51
|
Nentwich J, Wichmann D, Kluge S, Lindau S, Mutlak H, John S. Low-flow CO 2 removal in combination with renal replacement therapy effectively reduces ventilation requirements in hypercapnic patients: a pilot study. Ann Intensive Care 2019; 9:3. [PMID: 30617611 PMCID: PMC6323065 DOI: 10.1186/s13613-019-0480-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/02/2019] [Indexed: 01/21/2023] Open
Abstract
Background Lung-protective strategies are the cornerstone of mechanical ventilation in critically ill patients with both ARDS and other disorders. Extracorporeal CO2 removal (ECCO2R) may enhance lung protection by allowing even further reductions in tidal volumes and is effective in low-flow settings commonly used for renal replacement therapy. In this study, we describe for the first time the effects of a labeled and certified system combining ECCO2R and renal replacement therapy on pulmonary stress and strain in hypercapnic patients with renal failure. Methods Twenty patients were treated with the combined system which incorporates a membrane lung (0.32 m2) in a conventional renal replacement circuit. After changes in blood gases under ECCO2R were recorded, baseline hypercapnia was reestablished and the impact on ventilation parameters such as tidal volume and driving pressure was recorded. Results The system delivered ECCO2R at rate of 43.4 ± 14.1 ml/min, PaCO2 decreased from 68.3 ± 11.8 to 61.8 ± 11.5 mmHg (p < 0.05) and pH increased from 7.18 ± 0.09 to 7.22 ± 0.08 (p < 0.05). There was a significant reduction in ventilation requirements with a decrease in tidal volume from 6.2 ± 0.9 to 5.4 ± 1.1 ml/kg PBW (p < 0.05) corresponding to a decrease in plateau pressure from 30.6 ± 4.6 to 27.7 ± 4.1 cmH2O (p < 0.05) and a decrease in driving pressure from 18.3 ± 4.3 to 15.6 ± 3.9 cmH2O (p < 0.05), indicating reduced pulmonary stress and strain. No complications related to the procedure were observed. Conclusions The investigated low-flow ECCO2R and renal replacement system can ameliorate respiratory acidosis and decrease ventilation requirements in hypercapnic patients with concomitant renal failure. Trial registration NCT02590575, registered 10/23/2015.
Collapse
Affiliation(s)
- Jens Nentwich
- Medical Intensive Care, Department of Cardiology, Klinikum Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Lindau
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Haitham Mutlak
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan John
- Medical Intensive Care, Department of Cardiology, Klinikum Nuremberg, Paracelsus Medical University, Nuremberg, Germany.
| |
Collapse
|
52
|
Hope Kilgannon J, Hunter BR, Puskarich MA, Shea L, Fuller BM, Jones C, Donnino M, Kline JA, Jones AE, Shapiro NI, Abella BS, Trzeciak S, Roberts BW. Partial pressure of arterial carbon dioxide after resuscitation from cardiac arrest and neurological outcome: A prospective multi-center protocol-directed cohort study. Resuscitation 2018; 135:212-220. [PMID: 30452939 DOI: 10.1016/j.resuscitation.2018.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/21/2018] [Accepted: 11/13/2018] [Indexed: 12/23/2022]
Abstract
AIMS Partial pressure of arterial carbon dioxide (PaCO2) is a regulator of cerebral blood flow after brain injury. We sought to test the association between PaCO2 after resuscitation from cardiac arrest and neurological outcome. METHODS A prospective protocol-directed cohort study across six hospitals. INCLUSION CRITERIA age ≥18, non-traumatic cardiac arrest, mechanically ventilated after return of spontaneous circulation (ROSC), and receipt of targeted temperature management. Per protocol, PaCO2 was measured by arterial blood gas analyses at one and six hours after ROSC. We determined the mean PaCO2 over this initial six hours after ROSC. The primary outcome was good neurological function at hospital discharge, defined a priori as a modified Rankin Scale ≤3. Multivariable Poisson regression analysis was used to test the association between PaCO2 and neurological outcome. RESULTS Of the 280 patients included, the median (interquartile range) PaCO2 was 44 (37-52) mmHg and 30% had good neurological function. We found mean PaCO2 had a quadratic (inverted "U" shaped) association with good neurological outcome, with a mean PaCO2 of 68 mmHg having the highest predictive probability of good neurological outcome, and worse neurological outcome at higher and lower PaCO2. Presence of metabolic acidosis attenuated the association between PaCO2 and good neurological outcome, with a PaCO2 of 51 mmHg having the highest predictive probability of good neurological outcome among patients with metabolic acidosis. CONCLUSION PaCO2 has a "U" shaped association with neurological outcome, with mild to moderate hypercapnia having the highest probability of good neurological outcome.
