochemical and histologic markers of lung injury appear unavoidable. The endothelial glycocalyx may represent a common pathway for lung injury creation during OLV, because it is damaged by most of the recognized lung injurious mechanisms. Experimental therapies to stabilize the endothelial glycocalyx may afford the ability to reduce lung injury in the future. In the interim, protective ventilation with tidal volumes of 4 to 5 mL/kg predicted body weight, positive end-expiratory pressure of 5 to 10 cm H2O, and routine lung recruitment should be used during OLV in an attempt to minimize harmful lung stress and strain. Additional strategies to reduce lung injury include routine volatile anesthesia and efforts to minimize OLV duration and hyperoxia.
Collapse
Affiliation(s)
- Jens Lohser
- From the *Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia, Canada; and †Department of Anesthesia, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
68
|
Ji YY, Wang ZD, Wang SF, Wang BT, Yang ZA, Zhou XR, Lei NN, Yue WN. Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J Gastroenterol 2015; 21:8081-8088. [PMID: 26185379 PMCID: PMC4499350 DOI: 10.3748/wjg.v21.i26.8081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/27/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
AIM: To evaluate preventative effects of ischemic preconditioning (IP) in a rat model of intestinal injury induced by ischemia-reperfusion (IR).
METHODS: Male Sprague-Dawley rats (250-300 g) were fasted for 24 h with free access to water prior to the operation. Eighteen rats were randomly divided into three experimental groups: S group (n = 6), rats were subjected to isolation of the superior mesenteric artery (SMA) for 40 min, then the abdomen was closed; IR group (n = 6), rats were subjected to clamping the SMA 40 min, and the abdomen was closed followed by a 4-h reperfusion; IP group (n = 6) rats underwent three cycles of 5 min ischemia and 5 min reperfusion, then clamping of the SMA for 40 min, then the abdomen was closed and a 4-h reperfusion followed. All animals were euthanized by barbiturate overdose (150 mg/kg pentobarbital sodium, i.v.) for tissue collection, and the SMA was isolated via median abdominal incision. Intestinal histologic injury was observed. Malondialdehyde (MDA), myeloperoxidase (MPO) and tumor necrosis factor (TNF)-α concentrations in intestinal tissue were measured. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression, as well as nuclear factor (NF)-κB activity and expression in intestinal tissue were also determined.
RESULTS: Compared with the IR group, IP reduced IR-induced histologic injury of the intestine in rats (2.00 ± 0.71 vs 3.60 ± 0.84, P < 0.05). IP significantly inhibited the increase in MDA content (5.6 ± 0.15 μmol/L vs 6.84 ± 0.18 μmol/L, P < 0.01), MPO activity (0.13 ± 0.01 U/L vs 0.24 ± 0.01 U/L, P < 0.01), and TNF-α levels (7.79 ± 2.35 pg/mL vs 10.87 ± 2.48 pg/mL, P < 0.05) in the intestinal tissue of rats. IP also markedly ameliorated the increase in ICAM-1 (204.67 ± 53.27 vs 353.33 ± 45.19, P < 0.05) and VCAM-1 (256.67 ± 58.59 vs 377.33 ± 41.42, P < 0.05) protein expression in the intestinal tissues. Additionally, IP remarkably decreased NF-κB activity (0.48 ± 0.16 vs 0.76 ± 0.22, P < 0.05) and protein expression (320.23 ± 38.16 vs 520.76 ± 40.53, P < 0.01) in rat intestinal tissue.
CONCLUSION: IP may protect against IR-induced intestinal injury by attenuation of the neutrophil-endothelial adhesion cascade via reducing ICAM-1 and VCAM-1 expression and TNF-α-induced NF-κB signaling pathway activity.
Collapse
|
69
|
García-de-la-Asunción J, García-del-Olmo E, Perez-Griera J, Martí F, Galan G, Morcillo A, Wins R, Guijarro R, Arnau A, Sarriá B, García-Raimundo M, Belda J. Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: a study of exhaled breath condensate and blood. Eur J Cardiothorac Surg 2015; 48:e37-44. [PMID: 26088589 DOI: 10.1093/ejcts/ezv207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/07/2015] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. METHODS This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. RESULTS Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the duration of one-lung ventilation. CONCLUSIONS During lung lobectomy, the operated lung is collapsed and oxidative injury occurs, with the levels of markers of oxidative stress increasing simultaneously in exhaled breath condensate and blood during one-lung ventilation. These increases were larger after resuming two-lung ventilation. Increases immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation were directly correlated with the duration of one-lung ventilation.
