51
|
Mesenchymal Stem Cell-Based Therapy of Inflammatory Lung Diseases: Current Understanding and Future Perspectives. Stem Cells Int 2019; 2019:4236973. [PMID: 31191672 PMCID: PMC6525794 DOI: 10.1155/2019/4236973] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
During acute or chronic lung injury, inappropriate immune response and/or aberrant repair process causes irreversible damage in lung tissue and most usually results in the development of fibrosis followed by decline in lung function. Inhaled corticosteroids and other anti-inflammatory drugs are very effective in patients with inflammatory lung disorders, but their long-term use is associated with severe side effects. Accordingly, new therapeutic agents that will attenuate ongoing inflammation and, at the same time, promote regeneration of injured alveolar epithelial cells are urgently needed. Mesenchymal stem cells (MSCs) are able to modulate proliferation, activation, and effector function of all immune cells that play an important role in the pathogenesis of acute and chronic inflammatory lung diseases. In addition to the suppression of lung-infiltrated immune cells, MSCs have potential to differentiate into alveolar epithelial cells in vitro and, accordingly, represent new players in cell-based therapy of inflammatory lung disorders. In this review article, we described molecular mechanisms involved in MSC-based therapy of acute and chronic pulmonary diseases and emphasized current knowledge and future perspectives related to the therapeutic application of MSCs in patients suffering from acute respiratory distress syndrome, pneumonia, asthma, chronic obstructive pulmonary diseases, and idiopathic pulmonary fibrosis.
Collapse
|
52
|
Perlee D, de Vos AF, Scicluna BP, Mancheño P, de la Rosa O, Dalemans W, Nürnberg P, Lombardo E, van der Poll T. Human Adipose-Derived Mesenchymal Stem Cells Modify Lung Immunity and Improve Antibacterial Defense in Pneumosepsis Caused by Klebsiella pneumoniae. Stem Cells Transl Med 2019; 8:785-796. [PMID: 31033196 PMCID: PMC6646807 DOI: 10.1002/sctm.18-0260] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Adult mesenchymal stem cells exert immunomodulatory effects that might improve the host response during sepsis. Knowledge on the effect of adipose-derived mesenchymal stem cells (ASCs) in sepsis is limited. Klebsiella (K.) pneumoniae is a common cause of gram-negative pneumonia and sepsis. This study sought to determine the effect of human ASCs on the host response during pneumosepsis in mice. Mice were infected with K. pneumoniae via the airways to induce a gradually evolving infection in the lung culminating pneumosepsis. One or 6 hours after infection, mice were infused intravenously with ASCs or vehicle, and euthanized after 16 hours or 48 hours, respectively. The effects of freshly cultured and cryopreserved ASCs were compared, the latter formulation being more clinically relevant. Intravenously administered ASCs were visualized in lung tissue by immunostaining at 1 and 3 hours, but not at 15 hours after infusion. Although early after infection, ASCs did not or only modestly influence bacterial loads, they reduced bacterial burdens in lungs and distant organs at 48 hours. ASCs reduced the lung levels of pro-inflammatory cytokines and attenuated lung pathology, but did not influence distant organ injury. ASCs strongly modified the lung transcriptome in uninfected mice and especially mice with pneumosepsis. Cryopreserved and cultured ASCs induced largely similar effects on the lung transcriptome. These data indicate that human ASCs induce profound immune modulatory effects in the lungs, resulting in reduced bacterial burdens and lung inflammation during pneumosepsis caused by a common human pathogen, suggesting that ASCs may be an adjunctive therapeutic in this condition. Stem Cells Translational Medicine 2019;8:785&796.
