51
|
Karlsson L, Green H, Zackrisson AL, Bengtsson F, Jakobsen Falk I, Carlsson B, Ahlner J, Kugelberg FC. ABCB1 gene polymorphisms are associated with fatal intoxications involving venlafaxine but not citalopram. Int J Legal Med 2013; 127:579-86. [PMID: 23515680 DOI: 10.1007/s00414-013-0849-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/06/2013] [Indexed: 01/11/2023]
Abstract
P-glycoprotein (P-gp), encoded by the ABCB1/MDR1 gene, is a drug transporter at the blood-brain barrier. Several polymorphisms in the ABCB1 gene are known to affect the activity and/or expression of P-gp, thereby influencing the treatment response and toxicity of P-gp substrates like citalopram and venlafaxine. In this study, we aimed to investigate the frequency of ABCB1 genotypes in forensic autopsy cases involving these two antidepressants. Further, the distribution of ABCB1 genotypes in deaths related to intoxication was compared to cases not associated to drug intoxication. The study included 228 forensic autopsy cases with different causes and manners of deaths. The ABCB1 single nucleotide polymorphisms (SNPs) G1199A, C1236T, C3435T and G2677T/A for these individuals were determined. The SNPs C1236T and C3435T in venlafaxine-positive cases were significantly different between the intoxication cases and non-intoxications. This was not seen for cases involving citalopram, indicating that the effect of genetic variants might be substrate specific. This novel finding should, however, be confirmed in future studies with larger number of cases.
Collapse
Affiliation(s)
- L Karlsson
- Division of Drug Research, Clinical Pharmacology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
52
|
O'Brien FE, Clarke G, Fitzgerald P, Dinan TG, Griffin BT, Cryan JF. Inhibition of P-glycoprotein enhances transport of imipramine across the blood-brain barrier: microdialysis studies in conscious freely moving rats. Br J Pharmacol 2012; 166:1333-43. [PMID: 22250926 DOI: 10.1111/j.1476-5381.2012.01858.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent studies indicate that efflux of antidepressants by the multidrug resistance transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) may contribute to treatment-resistant depression (TRD) by limiting intracerebral antidepressant concentrations. In addition, clinical experience shows that adjunctive treatment with the P-gp inhibitor verapamil may improve the clinical outcome in TRD. Therefore, the present study aimed to investigate the effect of P-gp inhibition on the transport of the tricyclic antidepressant imipramine and its active metabolite desipramine across the BBB. EXPERIMENTAL APPROACH Intracerebral microdialysis in rats was used to monitor brain levels of imipramine and desipramine following i.v. imipramine administration, with or without pretreatment with one of the P-gp inhibitors verapamil or cyclosporin A (CsA). Plasma drug levels were also determined at regular intervals. KEY RESULTS Pretreatment with either verapamil or CsA resulted in significant increases in imipramine concentrations in the microdialysis samples, without altering imipramine plasma pharmacokinetics. Furthermore, pretreatment with verapamil, but not CsA, led to a significant elevation in plasma and brain levels of desipramine. CONCLUSIONS AND IMPLICATIONS The present study demonstrated that P-gp inhibition enhanced the intracerebral concentration of imipramine , thus supporting the hypothesis that P-gp activity restricts brain levels of certain antidepressants, including imipramine. These findings may help to explain reports of a beneficial response to adjunctive therapy with verapamil in TRD.
Collapse
Affiliation(s)
- F E O'Brien
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
53
|
English BA, Dortch M, Ereshefsky L, Jhee S. Clinically significant psychotropic drug-drug interactions in the primary care setting. Curr Psychiatry Rep 2012; 14:376-90. [PMID: 22707017 PMCID: PMC4335312 DOI: 10.1007/s11920-012-0284-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, the growing numbers of patients seeking care for a wide range of psychiatric illnesses in the primary care setting has resulted in an increase in the number of psychotropic medications prescribed. Along with the increased utilization of psychotropic medications, considerable variability is noted in the prescribing patterns of primary care providers and psychiatrists. Because psychiatric patients also suffer from a number of additional medical comorbidities, the increased utilization of psychotropic medications presents an elevated risk of clinically significant drug interactions in these patients. While life-threatening drug interactions are rare, clinically significant drug interactions impacting drug response or appearance of serious adverse drug reactions have been documented and can impact long-term outcomes. Additionally, the impact of genetic variability on the psychotropic drug's pharmacodynamics and/or pharmacokinetics may further complicate drug therapy. Increased awareness of clinically relevant psychotropic drug interactions can aid clinicians to achieve optimal therapeutic outcomes in patients in the primary care setting.
