51
|
Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:112-9. [PMID: 22664354 DOI: 10.1016/j.pnpbp.2012.05.018] [Citation(s) in RCA: 457] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 12/13/2022]
Abstract
Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors.
Collapse
Affiliation(s)
- Shuichi Chiba
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
52
|
Djordjevic A, Djordjevic J, Elaković I, Adzic M, Matić G, Radojcic MB. Effects of fluoxetine on plasticity and apoptosis evoked by chronic stress in rat prefrontal cortex. Eur J Pharmacol 2012; 693:37-44. [DOI: 10.1016/j.ejphar.2012.07.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/10/2012] [Accepted: 07/27/2012] [Indexed: 02/01/2023]
|
53
|
Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de Souza LF, Dafre AL, Leal RB, Rodrigues ALS. Fluoxetine modulates hippocampal cell signaling pathways implicated in neuroplasticity in olfactory bulbectomized mice. Behav Brain Res 2012; 237:176-84. [PMID: 23018126 DOI: 10.1016/j.bbr.2012.09.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022]
Abstract
The olfactory bulbectomy (OB) animal model of depression is a well-established model that is capable of detecting antidepressant activity following chronic drug therapy, and the surgery results in behavioral and biochemical changes that are reminiscent of various symptoms of depression. In the present study, we investigated the degree to which 14 days of p.o. administration of the classic antidepressant fluoxetine (10mg/kg) were able to reverse OB-induced changes in behavior (namely, hyperactivity in the open-field test and reduced motivational and self-care behaviors in the splash test) and in the activation of hippocampal cell signaling pathways that are thought to be involved in synaptic plasticity. OB caused significant increases in ERK1 and CREB (Ser(133)) phosphorylation and in the expression of BDNF immunocontent, all of which were prevented by fluoxetine administration. Moreover, fluoxetine administration also caused a significant decrease in ERK2 phosphorylation in mice that had undergone OB. Neither Akt nor GSK-3β phosphorylation was altered in any experimental condition. In conclusion, the present study shows that OB can induce significant behavioral changes that are accompanied by the activation of hippocampal signaling pathways, namely the ERK1/CREB/BDNF pathway, which is involved in the synaptic plasticity. Conversely, fluoxetine prevented these OB-induced behavioral changes and avoided the activation of ERK1/CREB/BDNF in the hippocampus. Taken together, our results extend the data from the existing literature regarding OB-induced behavioral and neurochemical changes, and suggest a possible underlying mechanism that can account for the antidepressant effect of fluoxetine in this model.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology 2012; 37:1209-23. [PMID: 22240307 DOI: 10.1016/j.psyneuen.2011.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 01/24/2023]
Abstract
Emerging evidence indicates that certain behavioral traits, such as anxiety, are associated with the development of depression-like behaviors after exposure to chronic stress. However, single traits do not explain the wide variability in vulnerability to stress observed in outbred populations. We hypothesized that a combination of behavioral traits might provide a better characterization of an individual's vulnerability to prolonged stress. Here, we sought to determine whether the characterization of relevant behavioral traits in rats could aid in identifying individuals with different vulnerabilities to developing stress-induced depression-like behavioral alterations. We also investigated whether behavioral traits would be related to the development of alterations in the hypothalamic-pituitary-adrenal axis and in brain activity - as measured through phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2)--in response to an acute stressor following either sub-chronic (2 weeks) or chronic (4 weeks) unpredictable stress (CUS). Sprague-Dawley rats were characterized using a battery of behavioral tasks, and three principal traits were identified: anxiety, exploration and activity. When combined, the first two traits were found to explain the variability in the stress responses. Our findings confirm the increased risk of animals with high anxiety developing certain depression-like behaviors (e.g., increased floating time in the forced swim test) when progressively exposed to stress. In contrast, the behavioral profile based on combined low anxiety and low exploration was resistant to alterations related to social behaviors, while the high anxiety and low exploration profile displayed a particularly vulnerable pattern of physiological and neurobiological responses after sub-chronic stress exposure. Our findings indicate important differences in animals' vulnerability and/or resilience to the effects of repeated stress, particularly during initial or intermediate levels of stress exposure, and they highlight that the behavioral inhibition profile of an animal provides a particular susceptibility to responding in a deleterious manner to stress.
Collapse
|
55
|
Fernández-Guasti A, Fiedler JL, Herrera L, Handa RJ. Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones. Horm Metab Res 2012; 44:607-18. [PMID: 22581646 PMCID: PMC3584173 DOI: 10.1055/s-0032-1312592] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design.