Collapse
Affiliation(s)
- J Hope Kilgannon
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Benton R Hunter
- The Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael A Puskarich
- The Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lisa Shea
- The Department of Medicine, Division of Critical Care Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Brian M Fuller
- Departments of Emergency Medicine and Anesthesiology, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher Jones
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Michael Donnino
- The Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jeffrey A Kline
- The Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Alan E Jones
- The Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Nathan I Shapiro
- The Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Benjamin S Abella
- The Center for Resuscitation Science and Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Trzeciak
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States; The Department of Medicine, Division of Critical Care Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Brian W Roberts
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States.
| |
Collapse
|
53
|
Driving-pressure-independent protective effects of open lung approach against experimental acute respiratory distress syndrome. Crit Care 2018; 22:228. [PMID: 30243301 PMCID: PMC6151188 DOI: 10.1186/s13054-018-2154-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background The open lung approach (OLA) reportedly has lung-protective effects against acute respiratory distress syndrome (ARDS). Recently, lowering of the driving pressure (ΔP), rather than improvement in lung aeration per se, has come to be considered as the primary lung-protective mechanism of OLA. However, the driving pressure-independent protective effects of OLA have never been evaluated in experimental studies. We here evaluated whether OLA shows protective effects against experimental ARDS even when the ΔP is not lowered. Methods Lipopolysaccharide was intratracheally administered to rats to establish experimental ARDS. After 24 h, rats were mechanically ventilated and randomly allocated to the OLA or control group. In the OLA group, 5 cmH2O positive end-expiratory pressure (PEEP) and recruitment maneuver (RM) were applied. Neither PEEP nor RM was applied to the rats in the control group. Dynamic ΔP was kept at 15 cmH2O in both groups. After 6 h of mechanical ventilation, rats in both groups received RM to inflate reversible atelectasis of the lungs. Arterial blood gas analysis, lung computed tomography, histological evaluation, and comprehensive biochemical analysis were performed. Results OLA significantly improved lung aeration, arterial oxygenation, and gas exchange. Even after RM in both groups, the differences in these parameters between the two groups persisted, indicating that the atelectasis-induced respiratory dysfunction observed in the control group is not an easily reversible functional problem. Lung histological damage was severe in the dorsal dependent area in both groups, but was attenuated by OLA. White blood cell counts, protein concentrations, and tissue injury markers in the broncho-alveolar lavage fluid (BALF) were higher in the control than in the OLA group. Furthermore, levels of CXCL-7, a platelet-derived chemokine, were higher in the BALF from the control group, indicating that OLA protects the lungs by suppressing platelet activation. Conclusions OLA shows protective effects against experimental ARDS, even when the ΔP is not decreased. In addition to reducing ΔP, maintaining lung aeration seems to be important for lung protection in ARDS. Electronic supplementary material The online version of this article (10.1186/s13054-018-2154-2) contains supplementary material, which is available to authorized users.
