51
|
Liu J, Ma Y, Xie W, Li X, Wang Y, Xu Z, Bai Y, Yin P, Wu Q. Lasso-Based Machine Learning Algorithm for Predicting Postoperative Lung Complications in Elderly: A Single-Center Retrospective Study from China. Clin Interv Aging 2023; 18:597-606. [PMID: 37082742 PMCID: PMC10112481 DOI: 10.2147/cia.s406735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
Background The predictive effect of systemic inflammatory factors on postoperative pulmonary complications in elderly patients remains unclear. In addition, machine learning models are rarely used in prediction models for elderly patients. Patients and Methods We retrospectively evaluated elderly patients who underwent general anesthesia during a 6-year period. Eligible patients were randomly assigned in a 7:3 ratio to the development group and validation group. The Least logistic absolute shrinkage and selection operator (LASSO) regression model and multiple logistic regression analysis were used to select the optimal feature. The discrimination, calibration and net reclassification improvement (NRI) of the final model were compared with "the Assess Respiratory Risk in Surgical Patients in Catalonia" (ARISCAT) model. Results Of the 9775 patients analyzed, 8.31% developed PPCs. The final model included age, preoperative SpO2, ANS (the Albumin/NLR Score), operation time, and red blood cells (RBC) transfusion. The concordance index (C-index) values of the model for the development cohort and the validation cohort were 0.740 and 0.748, respectively. The P values of the Hosmer-Lemeshow test in two cohorts were insignificant. Our model outperformed ARISCAT model, with C-index (0.740 VS 0.717, P = 0.003) and NRI (0.117, P < 0.001). Conclusion Based on LASSO machine learning algorithm, we constructed a prediction model superior to ARISCAT model in predicting the risk of PPCs. Clinicians could utilize these predictors to optimize prospective and preventive interventions in this patient population.
Collapse
Affiliation(s)
- Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yilei Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yunxiao Bai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ping Yin
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Correspondence: Qingping Wu, Email
| |
Collapse
|
52
|
Liu W, Zhang X, Liu K, Kang Z. Lung ultrasound for the diagnosis of pulmonary atelectasis in both adults and pediatrics: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e28397. [PMID: 36401459 PMCID: PMC9678594 DOI: 10.1097/md.0000000000031519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The use of lung ultrasound for the diagnosis of pulmonary atelectasis remains controversial. Therefore, we performed a protocol for systematic review and meta-analysis to evaluate the diagnostic accuracy of lung ultrasound for the diagnosis of pulmonary atelectasis both in adults and pediatrics. METHODS A comprehensive search of several databases from 1966 to October 2022 will be conducted. The databases include Ovid Medline In-Process & Other Non-Indexed Citations, Ovid MEDLINE, Ovid EMBASE, Ovid PsycINFO, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and PubMed. After screening and diluting out the articles that met inclusion criteria to be used for statistical analysis, the pooled evaluation indexes including sensitivity and specificity as well as hierarchical summary receiver operating characteristic curves with 95% confidence interval were calculated. All statistical analyses were calculated with STATA, version 12.0 (StataCorp, College Station, TX). RESULT We will synthesize the current studies to evaluate the diagnostic accuracy of lung ultrasound for the diagnosis of pulmonary atelectasis. CONCLUSION The result of this review will provide more reliable references to help clinicians make decisions for the diagnosis of pulmonary atelectasis.