Collapse
Affiliation(s)
- Desiree Perlee
- Center of Experimental & Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental & Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Tom van der Poll
- Center of Experimental & Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Wiese DM, Ruttan CC, Wood CA, Ford BN, Braid LR. Accumulating Transcriptome Drift Precedes Cell Aging in Human Umbilical Cord-Derived Mesenchymal Stromal Cells Serially Cultured to Replicative Senescence. Stem Cells Transl Med 2019; 8:945-958. [PMID: 30924318 DOI: 10.1002/sctm.18-0246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
In preclinical studies, mesenchymal stromal cells (MSCs) exhibit robust potential for numerous applications. To capitalize on these benefits, cell manufacturing and delivery protocols have been scaled up to facilitate clinical trials without adequately addressing the impact of these processes on cell utility nor inevitable regulatory requirements for consistency. Growing evidence indicates that culture-aged MSCs, expanded to the limits of replicative exhaustion to generate human doses, are not equivalent to early passage cells, and their use may underpin reportedly underwhelming or inconsistent clinical outcomes. Here, we sought to define the maximum expansion boundaries for human umbilical cord-derived MSCs, cultured in chemically defined xeno- and serum-free media, that yield consistent cell batches comparable to early passage cells. Two male and two female donor populations, recovered from cryostorage at mean population doubling level (mPDL) 10, were serially cultivated until replicative exhaustion (senescence). At each passage, growth kinetics, cell morphology, and transcriptome profiles were analyzed. All MSC populations displayed comparable growth trajectories through passage 9 (P9; mPDL 45) and variably approached senescence after P10 (mPDL 49). Transcription profiles of 14,500 human genes, generated by microarray, revealed a nonlinear evolution of culture-adapted MSCs. Significant expression changes occurred only after P5 (mPDL 27) and accumulated rapidly after P9 (mPDL 45), preceding other cell aging metrics. We report that cryobanked umbilical cord-derived MSCs can be reliably expanded to clinical human doses by P4 (mPDL 23), before significant transcriptome drift, and thus represent a mesenchymal cell source suited for clinical translation of cellular therapies. Stem Cells Translational Medicine 2019;8:945&958.
Collapse
Affiliation(s)
| | | | | | - Barry N Ford
- Casualty Management Section, DRDC Suffield Research Centre, Medicine Hat, Alberta, Canada
| | | |
Collapse
|
54
|
Syndecan-2-positive, Bone Marrow-derived Human Mesenchymal Stromal Cells Attenuate Bacterial-induced Acute Lung Injury and Enhance Resolution of Ventilator-induced Lung Injury in Rats. Anesthesiology 2019; 129:502-516. [PMID: 29979191 DOI: 10.1097/aln.0000000000002327] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Human mesenchymal stromal cells demonstrate promise for acute respiratory distress syndrome, but current studies use highly heterogenous cell populations. We hypothesized that a syndecan 2 (CD362)-expressing human mesenchymal stromal cell subpopulation would attenuate Escherichia coli-induced lung injury and enhance resolution after ventilator-induced lung injury. METHODS In vitro studies determined whether CD362 human mesenchymal stromal cells could modulate pulmonary epithelial inflammation, wound healing, and macrophage phagocytosis. Two in vivo rodent studies determined whether CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced lung injury (n = 10/group) and enhanced resolution of ventilation-induced injury (n = 10/group). RESULTS CD362 human mesenchymal stromal cells attenuated cytokine-induced epithelial nuclear factor kappa B activation, increased epithelial wound closure, and increased macrophage phagocytosis in vitro. CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced injury in rodents, improving arterial oxygenation (mean ± SD, 83 ± 9 vs. 60 ± 8 mmHg, P < 0.05), improving lung compliance (mean ± SD: 0.66 ± 0.08 vs. 0.53 ± 0.09 ml · cm H2O, P < 0.05), reducing bacterial load (median [interquartile range], 1,895 [100-3,300] vs. 8,195 [4,260-8,690] colony-forming units, P < 0.05), and decreasing structural injury compared with vehicle. CD362 human mesenchymal stromal cells were more effective than CD362 human mesenchymal stromal cells and comparable to heterogenous human mesenchymal stromal cells. CD362 human mesenchymal stromal cells enhanced resolution after ventilator-induced lung injury in rodents, restoring arterial oxygenation (mean ± SD: 113 ± 11 vs. 89 ± 11 mmHg, P < 0.05) and lung static compliance (mean ± SD: 0.74 ± 0.07 vs. 0.45 ± 0.07 ml · cm H2O, P < 0.05), resolving lung inflammation, and restoring histologic structure compared with vehicle. CD362 human mesenchymal stromal cells efficacy was at least comparable to heterogenous human mesenchymal stromal cells. CONCLUSIONS A CD362 human mesenchymal stromal cell population decreased Escherichia coli-induced pneumonia severity and enhanced recovery after ventilator-induced lung injury.