Collapse
Affiliation(s)
| | - J. L. Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - L. Herrera
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - R. J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| |
Collapse
|
56
|
Regionally selective activation and differential regulation of ERK, JNK and p38 MAP kinase signalling pathway by protein kinase C in mood modulation. Int J Neuropsychopharmacol 2012; 15:781-93. [PMID: 21682943 DOI: 10.1017/s1461145711000897] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A growing body of evidence indicates that the extracellular signal-regulated kinase (ERK) pathway may participate in the neuronal modulation of depression. p38MAPK and c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK) also belong to the MAPK family which mainly function as mediators of cellular stresses. Since increasing evidence implicates stress as an important factor in vulnerability to depressive illnesses, the involvement of ERK, JNK and p38MAPK pathways in the modulation of mood was investigated in the forced swim test (FST) and tail suspension test (TST). The effect produced by a single acute session of FST and TST on hippocampal and cortical MAPK expression and phosphorylation was investigated by immunoblotting experiments. In the hippocampus of animals exposed to FST and TST, an intensive, PKC-dependent, ERK1, ERK2, JNK, and p38MAPK phosphorylation was observed. In the frontal cortex, the FST and TST produced a PKC-dependent increase of ERK2 and p38MAPK phosphorylation, a PKC-independent activation of JNK and cAMP response element-binding protein (CREB) whereas any involvement of ERK1 was detected. The PKC blocker calphostin C (0.05-0.1 μg i.c.v.), the MEK inhibitor U0126 (10-20 μg i.c.v.), the p38MAPK inhibitor SB203580 (5-20 μg i.c.v.) and the JNK inhibitor II (0.5-5 μg i.c.v.), produced antidepressant-like behaviour without altering locomotor activity. These results illustrate a differentially mediated activation of MAPK in hippocampus and frontal cortex of animals exposed to behavioural despair paradigms. An antidepressant-like phenotype produced by acute blockade of MAPK signalling was also demonstrated.
Collapse
|
57
|
Dygalo NN, Kalinina TS, Bulygina VV, Shishkina GT. Increased expression of the anti-apoptotic protein Bcl-xL in the brain is associated with resilience to stress-induced depression-like behavior. Cell Mol Neurobiol 2012; 32:767-76. [PMID: 22278304 PMCID: PMC11498427 DOI: 10.1007/s10571-011-9794-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
Clinical observations and the results of animal studies have implicated changes in neuronal survival and plasticity in both the etiology of mood disorders, especially stress-induced depression, and anti-depressant drug action. Stress may predispose individuals toward depression through down-regulation of neurogenesis and an increase in apoptosis in the brain. Substantial individual differences in vulnerability to stress are evident in humans and were found in experimental animals. Recent studies revealed an association between the brain anti-apoptotic protein B cell lymphoma like X, long variant (Bcl-xL) expression and individual differences in behavioral vulnerability to stress. The ability to increase Bcl-xL gene expression in the hippocampus in response to stress may be an important factor for determining the resistance to the development of stress-induced depression. Treatment with anti-depressant drugs may change Bcl-xL response properties. In the rat brainstem, expression of this anti-apoptotic gene becomes sensitive to swim stress during the long-term fluoxetine treatment, an effect that appeared concomitantly with the anti-depressant-like action of the drug in the forced swim test, suggesting that Bcl-xL may be a new target for depression therapy. The processes and pathways linking stress stimuli to behavior via intracellular anti-apoptotic protein are discussed here in the context of Bcl-xL functions in the mechanisms of individual differences in behavioral resilience to stress and anti-depressant-induced effects on the behavioral despair.
Collapse
|
58
|
Malkesman O, Austin DR, Tragon T, Henter ID, Reed JC, Pellecchia M, Chen G, Manji HK. Targeting the BH3-interacting domain death agonist to develop mechanistically unique antidepressants. Mol Psychiatry 2012; 17:770-80. [PMID: 21727899 PMCID: PMC3274661 DOI: 10.1038/mp.2011.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 12/24/2022]
Abstract
The BH3-interacting domain death agonist (Bid) is a pro-apoptotic member of the B-cell lymphoma-2 (Bcl-2) protein family. Previous studies have shown that stress reduces levels of Bcl-2 in brain regions implicated in the pathophysiology of mood disorders, whereas antidepressants and mood stabilizers increase Bcl-2 levels. The Bcl-2 protein family has an essential role in cellular resilience as well as synaptic and neuronal plasticity and may influence mood and affective behaviors. This study inhibited Bid in mice using two pharmacological antagonists (BI-11A7 and BI-2A7); the selective serotonin reuptake inhibitor citalopram was used as a positive control. These agents were studied in several well-known rodent models of depression-the forced swim test (FST), the tail suspension test (TST), and the learned helplessness (LH) paradigm-as well as in the female urine sniffing test (FUST), a measure of sex-related reward-seeking behavior. Citalopram and BI-11A7 both significantly reduced immobility time in the FST and TST and attenuated escape latencies in mice that underwent the LH paradigm. In the FUST, both agents significantly improved duration of female urine sniffing in mice that had developed helplessness. LH induction increased the activation of apoptosis-inducing factor (AIF), a caspase-independent cell death constituent activated by Bid, and mitochondrial AIF expression was attenuated by chronic BI-11A7 infusion. Taken together, the results suggest that functional perturbation of apoptotic proteins such as Bid and, alternatively, enhancement of Bcl-2 function, is a putative strategy for developing novel therapeutics for mood disorders.