Collapse
Affiliation(s)
- Wenlong Liu
- Ultrasonic Center, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xu Zhang
- Department of Medical Records, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Kai Liu
- Endoscopy Room, Shengjing Hospital Affiliated to China Medical University, Liaoning, China
| | - Zhongjing Kang
- Department of Radiology, Songshan General Hospital, Chongqing, China
- * Correspondence: Zhongjing Kang, Department of Radiology, Songshan General Hospital, Chongqing 401438, China (e-mail: )
| |
Collapse
|
53
|
Wang J, Zeng J, Zhang C, Zheng W, Huang X, Zhao N, Duan G, Yu C. Optimized ventilation strategy for surgery on patients with obesity from the perspective of lung protection: A network meta-analysis. Front Immunol 2022; 13:1032783. [PMID: 36330511 PMCID: PMC9623268 DOI: 10.3389/fimmu.2022.1032783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Objectives New ventilation modes have been proposed to support the perioperative treatment of patients with obesity, but there is a lack of consensus regarding the optimal strategy. Therefore, a network meta-analysis update of 13 ventilation strategies was conducted to determine the optimal mode of mechanical ventilation as a protective ventilation strategy decreases pulmonary atelectasis caused by inflammation. Methods The following databases were searched: MEDLINE; Cochrane Library; Embase; CINAHL; Google Scholar; and Web of Science for randomized controlled trials of mechanical ventilation in patients with obesity published up to May 1, 2022. Results Volume-controlled ventilation with individualized positive end-expiratory pressure and a recruitment maneuver (VCV+PEEPind+RM) was found to be the most effective strategy for improving ratio of the arterial O2 partial pressure to the inspiratory O2 concentration (PaO2/FiO2), and superior to pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), volume-controlled ventilation with recruitment maneuver (VCV+RM), volume-controlled ventilation with low positive end-expiratory pressure (VCV+lowPEEP), volume-controlled ventilation with lower positive expiratory end pressure (PEEP) and recruitment maneuver (VCV+lowPEEP+RM), and the mean difference [MD], the 95% confidence intervals [CIs] and [quality of evidence] were: 162.19 [32.94, 291.45] [very low]; 180.74 [59.22, 302.27] [low]; 171.07 [40.60, 301.54] [very low]; 135.14 [36.10, 234.18] [low]; and 139.21 [27.08, 251.34] [very low]. Surface under the cumulative ranking curve (SUCRA) value showed VCV+PEEPind+RM was the best strategy for improving PaO2/FiO2 (SUCRA: 0.963). VCV with high positive PEEP and recruitment maneuver (VCV+highPEEP+RM) was more effective in decreasing postoperative pulmonary atelectasis than the VCV+lowPEEP+RM strategy. It was found that volume-controlled ventilation with high positive expiratory end pressure (VCV+highPEEP), risk ratio [RR] [95% CIs] and [quality of evidence], 0.56 [0.38, 0.81] [moderate], 0.56 [0.34, 0.92] [moderate]. SUCRA value ranked VCV+highPEEP+RM the best strategy for improving postoperative pulmonary atelectasis intervention (SUCRA: 0.933). It should be noted that the quality of evidence was in all cases very low or only moderate. Conclusions This research suggests that VCV+PEEPind+RM is the optimal ventilation strategy for patients with obesity and is more effective in increasing PaO2/FiO2, improving lung compliance, and among the five ventilation strategies for postoperative atelectasis, VCV+highPEEP+RM had the greatest potential to reduce atelectasis caused by inflammation. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021288941.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anesthesiology, The Stomatology Hospital Affiliated Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, The Stomatology Hospital Affiliated Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chao Zhang
- Department of Anesthesiology, The Stomatology Hospital Affiliated Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenwen Zheng
- Department of Anesthesiology, The Stomatology Hospital Affiliated Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xilu Huang
- Department of Anesthesiology, The Stomatology Hospital Affiliated Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Nan Zhao
- Department of Anesthesiology, The Stomatology Hospital Affiliated Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, The Stomatology Hospital Affiliated Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
54
|
Influences of Ultrasonic Image-Guided Erector Spinae Plane Block on Postoperative Pulmonary Air Content of Lung Carcinoma Patients Undergoing Thoracoscopic Surgery. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1301361. [PMID: 36110570 PMCID: PMC9470334 DOI: 10.1155/2022/1301361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
To investigate the influences of ultrasonic image-guided erector spinae plane block (ESPB) on postoperative pulmonary air content of lung carcinoma patients undergoing thoracoscopic surgery, 42 patients performed with thoracoscopic radical surgery for lung carcinoma were selected. The patients in the experimental group were performed with ultrasound-guided unilateral ESPB and intravenous general anesthesia. The patients in the control group only underwent intravenous anesthesia. The changes in postoperative pulmonary air content between the two groups were compared. After that, all included patients were divided into the experimental (senior) group (13 cases), the experimental (adult) group (8 cases), the control (senior) group (11 cases), and the control (adult) group (10 cases) according to age. The changes in postoperative pulmonary air content of patients in the four groups were compared. The results showed that lung ultrasound score (LUS) of patients in experimental group was
points 0.5 hour after catheter extraction and LUS was
points 20 to 30 hours. Both scores were remarkably lower than those of patients in control group (
). LUS of lower left anterior area, upper left posterior area, lower left posterior area, upper right posterior area, and lower right posterior area of patients in experimental group was all apparently lower than those in control group 0.5 hour after catheter extraction (
). LUS of upper left posterior area, lower left posterior area, lower right anterior area, upper right posterior area, and lower right posterior area of patients in experimental group was all remarkably lower than those in control group 20 to 30 hours after surgery (
). LUS of senile patients and middle-aged patients in experimental group 0.5 hour after catheter extraction was
points and
points, respectively, which were both notably lower than those in control group (
). Ultrasound-guided ESPB exerted fewer influences on lung and could effectively improve postoperative pulmonary air content among patients. Hence, it was worthy of clinical promotion.