Collapse
|
54
|
Preemptive Mechanical Ventilation Based on Dynamic Physiology in the Alveolar Microenvironment: Novel Considerations of Time-Dependent Properties of the Respiratory System. J Trauma Acute Care Surg 2018; 85:1081-1091. [PMID: 30124627 DOI: 10.1097/ta.0000000000002050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the current treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword; if set properly, it can significantly reduce ARDS associated mortality but if set improperly it can have unintended consequences causing a secondary ventilator induced lung injury (VILI). The hallmark of ARDS pathology is a heterogeneous lung injury, which predisposes the lung to a secondary VILI. The current standard of care approach is to wait until ARDS is well established and then apply a low tidal volume (LVt) strategy to avoid over-distending the remaining normal lung. However, even with the use of LVt strategy, the mortality of ARDS remains unacceptably high at ~40%. In this review, we analyze the lung pathophysiology associated with ARDS that renders the lung highly vulnerable to a secondary VILI. The current standard of care LVt strategy is critiqued as well as new strategies used in combination with LVt to protect the lung. Using the current understanding of alveolar mechanics (i.e. the dynamic change in alveolar size and shape with tidal ventilation) we provide a rationale for why the current protective ventilation strategies have not further reduced ARDS mortality. New strategies of protective ventilation based on dynamic physiology in the micro-environment (i.e. alveoli and alveolar ducts) are discussed. Current evidence suggests that alveolar inflation and deflation is viscoelastic in nature, with a fast and slow phase in both alveolar recruitment and collapse. Using this knowledge, a ventilation strategy with a prolonged time at inspiration would recruit alveoli and a brief release time at expiration would prevent alveolar collapse, converting heterogeneous to homogeneous lung inflation significantly reducing ARDS incidence and mortality.
Collapse
|
55
|
Tiruvoipati R, Gupta S, Pilcher D, Bailey M. Hypercapnia and hypercapnic acidosis in sepsis: harmful, beneficial or unclear? CRIT CARE RESUSC 2018; 20:94-100. [PMID: 29852847 DOI: 10.1016/s1441-2772(23)00763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Mortality related to sepsis among critically ill patients remains high. Recent literature suggests that hypercapnia may affect the pathophysiology of sepsis. The effects of hypercapnia on sepsis are largely related to the direct effect of hypercapnic acidosis on immune function and, as a consequence, of increased cardiac output that subsequently leads to improved tissue oxygenation. Appropriate management of hypercapnia may aid in improving the outcomes of sepsis. Our aim was to review the effects of compensated hypercapnia and hypercapnic acidosis on sepsis, with a specific focus on critically ill patients. Hypercapnic acidosis has been extensively studied in various in vivo animal models of sepsis and ex vivo studies. Published data from animal experimental studies suggest that the effects of hypercapnic acidosis are variable, with benefit shown in some settings of sepsis and harm in others. The effects may also vary at different time points during the course of sepsis. There are very few clinical studies investigating the effects of hypercapnia in prevention of sepsis and in established sepsis. It appears from these very limited clinical data that hypercapnia may be associated with adverse outcomes. There are no clinical studies investigating clinical outcomes of hypercapnic acidosis or compensated hypercapnia in sepsis and septic shock in critical care settings, thus extrapolation of the experimental results to guide critical care practice is difficult. Clinical studies are needed, especially in critically ill patients, to define the effects of compensated hypercapnia and hypercapnic acidosis that may aid clinicians to improve the outcomes in sepsis.
Collapse
Affiliation(s)
| | - Sachin Gupta
- Department of Intensive Care medicine, Frankston Hospital, Frankston, Vic, Australia
| | - David Pilcher
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic, Australia
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
56
|
Morales Quinteros L, Bringué Roque J, Kaufman D, Artigas Raventós A. Importance of carbon dioxide in the critical patient: Implications at the cellular and clinical levels. Med Intensiva 2018; 43:234-242. [PMID: 29486904 DOI: 10.1016/j.medin.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/22/2023]
Abstract
Important recent insights have emerged regarding the cellular and molecular role of carbon dioxide (CO2) and the effects of hypercapnia. The latter may have beneficial effects in patients with acute lung injury, affording reductions in pulmonary inflammation, lessened oxidative alveolar damage, and the regulation of innate immunity and host defenses by inhibiting the expression of inflammatory cytokines. However, other studies suggest that CO2 can have deleterious effects upon the lung, reducing alveolar wound repair in lung injury, decreasing the rate of reabsorption of alveolar fluid, and inhibiting alveolar cell proliferation. Clearly, hypercapnia has both beneficial and harmful consequences, and it is important to determine the net effect under specific conditions. The purpose of this review is to describe the immunological and physiological effects of carbon dioxide, considering their potential consequences in patients with acute respiratory failure.