Collapse
Affiliation(s)
- Brett A English
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-8300, USA.
| | | | | | | |
Collapse
|
54
|
Naismith SL, Norrie LM, Mowszowski L, Hickie IB. The neurobiology of depression in later-life: Clinical, neuropsychological, neuroimaging and pathophysiological features. Prog Neurobiol 2012; 98:99-143. [DOI: 10.1016/j.pneurobio.2012.05.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 02/07/2023]
|
55
|
de Klerk OL, Nolte IM, Bet PM, Bosker FJ, Snieder H, den Boer JA, Bruggeman R, Hoogendijk WJ, Penninx BW. ABCB1 gene variants influence tolerance to selective serotonin reuptake inhibitors in a large sample of Dutch cases with major depressive disorder. THE PHARMACOGENOMICS JOURNAL 2012; 13:349-53. [PMID: 22641028 DOI: 10.1038/tpj.2012.16] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/02/2012] [Accepted: 04/11/2012] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (P-gp), an ATP-driven efflux pump in the blood-brain barrier, has a major impact on the delivery of antidepressant drugs in the brain. Genetic variants in the gene ABCB1 encoding for P-gp have inconsistently been associated with adverse effects. In order to resolve these inconsistencies, we conducted a study in a large cohort of patients with major depressive disorder with the aim to unravel the association of ABCB1 variants with adverse effects of antidepressants and in particular with selective serotonin reuptake inhibitors (SSRIs), which display affinity as substrate for P-gp. The Netherlands Study of Depression and Anxiety (NESDA) study was used as a clinical sample. For 424 patients data were available on drug use, side effects. We selected six ABCB1 gene variants (1236T>C, 2677G>T/A, 3435T>C, rs2032583, rs2235040 and rs2235015) and analyzed them for association with adverse drug effects using multinomial regression analysis for both single variants and haplotypes. We found a significant association between the number of SSRI-related adverse drug effects and rs2032583 (P=0.001), rs2235040 (P=0.002) and a haplotype (P=0.002). Moreover, serotonergic effects (sleeplessness, gastrointestinal complaints and sexual effects) were significantly predicted by these variants and haplotype (P=0.002/0.003). We conclude that adverse drug effects with SSRI treatment, in particular serotonergic effects, are predicted by two common polymorphisms of the ABCB1 gene.
Collapse
Affiliation(s)
- O L de Klerk
- University Center of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
O'Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 2012; 165:289-312. [PMID: 21718296 DOI: 10.1111/j.1476-5381.2011.01557.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The drug efflux pump P-glycoprotein (P-gp) plays an important role in the function of the blood-brain barrier by selectively extruding certain endogenous and exogenous molecules, thus limiting the ability of its substrates to reach the brain. Emerging evidence suggests that P-gp may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. Despite some inconsistency in the literature, clinical investigations of potential associations between functional single nucleotide polymorphisms in ABCB1, the gene which encodes P-gp, and antidepressant response have highlighted a potential link between P-gp function and treatment-resistant depression (TRD). Therefore, co-administration of P-gp inhibitors with antidepressants to patients who are refractory to antidepressant therapy may represent a novel therapeutic approach in the management of TRD. Furthermore, certain antidepressants inhibit P-gp in vitro, and it has been hypothesized that inhibition of P-gp by such antidepressant drugs may play a role in their therapeutic action. The present review summarizes the available in vitro, in vivo and clinical data pertaining to interactions between antidepressant drugs and P-gp, and discusses the potential relevance of these interactions in the treatment of depression.
Collapse
Affiliation(s)
- Fionn E O'Brien
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
57
|
Different effects of the selective serotonin reuptake inhibitors fluvoxamine, paroxetine, and sertraline on the pharmacokinetics of fexofenadine in healthy volunteers. J Clin Psychopharmacol 2012; 32:195-9. [PMID: 22367658 DOI: 10.1097/jcp.0b013e318248ddb9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the interaction between selective serotonin reuptake inhibitors (SSRIs) and other drugs is important in the treatment of depression, there have been few studies of SSRIs concerning transporter-mediated interactions in humans. The objective of this study was to evaluate the in vivo effects of commonly used SSRIs on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate.Twelve healthy volunteers (3 females and 9 males) were enrolled in this study. Each subject received a 60-mg dose of fexofenadine orally at baseline. Afterward, they were randomly assigned to receive 3 treatments with a 60-mg dose of fexofenadine after a 7-day treatment with fluvoxamine (50 mg/d), paroxetine (20 mg/d), or sertraline (50 mg/d), with 2-week intervals between the agents.Fluvoxamine pretreatment significantly increased the maximum plasma concentration, the area under the concentration time curves, and the 24-hour urinary fexofenadine excretion by 66% (P = 0.004), 78% (P = 0.029), and 78% (P < 0.001), respectively, without prolonging its elimination half-life. Paroxetine extended the elimination half-life of fexofenadine by 45% (P = 0.042), and it increased the 24-hour urinary fexofenadine excretion by 55% (P = 0.002). Sertraline did not alter any of the pharmacokinetic parameters of fexofenadine.This is the first report of the different effects of 3 commonly used SSRIs on fexofenadine pharmacokinetics in humans. Our 7-day, repeated-dose clinical study in healthy volunteers indicates that fluvoxamine and paroxetine, but not sertraline, may impact the patient exposure to fexofenadine, which is likely the result of P-glycoprotein inhibition in the small intestine and/or the liver.