Collapse
Affiliation(s)
- O Malkesman
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - DR Austin
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - T Tragon
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - ID Henter
- Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - JC Reed
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - M Pellecchia
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - G Chen
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Johnson & Johnson Pharmaceutical Research and Development, Titusville, NJ, USA
| | - HK Manji
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Johnson & Johnson Pharmaceutical Research and Development, Titusville, NJ, USA
| |
Collapse
|
59
|
Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT₄ receptor agonist RS67333. Int J Neuropsychopharmacol 2012; 15:631-43. [PMID: 21733238 DOI: 10.1017/s1461145711000782] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It has been recently suggested that activation of 5-HT₄ receptors might exert antidepressant-like effects in rats after 3 d treatment, suggesting a new strategy for developing faster-acting antidepressants. We studied the effects of 3 d and 7 d treatment with the 5-HT₄ receptor partial agonist RS67333 (1.5 mg/kg.d) in behavioural tests of chronic efficacy and on neuroplastic-associated changes, such as adult hippocampal neurogenesis, expression of CREB, BDNF, β-catenin, AKT and 5-HT₄ receptor functionality. RS67333 treatment up-regulated hippocampal cell proliferation, β-catenin expression and pCREB/CREB ratio after 3 d treatment. This short-term treatment also reduced immobility time in the forced swim test (FST), together with a partial reversion of the anhedonic-like state (sucrose consumption after chronic corticosterone). Administration of RS67333 for 7 d resulted in a higher increase in the rate of hippocampal cell proliferation, a significant desensitization of 5-HT₄ receptor-coupled adenylate cyclase activity and a more marked increase in the expression of neuroplasticity-related proteins (BDNF, CREB, AKT): these changes reached the same magnitude as those observed after 3 wk administration of classical antidepressants. Consistently, a positive behavioural response in the novelty suppressed feeding (NSF) test and a complete reversion of the anhedonic-like state (sucrose consumption) were also observed after 7 d treatment. These results support the antidepressant-like profile of RS67333 with a shorter onset of action and suggest that this time period of administration (3-7 d) could be a good approximation to experimentally predict the onset of action of this promising strategy.
Collapse
|
60
|
Genetic strain differences in learned fear inhibition associated with variation in neuroendocrine, autonomic, and amygdala dendritic phenotypes. Neuropsychopharmacology 2012; 37:1534-47. [PMID: 22334122 PMCID: PMC3327858 DOI: 10.1038/npp.2011.340] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mood and anxiety disorders develop in some but not all individuals following exposure to stress and psychological trauma. However, the factors underlying individual differences in risk and resilience for these disorders, including genetic variation, remain to be determined. Isogenic inbred mouse strains provide a valuable approach to elucidating these factors. Here, we performed a comprehensive examination of the extinction-impaired 129S1/SvImJ (S1) inbred mouse strain for multiple behavioral, autonomic, neuroendocrine, and corticolimbic neuronal morphology phenotypes. We found that S1 exhibited fear overgeneralization to ambiguous contexts and cues, impaired context extinction and impaired safety learning, relative to the (good-extinguishing) C57BL/6J (B6) strain. Fear overgeneralization and impaired extinction was rescued by treatment with the front-line anxiety medication fluoxetine. Telemetric measurement of electrocardiogram signals demonstrated autonomic disturbances in S1 including poor recovery of fear-induced suppression of heart rate variability. S1 with a history of chronic restraint stress displayed an attenuated corticosterone (CORT) response to a novel, swim stressor. Conversely, previously stress-naive S1 showed exaggerated CORT responses to acute restraint stress or extinction training, insensitivity to dexamethasone challenge, and reduced hippocampal CA3 glucocorticoid receptor mRNA, suggesting downregulation of negative feedback control of the hypothalamic-pituitary-adrenal axis. Analysis of neuronal morphology in key neural nodes within the fear and extinction circuit revealed enlarged dendritic arbors in basolateral amygdala neurons in S1, but normal infralimbic cortex and prelimbic cortex dendritic arborization. Collectively, these data provide convergent support for the utility of the S1 strain as a tractable model for elucidating the neural, molecular and genetic basis of persistent, excessive fear.