Collapse
|
55
|
Rabani R, Volchuk A, Jerkic M, Ormesher L, Garces-Ramirez L, Canton J, Masterson C, Gagnon S, Tatham KC, Marshall J, Grinstein S, Laffey JG, Szaszi K, Curley GF. Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. Eur Respir J 2018. [PMID: 29519920 DOI: 10.1183/13993003.02021-2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem/stromal cells (MSCs) have been reported to produce an M2-like, alternatively activated phenotype in macrophages. In addition, MSCs mediate effective bacterial clearance in pre-clinical sepsis models. Thus, MSCs have a paradoxical antimicrobial and anti-inflammatory response that is not understood.Here, we studied the phenotypic and functional response of monocyte-derived human macrophages to MSC exposure in vitroMSCs induced two distinct, coexistent phenotypes: M2-like macrophages (generally elongated morphology, CD163+, acute phagosomal acidification, low NOX2 expression and limited phagosomal superoxide production) and M1-like macrophages characterised by high levels of phagosomal superoxide production. Enhanced phagosomal reactive oxygen species production was also observed in alveolar macrophages from a rodent model of pneumonia-induced sepsis. The production of M1-like macrophages was dependent on prostaglandin E2 and phosphatidylinositol 3-kinase. MSCs enhanced human macrophage phagocytosis of unopsonised bacteria and enhanced bacterial killing compared with untreated macrophages. Bacterial killing was significantly reduced by blockade of NOX2 using diphenyleneiodonium, suggesting that M1-like cells are primarily responsible for this effect. MSCs also enhanced phagocytosis and polarisation of M1-like macrophages derived from patients with severe sepsis.The enhanced antimicrobial capacity (M1-like) and inflammation resolving phenotype (M2-like) may account for the paradoxical effect of these cells in sepsis in vivo.
Collapse
Affiliation(s)
- Razieh Rabani
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,These two authors contributed equally to this work
| | - Allen Volchuk
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,These two authors contributed equally to this work
| | - Mirjana Jerkic
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Lindsay Ormesher
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Linda Garces-Ramirez
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Physiology, Escuela Nacional de Ciencias Biologicas, Mexico City, Mexico
| | - Johnathan Canton
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claire Masterson
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Stephane Gagnon
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Kate C Tatham
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Section of Anaesthetics, Pain Medicine and Intensive Care, Dept of Surgery and Cancer, Imperial College London, London, UK
| | - John Marshall
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Surgery, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - John G Laffey
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Physiology, University of Toronto, Toronto, ON, Canada.,Dept of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - Katalin Szaszi
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Surgery, University of Toronto, Toronto, ON, Canada.,These two authors contributed equally to this work
| | - Gerard F Curley
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Anesthesia, University of Toronto, Toronto, ON, Canada.,Dept of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland.,These two authors contributed equally to this work
| |
Collapse
|
56
|
Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM, Krasnodembskaya AD. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am J Respir Crit Care Med 2017; 196:1275-1286. [PMID: 28598224 DOI: 10.1164/rccm.201701-0170oc] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) remains a major cause of respiratory failure in critically ill patients. Mesenchymal stromal cells (MSCs) are a promising candidate for a cell-based therapy. However, the mechanisms of MSCs' effects in ARDS are not well understood. In this study, we focused on the paracrine effect of MSCs on macrophage polarization and the role of extracellular vesicle (EV)-mediated mitochondrial transfer. OBJECTIVES To determine the effects of human MSCs on macrophage function in the ARDS environment and to elucidate the mechanisms of these effects. METHODS Human monocyte-derived macrophages (MDMs) were