Collapse
|
58
|
Narasimhan S, Lohoff FW. Pharmacogenetics of antidepressant drugs: current clinical practice and future directions. Pharmacogenomics 2012; 13:441-64. [PMID: 22380000 PMCID: PMC12046622 DOI: 10.2217/pgs.12.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While antidepressants are widely used to treat mood and anxiety disorders, only half of the patients will respond to antidepressant treatment and only one-third of patients experience a full remission of symptoms. The identification of genetic biomarkers that predict antidepressant-treatment response can improve current clinical practice. This is an emerging field known as pharmacogenetics, which comprises of genetic studies on both the pharmacokinetics and pharmacodynamics of treatment response. Recent studies on antidepressant-treatment response have focused on both aspects of pharmacogenetics research, identifying new candidate genes that may predict better treatment response for patients. This paper reviews recent findings on the pharmacogenetics of antidepressant drugs and future clinical applications. Ultimately, these studies should lead to the use of genetic testing to guide the use of antidepressants in clinical practice.
Collapse
Affiliation(s)
| | - Falk W Lohoff
- Department of Psychiatry , Center for Neurobiology & Behavior, Translational Research Laboratories, 125 South 31st Street, Room 2213, Philadelphia, PA 19104, USA
| |
Collapse
|
59
|
Watanabe N, Omori IM, Nakagawa A, Cipriani A, Barbui C, Churchill R, Furukawa TA. Mirtazapine versus other antidepressive agents for depression. Cochrane Database Syst Rev 2011:CD006528. [PMID: 22161405 PMCID: PMC4158430 DOI: 10.1002/14651858.cd006528.pub2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mirtazapine has a unique mechanism of antidepressive action and is one of the commonly used antidepressants in clinical practice. OBJECTIVES The aim of the present review was to assess the evidence on the efficacy and acceptability of mirtazapine compared with other antidepressive agents in the acute-phase treatment of major depression in adults. SEARCH METHODS We searched the Cochrane Collaboration Depression, Anxiety and Neurosis review group's specialised register (CCDANCTR), which includes relevant randomised controlled trials from the following bibliographic databases: The Cochrane Library (all years to April 2011), EMBASE, (1980 to July 2011) MEDLINE (1950 to July 2011) and PsycINFO (1974 to July 2011). Reference lists of the reports of relevant studies were checked and experts in the field contacted. The review was not limited to English-language articles. SELECTION CRITERIA Randomised controlled trials (RCTs) allocating participants with major depression to mirtazapine versus any other antidepressive agent. DATA COLLECTION AND ANALYSIS Two authors independently checked eligibility and extracted data on an intention-to-treat basis. The primary outcome was response to treatment. The secondary outcomes included dropouts and individual adverse events.Meta-analyses were conducted using the random-effects model. MAIN RESULTS A total of 29 RCTs (n = 4974), mostly following up the participants for six weeks in outpatient clinics and inadequately reporting the risk of bias, were included. In comparison with tricyclic antidepressants (10 trials, n = 1553) there was no robust evidence to detect a difference between mirtazapine and tricyclics in terms of response at two weeks (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.64 to 1.13) or at the end of acute-phase treatment (at 6 to 12 weeks) (OR 0.89, 95% CI 0.72 to 1.10). In comparison with selective serotonin reuptake inhibitors (SSRIs) (12 trials, n = 2626) mirtazapine was significantly more effective at two weeks (OR 1.57, 95% CI 1.30 to 1.88) and at the end of acute-phase treatment (OR 1.19, 95% CI 1.01 to 1.39). Mirtazapine was significantly more effective than a serotonin-noradrenaline reuptake inhibitor (venlafaxine only, two trials, n = 415) at two weeks (OR 2.29, 95% CI 1.45 to 3.59) and at the end of acute-phase treatment (OR 1.53, 95% CI 1.03 to 2.25).In terms of dropouts, there was no robust evidence to detect a difference between mirtazapine and other antidepressants. Mirtazapine was more likely to cause weight gain or increased appetite and somnolence than SSRIs but less likely to cause nausea or vomiting and sexual dysfunction. AUTHORS' CONCLUSIONS Some statistically significant and possibly clinically meaningful differences between mirtazapine and other antidepressive agents were found for the acute-phase treatment of major depression. Mirtazapine is likely to have a faster onset of action than SSRIs during the acute-phase treatment. Dropouts occur similarly in participants treated with mirtazapine and those treated with other antidepressants, although the adverse event profile of mirtazapine is unique.