Collapse
|
61
|
Djordjevic A, Djordjevic J, Elaković I, Adzic M, Matić G, Radojcic MB. Fluoxetine affects hippocampal plasticity, apoptosis and depressive-like behavior of chronically isolated rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:92-100. [PMID: 22019604 DOI: 10.1016/j.pnpbp.2011.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/20/2011] [Accepted: 10/07/2011] [Indexed: 12/29/2022]
Abstract
Plastic response and successful adaptation to stress are of particular importance in the hippocampus, where chronic stress may cause cell death instead of neural remodeling. Structural modifications that occur both in the brain of depressed patients and animal stress models may be reversed by antidepressants. Since morphological changes induced by stress and/or antidepressants could be mediated by presynaptically located proteins, determining the levels of these proteins may be a useful way to identify molecular changes associated with synaptic plasticity. In this study we analyzed the effects of chronic (six-week) social isolation and long-term (three-week) fluoxetine treatment on molecular markers of plasticity and apoptosis in the hippocampus of Wistar rats. Compartmental redistribution of NFκB transcription factor involved in the regulation of plasticity and apoptosis was also examined. To establish whether social isolation is able to evoke behavioral-like effects, which might be related to the observed molecular changes, we performed the forced swimming test. The results show that synaptosomal polysialic neural cell adhesion molecule (PSA-NCAM), a molecular plasticity marker, was increased in the hippocampus of chronically isolated rats, while subsequent treatment with fluoxetine set it at the control level. In addition, analysis of cytoplasm/mitochondria redistribution of apoptotic proteins Bax and Bcl-2 after exposure to chronic isolation stress, revealed an increase in Bcl-2 protein expression in both compartments, while fluoxetine enhanced the effect of stress only in the mitochondria. The observed alterations at the molecular level were accompanied by normalization of stress-induced behavioral changes by fluoxetine.
Collapse
Affiliation(s)
- Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
62
|
Selective modulation of the PKCɛ/p38MAP kinase signalling pathway for the antidepressant-like activity of amitriptyline. Neuropharmacology 2012; 62:289-96. [DOI: 10.1016/j.neuropharm.2011.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 01/05/2023]
|
63
|
Animal models of depression and neuroplasticity: assessing drug action in relation to behavior and neurogenesis. Methods Mol Biol 2012; 829:103-24. [PMID: 22231809 DOI: 10.1007/978-1-61779-458-2_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Depression is among the most prevalent forms of mental illness and a major cause of morbidity worldwide. Diagnosis of depression is mainly based on symptomatic criteria, and the heterogeneity of the disease suggests that multiple different biological mechanisms may underlie its etiology. Animal models have been important for recent advances in experimental neuroscience, including modeling of human mood disorders, such as depression and anxiety. Over the past few decades, a number of stress and neurobiochemical models have been developed as primary efficacy measures in depression trials, which are paving the way for the discovery of novel therapeutic targets. Recent data indicates that stress-related mood disorders have influence on neuroplasticity and adult neurogenesis. In this chapter, several currently available animal models are presented as powerful tools for both mechanistic studies into the neurobiology of the antidepressant response and for drug discovery.
Collapse
|
64
|
Andrus BM, Blizinsky K, Vedell PT, Dennis K, Shukla PK, Schaffer DJ, Radulovic J, Churchill GA, Redei EE. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol Psychiatry 2012; 17:49-61. [PMID: 21079605 PMCID: PMC3117129 DOI: 10.1038/mp.2010.119] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022]
Abstract
The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar-Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- B M Andrus
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Blizinsky
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P T Vedell
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - K Dennis
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P K Shukla
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D J Schaffer
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J Radulovic
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - E E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
65
|
Banasr M, Dwyer JM, Duman RS. Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 2011; 23:730-7. [PMID: 21996102 DOI: 10.1016/j.ceb.2011.09.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 02/07/2023]
Abstract
Depression is associated with structural alterations in limbic brain regions that control emotion and mood. Studies of chronic stress in animal models and postmortem tissue from depressed subjects demonstrate that these structural alterations result from atrophy and loss of neurons and glial cells. These findings indicate that depression and stress-related mood disorders can be considered mild neurodegenerative disorders. Importantly, there is evidence that these structural alterations can be blocked or even reversed by elimination of stress and by antidepressant treatments. A major focus of current investigations is to characterize the molecular signaling pathways and factors that underlie these effects of stress, depression, and antidepressant treatment. Recent advances in this research area are discussed and potential novel targets for antidepressant development are highlighted.