Collapse
|
55
|
Perioperative Pulmonary Atelectasis: Reply. Anesthesiology 2022; 137:126-127. [PMID: 35486838 PMCID: PMC9870666 DOI: 10.1097/aln.0000000000004232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
56
|
Tadros S, Nause-Osthoff R, Haydar B. Anesthetic impacts on pulmonary function: Implications for cystic fibrosis. Paediatr Anaesth 2022; 32:885. [PMID: 35527234 DOI: 10.1111/pan.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Sandy Tadros
- Department of Anesthesiology, University of Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rebecca Nause-Osthoff
- Division of Pediatric Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bishr Haydar
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
57
|
|
58
|
Proteomics of lung tissue reveals differences in inflammation and alveolar-capillary barrier response between atelectasis and aerated regions. Sci Rep 2022; 12:7065. [PMID: 35487970 PMCID: PMC9053128 DOI: 10.1038/s41598-022-11045-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
Atelectasis is a frequent clinical condition, yet knowledge is limited and controversial on its biological contribution towards lung injury. We assessed the regional proteomics of atelectatic versus normally-aerated lung tissue to test the hypothesis that immune and alveolar-capillary barrier functions are compromised by purely atelectasis and dysregulated by additional systemic inflammation (lipopolysaccharide, LPS). Without LPS, 130 proteins were differentially abundant in atelectasis versus aerated lung, mostly (n = 126) with less abundance together with negatively enriched processes in immune, endothelial and epithelial function, and Hippo signaling pathway. Instead, LPS-exposed atelectasis produced 174 differentially abundant proteins, mostly (n = 108) increased including acute lung injury marker RAGE and chemokine CCL5. Functional analysis indicated enhanced leukocyte processes and negatively enriched cell-matrix adhesion and cell junction assembly with LPS. Additionally, extracellular matrix organization and TGF-β signaling were negatively enriched in atelectasis with decreased adhesive glycoprotein THBS1 regardless of LPS. Concordance of a subset of transcriptomics and proteomics revealed overlap of leukocyte-related gene-protein pairs and processes. Together, proteomics of exclusively atelectasis indicates decreased immune response, which converts into an increased response with LPS. Alveolar-capillary barrier function-related proteomics response is down-regulated in atelectasis irrespective of LPS. Specific proteomics signatures suggest biological mechanistic and therapeutic targets for atelectasis-associated lung injury.
Collapse
|
59
|
Yu Y, Wang H, Bao Q, Zhang T, Chen B, Ding J. Sugammadex Versus Neostigmine for Neuromuscular Block Reversal and Postoperative Pulmonary Complications in Patients Undergoing Resection of Lung Cancer. J Cardiothorac Vasc Anesth 2022; 36:3626-3633. [DOI: 10.1053/j.jvca.2022.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
|
60
|
Aydemir D, Malik AN, Kulac I, Basak AN, Lazoglu I, Ulusu NN. Impact of the Amyotrophic Lateral Sclerosis Disease on the Biomechanical Properties and Oxidative Stress Metabolism of the Lung Tissue Correlated With the Human Mutant SOD1G93A Protein Accumulation. Front Bioeng Biotechnol 2022; 10:810243. [PMID: 35284425 PMCID: PMC8914018 DOI: 10.3389/fbioe.2022.810243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, and ALS incidence is increasing worldwide. Patients with ALS have respiratory failure at the disease’s end stages, leading to death; thus, the lung is one of the most affected organs during disease progression. Tissue stiffness increases in various lung diseases because of impaired extracellular matrix (ECM) homeostasis leading to tissue damage and dysfunction at the end. According to the literature, oxidative stress is the major contributor to ECM dysregulation, and mutant protein accumulation in ALS have been reported as causative to tissue damage and oxidative stress. In this study, we used SOD1G93A and SOD1WT rats and measured lung stiffness of rats by using a custom-built stretcher, where H&E staining is used to evaluate histopathological changes in the lung tissue. Oxidative stress status of lung tissues was assessed by measuring glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), catalase (CAT), and superoxide dismutase 1 (SOD1) levels. Western blot experiments were performed to evaluate the accumulation of the SOD1G93A mutated protein. As a result, increased lung stiffness, decreased antioxidant status, elevated levels of oxidative stress, impaired mineral and trace element homeostasis, and mutated SOD1G93A protein accumulation have been found in the mutated rats even at the earlier stages, which can be possible causative of increased lung stiffness and tissue damage in ALS. Since lung damage has altered at the very early stages, possible therapeutic approaches can be used to treat ALS or improve the life quality of patients with ALS.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Anjum Naeem Malik