studied in noncontact coculture with human MSCs when stimulated with LPS or bronchoalveolar lavage fluid (BALF) from patients with ARDS. Murine alveolar macrophages (AMs) were cultured ex vivo with/without human MSC-derived EVs before adoptive transfer to LPS-injured mice. MEASUREMENTS AND MAIN RESULTS MSCs suppressed cytokine production, increased M2 macrophage marker expression, and augmented phagocytic capacity of human MDMs stimulated with LPS or ARDS BALF. These effects were partially mediated by CD44-expressing EVs. Adoptive transfer of AMs pretreated with MSC-derived EVs reduced inflammation and lung injury in LPS-injured mice. Inhibition of oxidative phosphorylation in MDMs prevented the modulatory effects of MSCs. Generating dysfunctional mitochondria in MSCs using rhodamine 6G pretreatment also abrogated these effects. CONCLUSIONS In the ARDS environment, MSCs promote an antiinflammatory and highly phagocytic macrophage phenotype through EV-mediated mitochondrial transfer. MSC-induced changes in macrophage phenotype critically depend on enhancement of macrophage oxidative phosphorylation. AMs treated with MSC-derived EVs ameliorate lung injury in vivo.
Collapse
Affiliation(s)
- Thomas J Morrison
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Megan V Jackson
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Erin K Cunningham
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Adrien Kissenpfennig
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel F McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Cecilia M O'Kane
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Anna D Krasnodembskaya
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
57
|
Abstract
Abstract
Sepsis is a life-threatening syndrome resulting in shock and organ dysfunction stemming from a microbial infection. Sepsis has a mortality of 40% and is implicated in half of all in-hospital deaths. The host immune response to microbial infection is critical, with early-phase sepsis characterized by a hyperinflammatory immune response, whereas the later phase of sepsis is often complicated by suppression. Sepsis has no treatment, and management remains supportive.
Stem cells constitute exciting potential therapeutic agents for sepsis. In this review, we examine the rationale for stem cells in sepsis, focusing on mesenchymal stem/stromal cells, which currently demonstrate the greatest therapeutic promise. We examine the preclinical evidence base and evaluate potential mechanisms of action of these cells that are important in the setting of sepsis. We discuss early-phase clinical trials and critically appraise translational barriers to the use of mesenchymal stem/stromal cells in patients with sepsis.
Collapse
|
58
|
Laffey JG, Matthay MA. Fifty Years of Research in ARDS. Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. Am J Respir Crit Care Med 2017; 196:266-273. [PMID: 28306336 DOI: 10.1164/rccm.201701-0107cp] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
On the basis of several preclinical studies, cell-based therapy has emerged as a potential new therapeutic for acute respiratory distress syndrome (ARDS). Of the various cell-based therapy options, mesenchymal stem/stromal cells (MSCs) from bone marrow, adipose tissue, and umbilical cord have the most experimental data to support their potential efficacy for lung injury from both infectious and noninfectious causes. Mechanistically, MSCs exert their beneficial effects by release of paracrine factors, microvesicles, and transfer of mitochondria, all of which have antiinflammatory and pro-resolving effects on injured lung endothelium and alveolar epithelium, including enhancing the resolution of pulmonary edema by up-regulating sodium-dependent alveolar fluid clearance. MSCs also have antimicrobial effects mediated by release of antimicrobial factors and by up-regulating monocyte/macrophage phagocytosis. Phase 2a clinical trials to establish safety in ARDS are in progress, and two phase 1 trials did not report any serious adverse events. Several issues need further study, including: determining the optimal methods for large-scale production, reconstitution of cryopreserved cells for clinical use, defining cell potency assays, and determining the therapeutic potential of conditioned media derived from MSCs. Because ARDS is a heterogeneous syndrome, targeting MSCs to patients with ARDS with a more hyperinflammatory endotype may further enhance their potential for efficacy.