Collapse
Affiliation(s)
- Mounira Banasr
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06508, United States
| | | | | |
Collapse
|
66
|
Calabrese F, Molteni R, Riva MA. Antistress properties of antidepressant drugs and their clinical implications. Pharmacol Ther 2011; 132:39-56. [DOI: 10.1016/j.pharmthera.2011.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023]
|
67
|
Rojas PS, Fritsch R, Rojas RA, Jara P, Fiedler JL. Serum brain-derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive patients: a pilot study. Psychiatry Res 2011; 189:239-45. [PMID: 21616544 DOI: 10.1016/j.psychres.2011.04.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/23/2011] [Accepted: 04/29/2011] [Indexed: 12/20/2022]
Abstract
Depressive patients often have altered cortisol secretion, an effect that likely derives from impaired activity of the glucocorticoid receptor (GR), the main regulator of the hypothalamus-pituitary-adrenal (HPA) axis. Glucocorticoids reduce the levels of brain-derived neurotrophic factor (BDNF), a downstream target of antidepressants. Antidepressants promote the transcriptional activity of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a regulator of BDNF expression. To identify potential biomarkers for the onset of antidepressant action in depressive patients, GR and phospho-CREB (pCREB) levels in lymphocytes and serum BDNF levels were repeatedly measured during the course of antidepressant treatment. Thirty-four depressed outpatients (10 male and 24 female) were treated with venlafaxine (75mg/day), and individuals exhibiting a 50% reduction in their baseline 17-Item Hamilton Depression Rating Scale score by the 6th week of treatment were considered responders. Responders showed an early improvement in parallel with a rise in BDNF levels during the first two weeks of treatment. Non-responders showed increased GR levels by the third week and reduced serum BDNF by the sixth week of treatment. In contrast, venlafaxine did not affect levels of pCREB. We conclude that levels of BDNF in serum and GR levels in lymphocytes may represent biomarkers that could be used to predict responses to venlafaxine treatment.
Collapse
Affiliation(s)
- Paulina Soledad Rojas
- Department of Biochemistry and Molecular Biology, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
68
|
Shishkina GT, Kalinina TS, Berezova IV, Dygalo NN. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior. Neuropharmacology 2011; 62:177-83. [PMID: 21740920 DOI: 10.1016/j.neuropharm.2011.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 11/27/2022]
Abstract
Mechanisms underlying stress-induced depression and antidepressant drug action were shown to involve alterations in serotonergic (5-HT) neurotransmission and expression of genes coding for proteins associated with neurotrophic signaling pathways and cell-survival in the hippocampus and cortex. Expression of these genes in the brainstem containing 5-HT neurons may also be related to vulnerability or resilience to stress-related psychopathology. Here we investigated 5-HT markers and expression of genes for Brain-Derived Neurotrophic Factor (BDNF) and apoptotic proteins in the brainstem in relation to swim stress-induced behavioral despair. We found that anti-apoptotic Bcl-xL gene is sensitive to stress during the course of fluoxetine administration. Responsiveness of this gene to stress appeared concomitantly with an antidepressant-like effect of fluoxetine in the forced swim test. Bcl-xL transcript levels showed negative correlations with duration of immobility in the test and 5-HT turnover in the brainstem. In contrast, BDNF and pro-apoptotic protein Bax mRNA levels were unchanged by either fluoxetine or stress, suggesting specificity of Bcl-xL gene responses to these treatments. We also found that the levels of mRNAs for tryptophan hydroxylase-2 (TPH2) and 5-HT transporter (5-HTT) were significantly down-regulated following prolonged treatment with fluoxetine, but were not affected by stress. Unlike TPH2 and 5-HTT, 5-HT1A receptor mRNA levels were not altered by fluoxetine but significantly increased in response to swim stress. These data show that long-term fluoxetine treatment leads to changes in 5-HT and Bcl-xL responses to stress associated with antidepressant-like effects of the drug. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Galina T Shishkina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
69
|
Alterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders. Int J Neuropsychopharmacol 2011; 14:666-83. [PMID: 20860876 DOI: 10.1017/s1461145710000994] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clinical evidence suggests comorbidity between depression and irritable bowel syndrome (IBS). Early-life stress and genetic predisposition are key factors in the pathophysiology of both IBS and depression. Thus, neonatal maternal separation (MS), and the Wistar-Kyoto (WKY) rat, a genetically stress-sensitive rat strain, are two animal models of depression that display increased visceral hypersensitivity and alterations in the hypothalamic-pituitary-adrenal axis. Corticotrophin-releasing factor (CRF) is the primary peptide regulating this axis, acting through two receptors: CRF1 and CRF2. The central CRF system is also a key regulator in the stress response. However, there is a paucity of studies investigating alterations in the central CRF system of adult MS or WKY animals. Using in-situ hybridization we demonstrate that CRF mRNA is increased in the paraventricular nucleus (PVN) of WKY rats and the dorsal raphé nucleus (DRN) of MS animals, compared to Sprague-Dawley and non-separated controls, respectively. Additionally, CRF1 mRNA was higher in the PVN, amygdala and DRN of both animal models, along with high levels of CRF1 mRNA in the hippocampus of WKY animals compared to control animals. Finally, CRF2 mRNA was lower in the DRN of MS and WKY rats compared to control animals, and in the hippocampus and amygdala of MS rats. These results show that the central CRF system is altered in both animal models. Such alterations may affect HPA axis regulation, contribute to behavioural changes associated with stress-related disorders, and alter the affective component of visceral pain modulation, which is enhanced in IBS patients.