Collapse
Affiliation(s)
| | | | - David Kaufman
- Division of Pulmonary, Critical Care & Sleep, NYU School of Medicine, New York, NY, Estados Unidos
| | - Antonio Artigas Raventós
- Servicio de Medicina Intensiva, Hospital Universitario Sagrat Cor, Barcelona, España; Universidad Autónoma de Barcelona, Sabadell, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, España
| |
Collapse
|
57
|
Lu Z, Casalino-Matsuda SM, Nair A, Buchbinder A, Budinger GRS, Sporn PHS, Gates KL. A role for heat shock factor 1 in hypercapnia-induced inhibition of inflammatory cytokine expression. FASEB J 2018; 32:3614-3622. [PMID: 29405096 DOI: 10.1096/fj.201701164r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypercapnia, elevated levels of CO2 in the blood, is a known marker for poor clinical prognosis and is associated with increased mortality in patients hospitalized with both bacterial and viral pneumonias. Although studies have established a connection between elevated CO2 levels and poor pneumonia outcomes, a mechanistic basis of this association has not yet been established. We previously reported that hypercapnia inhibits expression of key NF-κB-regulated, innate immune cytokines, TNF-α, and IL-6, in LPS-stimulated macrophages in vitro and in mice during Pseudomonas pneumonia. The transcription factor heat shock factor 1 (HSF1) is important in maintaining proteostasis during stress and has been shown to negatively regulate NF-κB activity. In this study, we tested the hypothesis that HSF1 activation in response to hypercapnia results in attenuated NF-κB-regulated gene expression. We found that hypercapnia induced the protein expression and nuclear accumulation of HSF1 in primary murine alveolar macrophages and in an alveolar macrophage cell line (MH-S). In MH-S cells treated with short interfering RNA targeting Hsf1, LPS-induced IL-6 and TNF-α release were elevated during exposure to hypercapnia. Pseudomonas-infected Hsf1+/+ (wild-type) mice, maintained in a hypercapnic environment, showed lower levels of IL-6 and TNF-α in bronchoalveolar lavage fluid and IL-1β in lung tissue than did infected mice maintained in room air. In contrast, infected Hsf1+/- mice exposed to either hypercapnia or room air had similarly elevated levels of those cytokines. These results suggest that hypercapnia-mediated inhibition of NF-κB cytokine production is dependent on HSF1 expression and/or activation.-Lu, Z., Casalino-Matsuda, S. M., Nair, A., Buchbinder, A., Budinger, G. R. S., Sporn, P. H. S., Gates, K. L. A role for heat shock factor 1 in hypercapnia-induced inhibition of inflammatory cytokine expression.
Collapse
Affiliation(s)
- Ziyan Lu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - S Marina Casalino-Matsuda
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aisha Nair
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois, USA
| | - Anja Buchbinder
- Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - G R Scott Budinger
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois, USA
| | - Peter H S Sporn
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois, USA
| | - Khalilah L Gates
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
58
|
Nin N, Angulo M, Briva A. Effects of hypercapnia in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:37. [PMID: 29430454 PMCID: PMC5799147 DOI: 10.21037/atm.2018.01.09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 01/11/2023]
Abstract
In patients with acute respiratory distress syndrome (ARDS) hypercapnia is a marker of poor prognosis, however there is controversial information regarding the effect of hypercapnia on outcomes. Recently two studies in a large population of mechanical ventilation patients showed higher mortality associated independently to hypercapnia. Key roles responsible for the poor clinical outcomes observed in critically ill patients exposed to hypercapnia are not well known, two possible mechanisms involved are the effect of CO2 on the muscle and the alveolar epithelium. Hypercapnia frequently coexists with muscle atrophy and dysfunction, moreover patients surviving ARDS present reduced muscle strength and decreased physical quality of life. One of the possible mechanisms responsible for these abnormalities could be the effects of hypercapnia during the course of ARDS. More over controversy persists about the hypercapnia role in the alveolar space, in the last years there is abundant experimental information on its deleterious effects on essential functions of the alveolar epithelium.