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kirac Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koc University, Istanbul, Turkey
| | - Ismail Lazoglu
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
- *Correspondence: Nuriye Nuray Ulusu,
| |
Collapse
|
61
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
62
|
Lagier D, Zeng C, Fernandez-Bustamante A, Melo MFV. Perioperative Pulmonary Atelectasis: Part II. Clinical Implications. Anesthesiology 2022; 136:206-236. [PMID: 34710217 PMCID: PMC9885487 DOI: 10.1097/aln.0000000000004009] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of pulmonary atelectasis is common in the surgical patient. Pulmonary atelectasis can cause various degrees of gas exchange and respiratory mechanics impairment during and after surgery. In its most serious presentations, lung collapse could contribute to postoperative respiratory insufficiency, pneumonia, and worse overall clinical outcomes. A specific risk assessment is critical to allow clinicians to optimally choose the anesthetic technique, prepare appropriate monitoring, adapt the perioperative plan, and ensure the patient's safety. Bedside diagnosis and management have benefited from recent imaging advancements such as lung ultrasound and electrical impedance tomography, and monitoring such as esophageal manometry. Therapeutic management includes a broad range of interventions aimed at promoting lung recruitment. During general anesthesia, these strategies have consistently demonstrated their effectiveness in improving intraoperative oxygenation and respiratory compliance. Yet these same intraoperative strategies may fail to affect additional postoperative pulmonary outcomes. Specific attention to the postoperative period may be key for such outcome impact of lung expansion. Interventions such as noninvasive positive pressure ventilatory support may be beneficial in specific patients at high risk for pulmonary atelectasis (e.g., obese) or those with clinical presentations consistent with lung collapse (e.g., postoperative hypoxemia after abdominal and cardiothoracic surgeries). Preoperative interventions may open new opportunities to minimize perioperative lung collapse and prevent pulmonary complications. Knowledge of pathophysiologic mechanisms of atelectasis and their consequences in the healthy and diseased lung should provide the basis for current practice and help to stratify and match the intensity of selected interventions to clinical conditions.
Collapse
Affiliation(s)
- David Lagier
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Congli Zeng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Marcos F. Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
63
|
Jia Q, Yang Y, Chen X, Yao S, Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir Res 2022; 23:366. [PMID: 36539808 PMCID: PMC9764320 DOI: 10.1186/s12931-022-02303-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating respiratory disorder with high rates of mortality and morbidity, but the detailed underlying mechanisms of ALI/ARDS remain largely unknown. Mechanosensitive ion channels (MSCs), including epithelial sodium channel (ENaC), Piezo channels, transient receptor potential channels (TRPs), and two-pore domain potassium ion (K2P) channels, are highly expressed in lung tissues, and the activity of these MSCs can be modulated by mechanical forces (e.g., mechanical ventilation) and other stimuli (e.g., LPS, hyperoxia). Dysfunction of MSCs has been found in various types of ALI/ARDS, and MSCs play a key role in regulating alveolar fluid clearance, alveolar epithelial/endothelial barrier function, the inflammatory response and surfactant secretion in ALI/ARDS lungs. Targeting MSCs exerts therapeutic effects in the treatment of ALI/ARDS. In this review, we summarize the structure and functions of several well-recognized MSCs, the role of MSCs in the pathogenesis of ALI/ARDS and recent advances in the pharmacological and molecular modulation of MSCs in the treatment of ALI/ARDS. According to the current literature, targeting MSCs might be a very promising therapeutic approach against ALI/ARDS.
Collapse
Affiliation(s)
- Qi Jia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Yang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Hu
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|