Collapse
|
70
|
Jiang WG, Li SX, Zhou SJ, Sun Y, Shi J, Lu L. Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res 2011; 1399:25-32. [PMID: 21621196 DOI: 10.1016/j.brainres.2011.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/27/2011] [Accepted: 05/01/2011] [Indexed: 10/18/2022]
Abstract
Many clinical studies have shown that circadian rhythm abnormalities are strongly associated with major depression. The master clock of the circadian system in mammals is located in the suprachiasmatic nucleus (SCN) within the anterior hypothalamus, where Per1 and Per2 are essential core components of circadian rhythm oscillation. Chronic unpredictable stress (CUS) is a reliable animal model of depression with good face, predictive, and constructive validity. In the present study, we investigated the effects of CUS on the circadian expression of PER1 and PER2 in the SCN. We found that CUS led to depressive-like behavior and reduced the amplitude of PER2 oscillation in the SCN, which were blocked by 3 weeks of desipramine (DMI) treatment. 2 weeks after termination of CUS, the decreased peak of PER2 expression returned to control levels, whereas depressive-like behavior remained unchanged. Our findings suggest that the dampened amplitude of PER2 expression in the SCN may participate in the development of depressive-like behavior induced by CUS but is unlikely involved in the long-lasting effects of CUS on depressive-like behavior.
Collapse
Affiliation(s)
- Wen-Gao Jiang
- National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
71
|
O'Mahony CM, Clarke G, Gibney S, Dinan TG, Cryan JF. Strain differences in the neurochemical response to chronic restraint stress in the rat: Relevance to depression. Pharmacol Biochem Behav 2011; 97:690-9. [DOI: 10.1016/j.pbb.2010.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/13/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
|
72
|
Protective effect of desipramine, venlafaxine and trazodone against experimental animal model of transient global ischemia: possible involvement of NO-cGMP pathway. Brain Res 2010; 1353:204-12. [PMID: 20624374 DOI: 10.1016/j.brainres.2010.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 11/20/2022]
Abstract
The present study has been designed to explore the nitric oxide mechanism in the protective effect of desipramine, venlafaxine and trazodone against I/R induced oxidative stress and mitochondrial dysfunction in mice. Vitamin E was taken as standard antioxidant. Laca mice (25-30 g) were subjected to twice BCCAO occlusion (5 min) at the interval of 10 min, followed by 96 h reperfusion. The drug treatments were started from the day of surgery and continued for the next four days. After 96 h the animals were sacrificed for biochemical (malondialdehyde, nitrite concentration, superoxidedismutase, catalase, redox ratio and GST) and mitochondrial enzyme complex (NADH dehydrogenase, succinate dehydrogenase, MTT assay and cytochrome c oxidase) estimations. Ischemia caused significant oxidative damage and mitochondrial enzyme dysfunction after 96 h of reperfusion as compared to sham operated animals. Antidepressant (desipramine, venlafaxine and trazodone) treatment significantly attenuated oxidative damage and restored mitochondrial enzyme complex activities as compared to control (I/R) group. Further, protective effects of desipramine (15 mg/kg) and/or venlafaxine (5 mg/kg) were attenuated by l-arginine (100 mg/kg) or sildenafil (5 mg/kg) pretreatment. Further, L-NAME (10 mg/kg) or 7-NI (10 mg/kg) pretreatment with desipramine (15 mg/kg) and/or venlafaxine (5 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect alone. The present study highlights the involvement of nitric oxide mechanism in the protective effects of desipramine and venlafaxine against I/R induced oxidative stress and mitochondrial dysfunction in mice.