Collapse
Affiliation(s)
- Nicolás Nin
- Unidad de Cuidados Intensivos, Hospital Español, Montevideo, Uruguay
| | - Martín Angulo
- Unidad de Cuidados Intensivos, Hospital de Clínicas, Montevideo, Uruguay
| | - Arturo Briva
- Unidad de Cuidados Intensivos, Hospital Español, Montevideo, Uruguay
- Unidad de Cuidados Intensivos, Hospital de Clínicas, Montevideo, Uruguay
| |
Collapse
|
59
|
Barnes T, Zochios V, Parhar K. Re-examining Permissive Hypercapnia in ARDS: A Narrative Review. Chest 2017; 154:185-195. [PMID: 29175086 DOI: 10.1016/j.chest.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Lung-protective ventilation (LPV) has become the cornerstone of management in patients with ARDS. A subset of patients is unable to tolerate LPV without significant CO2 elevation. In these patients, permissive hypercapnia is used. Although thought to be benign, it is becoming increasingly evident that elevated CO2 levels have significant physiological effects. In this narrative review, we highlight clinically relevant end-organ effects in both animal models and clinical studies. We also explore the association between elevated CO2, acute cor pulmonale, and ICU mortality. We conclude with a brief review of alternative therapies for CO2 management currently under investigation in patients with moderate to severe ARDS.
Collapse
Affiliation(s)
- Tavish Barnes
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Vasileios Zochios
- Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England
| | - Ken Parhar
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
60
|
Vadász I, Sznajder JI. Gas Exchange Disturbances Regulate Alveolar Fluid Clearance during Acute Lung Injury. Front Immunol 2017; 8:757. [PMID: 28725223 PMCID: PMC5495863 DOI: 10.3389/fimmu.2017.00757] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/15/2017] [Indexed: 01/07/2023] Open
Abstract
Disruption of the alveolar-capillary barrier and accumulation of pulmonary edema, if not resolved, result in poor alveolar gas exchange leading to hypoxia and hypercapnia, which are hallmarks of acute lung injury and the acute respiratory distress syndrome (ARDS). Alveolar fluid clearance (AFC) is a major function of the alveolar epithelium and is mediated by the concerted action of apically-located Na+ channels [epithelial Na+ channel (ENaC)] and the basolateral Na,K-ATPase driving vectorial Na+ transport. Importantly, those patients with ARDS who cannot clear alveolar edema efficiently have worse outcomes. While hypoxia can be improved in most cases by O2 supplementation and mechanical ventilation, the use of lung protective ventilation settings can lead to further CO2 retention. Whether the increase in CO2 concentrations has deleterious or beneficial effects have been a topic of significant controversy. Of note, both low O2 and elevated CO2 levels are sensed by the alveolar epithelium and by distinct and specific molecular mechanisms impair the function of the Na,K-ATPase and ENaC thereby inhibiting AFC and leading to persistence of alveolar edema. This review discusses recent discoveries on the sensing and signaling events initiated by hypoxia and hypercapnia and the relevance of these results in identification of potential novel therapeutic targets in the treatment of ARDS.
Collapse
Affiliation(s)
- István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
61
|
A Climate Change in Mechanical Ventilation?*. Crit Care Med 2017. [DOI: 10.1097/ccm.0000000000002398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|