Collapse
Affiliation(s)
- John G Laffey
- 1 Department of Anesthesia and.,2 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; and
| | - Michael A Matthay
- 3 Department of Medicine and.,4 Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
59
|
Geiger S, Hirsch D, Hermann FG. Cell therapy for lung disease. Eur Respir Rev 2017; 26:26/144/170044. [PMID: 28659506 DOI: 10.1183/16000617.0044-2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
Besides cancer and cardiovascular diseases, lung disorders are a leading cause of morbidity and death worldwide. For many disease conditions no effective and curative treatment options are available. Cell therapies offer a novel therapeutic approach due to their inherent anti-inflammatory and anti-fibrotic properties. Mesenchymal stem/stromal cells (MSC) are the most studied cell product. Numerous preclinical studies demonstrate an improvement of disease-associated parameters after MSC administration in several lung disorders, including chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Furthermore, results from clinical studies using MSCs for the treatment of various lung diseases indicate that MSC treatment in these patients is safe. In this review we summarise the results of preclinical and clinical studies that indicate that MSCs are a promising therapeutic approach for the treatment of lung diseases. Nevertheless, further investigations are required.
Collapse
Affiliation(s)
- Sabine Geiger
- Preclinical Development, Apceth Biopharma GmbH, Munich, Germany
| | - Daniela Hirsch
- Preclinical Development, Apceth Biopharma GmbH, Munich, Germany
| | - Felix G Hermann
- Preclinical Development, Apceth Biopharma GmbH, Munich, Germany
| |
Collapse
|
60
|
Chabot D, Tremblay T, Paré I, Bazin R, Loubaki L. Transient warming events occurring after freezing impairs umbilical cord-derived mesenchymal stromal cells functionality. Cytotherapy 2017; 19:978-989. [PMID: 28606762 DOI: 10.1016/j.jcyt.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have shown promising results for the treatment of refractory acute graft-versus-host disease. While safety of MSC infusion has been demonstrated, the use of cryopreserved MSCs in clinical trials has raised concerns regarding the retention of their functional activity. This has led to the recommendation by experts in the field to use freshly harvested MSCs, even though this approach is much less practical from a logistic point of view. In the present study, we revisited the impact of cryopreservation on MSC functionality and addressed the possibility that warming events on frozen cells rather than cryopreservation per se could impact MSC functionality. METHODS Following controlled-rate freezing to -130°C, umbilical cord-derived MSCs were left at room temperature (RT) for 2-10 min or on dry ice for 10 min, before being transferred into liquid nitrogen (LqN2). MSCs of each group were subsequently tested (viability, functionality and cellular damage) and compared with their freshly harvested counterparts. RESULTS We demonstrated that freshly harvested MSCs as well as cryopreserved MSCs that were left on dry ice following step-down freezing have comparable viability, functionality and integrity. In contrast, cryopreserved MSCs that were left at RT before being transferred into LqN2 were functionally impaired and showed cellular damage upon thawing even though they exhibited high viability. DISCUSSION Warming events after freezing and not cryopreservation per se significantly impair MSC functionality, indicating that cryopreserved MSCs can be an advantageous alternative to freshly harvested cells for therapeutic purposes.
Collapse
Affiliation(s)
- Dominique Chabot
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec City, QC, Canada
| | - Tony Tremblay
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada
| | - Isabelle Paré
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada
| | - Renée Bazin
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec City, QC, Canada
| | - Lionel Loubaki
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec City, QC, Canada.
| |
Collapse
|
61
|
Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome. Crit Care Med 2017. [DOI: 10.1097/ccm.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|