Collapse
|
73
|
O'Mahony CM, Bravo JA, Dinan TG, Cryan JF. Comparison of hippocampal metabotropic glutamate receptor 7 (mGlu7) mRNA levels in two animal models of depression. Neurosci Lett 2010; 482:137-41. [PMID: 20638442 DOI: 10.1016/j.neulet.2010.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 12/16/2022]
Abstract
There is increasing evidence to suggest that metabotropic glutamate (mGlu) receptors including mGlu(7) receptor are important in the pathophysiology of stress-related psychiatric disorders such as anxiety and major depression. mGlu(7) receptor is highly expressed in the hippocampus, a key region involved in the modulation of depression-related behaviour. Moreover, mice deficient in mGlu(7) receptor have an antidepressant-like behaviour and altered stress response. To our knowledge there is little information as to whether stressful phenotypes can influence hippocampal mGlu(7) receptor levels. To this end, we examined hippocampal mGlu(7) receptor mRNA expression in two models of depression, the stress-sensitive Wistar Kyoto (WKY) and the maternally separated model of early-life stress. In situ hybridization analysis revealed that the WKY, but not the maternally separated (MS) rats displayed selective increases in mGlu(7) receptor mRNA expression in subregions of the hippocampus compared to relevant controls. These data suggest that higher levels of this receptor could affect the behaviour in response to stressful conditions and may play a role in WKY animal's susceptibility to stress-related disorders. However, the data in maternally separated animals confirm that whilst hippocampal mGlu(7) receptors maybe involved in certain aspects of stress biology, an increased expression is not necessary for the manifestation of depression-related phenotype per se.
Collapse
Affiliation(s)
- Cliona M O'Mahony
- NeuroPharmacology Research Group, Dept of Pharmacology and Therapeutics, University College Cork, Ireland
| | | | | | | |
Collapse
|
74
|
Sterner EY, Kalynchuk LE. Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:777-90. [PMID: 20226827 DOI: 10.1016/j.pnpbp.2010.03.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 12/11/2022]
Abstract
Stress is a critical environmental trigger for the development of clinical depression, yet little is known about the specific neurobiological mechanisms by which stress influences the development of depressive symptomatology. Animal models provide an efficient way to study the etiology of human disorders such as depression, and a number of preclinical models have been developed to assess the link between stress, glucocorticoids, and depressive behavior. These mode ls typically make use of repeated exposure to physical or psychological stressors in rodents or other small laboratory animals. This review focuses primarily on a recently developed preclinical model of depression that uses exogenous administration of the stress hormone corticosterone (CORT) in rodents instead of exposure to physical or psychological stressors. Repeated CORT administration in rats or mice produces reliable behavioral and neurobiological alterations that parallel many of the core symptoms and neurobiological changes associated with human depression. This provides an opportunity to study behavior and neurobiology in the same animal, so that the neurobiological factors that underlie specific symptoms can be identified. Taken together, these findings suggest that exogenous CORT administration is a useful method for studying the relationship between stress, glucocorticoids, and depression. Further study with this model may provide important new data regarding the neurobiological bases of depression.
Collapse
Affiliation(s)
- Erin Y Sterner
- Department of Psychology, 9 Campus Drive, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A5
| | | |
Collapse
|
75
|
Julio-Pieper M, Hyland NP, Bravo JA, Dinan TG, Cryan JF. A novel role for the metabotropic glutamate receptor-7: modulation of faecal water content and colonic electrolyte transport in the mouse. Br J Pharmacol 2010; 160:367-75. [PMID: 20423346 DOI: 10.1111/j.1476-5381.2010.00713.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence implicates metabotropic glutamate receptor mGlu(7) in the pathophysiology of stress-related disorders such as depression and anxiety. Mood disorders are frequently associated with gastrointestinal (GI) dysfunction; however, the role of mGlu(7) receptors outside the CNS is unknown. This present study investigated the expression and possible functional role of mGlu(7) receptors in the mouse colon. EXPERIMENTAL APPROACH Expression of mGlu(7) receptor mRNA and protein was studied in mouse colon by in situ hybridization and Western blotting. Effects of the selective mGlu(7) receptor agonist AMN082 on defecation and faecal parameters were studied in an isolation-induced stress model. AMN082 effects on ion transport and neuronal intracellular signalling were examined via Ussing chambers and calcium imaging. KEY RESULTS mGlu(7) receptor mRNA and protein were highly expressed in colon mucosa. Stress-induced faecal output was unaffected by AMN082, although faecal water content was increased. In mucosa/submucosa preparations, 100 nM and 1 microM AMN082 increased bethanechol-induced changes in short-circuit current in the Ussing chamber. This was sensitive to tetrodotoxin. Also, 100 nM AMN082 significantly increased calcium signalling in a subset of submucosal neurons. CONCLUSIONS AND IMPLICATIONS Activating mGlu(7) receptors increased colonic secretory function in vivo and ex vivo. In a group of submucosal neurons, AMN082 strongly induced calcium signalling and the presence of submucosal nerves was required for the AMN082-dependent increase in secretion. These data suggest that targeting mGlu(7) receptors may be useful in the treatment of central components of stress disorders and also stress-associated GI dysfunction such as diarrhoea or constipation.