Collapse
Affiliation(s)
- Norio Watanabe
- Department of Psychiatry & Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ichiro M Omori
- Department of Psychiatry, Toyokawa City Hospital, Aichi, Japan
| | - Atsuo Nakagawa
- Department of Psychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Andrea Cipriani
- Department of Public Health and Community Medicine, Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy
| | - Corrado Barbui
- Department of Public Health and Community Medicine, Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy
| | - Rachel Churchill
- Academic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Toshi A Furukawa
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine / School of Public Health, Kyoto, Japan
| |
Collapse
|
60
|
Ieiri I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 2011; 27:85-105. [PMID: 22123128 DOI: 10.2133/dmpk.dmpk-11-rv-098] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent pharmacogenomic/pharmacogenetic (PGx) studies have disclosed important roles for drug transporters in the human body. Changes in the functions of drug transporters due to drug/food interactions or genetic polymorphisms, for example, are associated with large changes in pharmacokinetic (PK) profiles of substrate drugs, leading to changes in drug response and side effects. This information is extremely useful not only for drug development but also for individualized treatment. Among drug transporters, the ATP-binding cassette (ABC) transporters are expressed in most tissues in humans, and play protective roles; reducing drug absorption from the gastrointestinal tract, enhancing drug elimination into bile and urine, and impeding the entry of drugs into the central nervous system and placenta. In addition to PK/pharmacodynamic (PD) issues, ABC transporters are reported as etiologic and prognostic factors (or biomarkers) for genetic disorders. Although a consensus has not yet been reached, clinical studies have demonstrated that the PGx of ABC transporters influences the overall outcome of pharmacotherapy and contributes to the pathogenesis and progression of certain disorders. This review explains the impact of PGx in ABC transporters in terms of PK/PD, focusing on P-glycoprotein and breast cancer resistance protein (BCRP).
Collapse
Affiliation(s)
- Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
61
|
Krupoves A, Mack D, Seidman E, Deslandres C, Amre D. Associations between variants in the ABCB1 (MDR1) gene and corticosteroid dependence in children with Crohn's disease. Inflamm Bowel Dis 2011; 17:2308-17. [PMID: 21987299 DOI: 10.1002/ibd.21608] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 11/10/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND Corticosteroids (CS) effectively induce remission in patients with moderate to severe Crohn's disease (CD). However, CS dependence in children is a significant clinical problem associated with numerous side effects. Identification of molecular markers of CS dependence is of paramount importance. The ABCB1 gene codes for P-glycoprotein, a transporter involved in the metabolism of CS. We examined whether DNA variation in the ABCB1 gene was associated with CS dependency in children with CD. METHODS A retrospective study was carried out in two Canadian tertiary pediatric gastroenterology centers. Clinical information was abstracted from medical charts of CD patients (N = 260) diagnosed with CD prior to age 18 and administered a first course of CS during the 1 year since diagnosis. Patients were classified as CS-dependent if they relapsed during drug tapering or after the end of therapy. DNA was extracted from blood or saliva. Thirteen tagging single nucleotide polymorphisms (tag-SNPs) and a synonymous variation (C3435T) in the ABCB1 gene were genotyped. Allelic, genotype, and haplotype associations were examined using logistic regression and Haploview. RESULTS Tag-SNP rs2032583 was statistically significantly associated with CS dependency. The rare C allele of this SNP (odds ratio [OR] = 0.56, 95% confidence interval [CI]: 0.34-0.95, P = 0.029) and heterozygous genotype TC (OR = 0.52, 95% CI: 0.28-0.95, P = 0.035) conferred protection from CS dependency. A three-marker haplotype was significantly associated with CS dependence (multiple comparison corrected P-value = 0.004). CONCLUSIONS Our results suggest that the ABCB1 gene may be associated with CS dependence in pediatric CD patients.
Collapse
|
62
|
Understanding the impact of P-glycoprotein mutation on canine health. Vet J 2011; 190:13-4. [DOI: 10.1016/j.tvjl.2010.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/17/2010] [Indexed: 11/23/2022]
|
63
|
Davis MP, Kirkova J, Lagman R, Walsh D, Karafa M. Intolerance to mirtazapine in advanced cancer. J Pain Symptom Manage 2011; 42:e4-7. [PMID: 21854992 DOI: 10.1016/j.jpainsymman.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/16/2011] [Indexed: 11/20/2022]
|