Collapse
Affiliation(s)
- José García-de-la-Asunción
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valencia, Fundación Investigación Clínico de Valencia, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain
| | - Eva García-del-Olmo
- Department of Thoracic Surgery, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Jaume Perez-Griera
- Laboratory of Biochemistry, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Francisco Martí
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valencia, Fundación Investigación Clínico de Valencia, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain
| | - Genaro Galan
- Department of Thoracic Surgery, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Alfonso Morcillo
- Department of Thoracic Surgery, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Richard Wins
- Department of Thoracic Surgery, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ricardo Guijarro
- Department of Thoracic Surgery, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Antonio Arnau
- Department of Thoracic Surgery, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Benjamín Sarriá
- Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Miguel García-Raimundo
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valencia, Fundación Investigación Clínico de Valencia, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain
| | - Javier Belda
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valencia, Fundación Investigación Clínico de Valencia, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain
| |
Collapse
|
70
|
Stafford-Smith M. Acute kidney injury after cardiac and non-cardiac surgery: are there more similarities than differences? Can J Anaesth 2015; 62:727-30. [PMID: 25902892 DOI: 10.1007/s12630-015-0399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Mark Stafford-Smith
- Department of Anesthesiology, Duke University Medical Center, Box 3094 DUMC, Durham, NC, 27710, USA,
| |
Collapse
|
71
|
Li C, Liu KX. In reply. Anesthesiology 2015; 122:956. [PMID: 25782649 DOI: 10.1097/aln.0000000000000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Cai Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (K.-X.L.).
| | | |
Collapse
|
72
|
Another Role of Limb Remote Ischemic Preconditioning in Patients with Lung Cancer. Anesthesiology 2015; 122:955-6. [DOI: 10.1097/aln.0000000000000600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Billings IV FT, Petracek MR, Roberts II LJ, Pretorius M. Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial. PLoS One 2015; 10:e0117625. [PMID: 25705899 PMCID: PMC4338200 DOI: 10.1371/journal.pone.0117625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/14/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) lyses erythrocytes and induces lipid peroxidation, indicated by increasing plasma concentrations of free hemoglobin, F2-isoprostanes, and isofurans. Acetaminophen attenuates hemeprotein-mediated lipid peroxidation, reduces plasma and urine concentrations of F2-isoprostanes, and preserves kidney function in an animal model of rhabdomyolysis. Acetaminophen also attenuates plasma concentrations of isofurans in children undergoing CPB. The effect of acetaminophen on lipid peroxidation in adults has not been studied. This was a pilot study designed to test the hypothesis that acetaminophen attenuates lipid peroxidation in adults undergoing CPB and to generate data for a clinical trial aimed to reduce acute kidney injury following cardiac surgery. METHODS AND RESULTS In a prospective double-blind placebo-controlled clinical trial, sixty adult patients were randomized to receive intravenous acetaminophen or placebo starting prior to initiation of CPB and for every 6 hours for 4 doses. Acetaminophen concentrations measured 30 min into CPB and post-CPB were 11.9 ± 0.6 μg/mL (78.9 ± 3.9 μM) and 8.7 ± 0.3 μg/mL (57.6 ± 2.0 μM), respectively. Plasma free hemoglobin increased more than 15-fold during CPB, and haptoglobin decreased 73%, indicating hemolysis. Plasma and urinary markers of lipid peroxidation also increased during CPB but returned to baseline by the first postoperative day. Acetaminophen reduced plasma isofuran concentrations over the duration of the study (P = 0.05), and the intraoperative plasma isofuran concentrations that corresponded to peak hemolysis were attenuated in those subjects randomized to acetaminophen (P = 0.03). Perioperative acetaminophen did not affect plasma concentrations of F2-isoprostanes or urinary markers of lipid peroxidation. CONCLUSIONS Intravenous acetaminophen attenuates the increase in intraoperative plasma isofuran concentrations that occurs during CPB, while urinary markers were unaffected. TRIAL REGISTRATION ClinicalTrials.gov NCT01366976.
Collapse
Affiliation(s)
- Frederic T. Billings IV
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Michael R. Petracek
- Department of Cardiac Surgery, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - L. Jackson Roberts II
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Mias Pretorius
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
74
|
Randhawa PK, Bali A, Jaggi AS. RIPC for multiorgan salvage in clinical settings: Evolution of concept, evidences and mechanisms. Eur J Pharmacol 2015; 746:317-32. [DOI: 10.1016/j.ejphar.2014.08.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 01/16/2023]
|