Collapse
Affiliation(s)
- M Julio-Pieper
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | | | | | | | | |
Collapse
|
76
|
Shishkina GT, Kalinina TS, Berezova IV, Bulygina VV, Dygalo NN. Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated hippocampal Bcl-xl expression. Behav Brain Res 2010; 213:218-24. [PMID: 20457187 DOI: 10.1016/j.bbr.2010.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/30/2010] [Accepted: 05/01/2010] [Indexed: 01/27/2023]
Abstract
Stress may predispose individuals toward depression through down-regulation of neurogenesis and increase in apoptosis in the brain. However, many subjects show high resistance to stress in relation to psychopathology. In the present study, we assessed the possibility that individual-specific patterns of gene expression associated with cell survival and proliferation may be among the molecular factors underlying stress resilience. Brain-derived neurotrophic factor (BDNF), anti-apoptotic B cell lymphoma like X (Bcl-xl) and pro-apoptotic bcl2-associated X protein (Bax) expression were determined in the hippocampus and frontal cortex of rats naturally differed in despair-like behavior in the forced swim test. In the hippocampus, BDNF messenger RNA (mRNA) level was significantly down-regulated 2h after the forced swim test exposure, and at this time point, Bcl-xl mRNA and protein levels were significantly higher in stressed than in untested animals. The ratios of hippocampal Bcl-xl to Bax mRNA negatively correlated with the total time spent immobile in the test. When animals were divided in two groups according to immobility responses in two consecutive swim sessions and designated as stress resilient if their immobility time did not increase in the second session as it did in stress sensitive rats, it was found that resilient rats had significantly higher Bcl-xl/Bax ratios in the hippocampus than stress sensitive animals. The data suggest that naturally occurring variations in the Bcl-xl/Bax ratio in the hippocampus may contribute to individual differences in vulnerability to stress-induced depression-like behaviors.
Collapse
Affiliation(s)
- Galina T Shishkina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Lavrentjev Av. 10, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
77
|
Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med 2010; 42:252-64. [PMID: 20367120 DOI: 10.3109/07853891003769957] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Depression, among other mood disorders, represents one of the most common health problems worldwide, with steadily increasing incidence and major socio-economic consequences. However, since the knowledge about the underlying pathophysiological principles is still very scanty, depression and other mood disorders are currently diagnosed solely on clinical grounds. Currently used treatment modalities would therefore benefit enormously from the development of alternative therapeutic interventions. The implementation of proper animal models is a prerequisite for increasing the understanding of the neurobiological basis of mood disorders and is paving the way for the discovery of novel therapeutic targets. In the past thirty years, since the seminal description of the Forced Swim Test as a system to probe antidepressant activity in rodents, the use of animals to model depression and antidepressant activity has come a long way. In this review we describe some of the most commonly used strategies, ranging from screening procedures, such as the Forced Swim Test and the Tail Suspension Test and animal models, such as those based upon chronic stress procedures, to genetic approaches. Finally we also discuss some of the inherent limitations and caveats that need to be considered when using animals as models for mental disorders in basic research.
Collapse
Affiliation(s)
- Daniela D Pollak
- Department of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| | | | | |
Collapse
|
78
|
Hu Y, Liao HB, Dai-Hong G, Liu P, Wang YY, Rahman K. Antidepressant-like effects of 3,6'-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats. Neurochem Int 2009; 56:461-5. [PMID: 20018220 DOI: 10.1016/j.neuint.2009.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/03/2009] [Accepted: 12/08/2009] [Indexed: 11/30/2022]
Abstract
Recent studies suggest that the behavioral effects of chronic antidepressant treatment are mediated by stimulation of hippocampal neuronal plasticity and neurogenesis. The present study was designed to examine the effects of 3,6'-disinapoyl sucrose (DISS), a bioactive component of Polygala tenuifolia Willd, on the expressions of four plasticity-associated genes: cell adhesion molecule L1 (CAM-L1), laminin, cAMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in hippocampus, all of which are involved in neuronal plasticity and neurite outgrowth. We confirmed that chronic stress in rats caused a reduction in sensitivity to reward (sucrose consumption) and a decrease in mRNA levels of CAM-L1, laminin, and BDNF, together with a decrease in protein levels of phosphorylated CREB and BDNF. Repeated administration of DISS for 21 days at doses of 5, 10 and 20mg/kg reversed stress-induced alterations in sucrose consumption and these target mRNA and protein levels. In conclusion, increased expressions in the hippocampus of three noradrenergic-regulated plasticity genes and one neurotrophic factor may be one of the molecular and cellular mechanisms underlying the antidepressant action of DISS in chronic mild stress (CMS) rats.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Clinical Pharmacology and Pharmacy, Center of Pharmacy, Chinese PLA General Hospital, Beijing 100853, China
| | | | | | | | | | | |
Collapse
|