51
|
Current Status of Patient-Derived Ovarian Cancer Models. Cells 2019; 8:cells8050505. [PMID: 31130643 PMCID: PMC6562658 DOI: 10.3390/cells8050505] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of female cancer death. Recent studies have documented its extensive variations as a disease entity, in terms of cell or tissue of origin, pre-cancerous lesions, common mutations, and therapeutic responses, leading to the notion that OC is a generic term referring to a whole range of different cancer subtypes. Despite such heterogeneity, OC treatment is stereotypic; aggressive surgery followed by conventional chemotherapy could result in chemo-resistant diseases. Whereas molecular-targeted therapies will become shortly available for a subset of OC, there still remain many patients without effective drugs, requiring development of groundbreaking therapeutic agents. In preclinical studies for drug discovery, cancer cell lines used to be the gold standard, but now this has declined due to frequent failure in predicting therapeutic responses in patients. In this regard, patient-derived cells and tumors are gaining more attention in precise and physiological modeling of in situ tumors, which could also pave the way to implementation of precision medicine. In this article, we comprehensively overviewed the current status of various platforms for patient-derived OC models. We highly appreciate the potentials of organoid culture in achieving high success rate and retaining tumor heterogeneity.
Collapse
|
52
|
Takahashi N, Hoshi H, Higa A, Hiyama G, Tamura H, Ogawa M, Takagi K, Goda K, Okabe N, Muto S, Suzuki H, Shimomura K, Watanabe S, Takagi M. An In Vitro System for Evaluating Molecular Targeted Drugs Using Lung Patient-Derived Tumor Organoids. Cells 2019; 8:cells8050481. [PMID: 31137590 PMCID: PMC6562414 DOI: 10.3390/cells8050481] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 01/02/2023] Open
Abstract
Patient-derived tumor organoids (PDOs) represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture models. We have established PDOs from various human tumors to accurately and efficiently recapitulate the tissue architecture and function. Molecular targeted therapies with remarkable efficacy are currently in use against various tumors. Thus, there is a need for in vitro functional-potency assays that can be used to test the efficacy of molecular targeted drugs and model complex interactions between immune cells and tumor cells to evaluate the potential for cancer immunotherapy. This study represents an in vitro evaluation of different classes of molecular targeted drugs, including small-molecule inhibitors, monoclonal antibodies, and an antibody-drug conjugate, using lung PDOs. We evaluated epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2) inhibitors using a suitable high-throughput assay system. Next, the antibody-dependent cellular cytotoxicity (ADCC) activity of an anti-HER2 monoclonal antibody was evaluated to visualize the interactions of immune cells with PDOs during ADCC responses. Moreover, an evaluation system was developed for the immune checkpoint inhibitors, nivolumab and pembrolizumab, using PDOs. Our results demonstrate that the in vitro assay systems using PDOs were suitable for evaluating molecular targeted drugs under conditions that better reflect pathological conditions.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biopsy
- Carcinoma, Adenosquamous/drug therapy
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Adenosquamous/surgery
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Cell Survival/drug effects
- Cells, Cultured
- Drug Evaluation/methods
- ErbB Receptors/antagonists & inhibitors
- Humans
- L-Lactate Dehydrogenase/analysis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Molecular Targeted Therapy
- Organoids/drug effects
- Receptor, ErbB-2/antagonists & inhibitors
Collapse
Affiliation(s)
- Nobuhiko Takahashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan.
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Hirotaka Hoshi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Arisa Higa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Gen Hiyama
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Hirosumi Tamura
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Mayu Ogawa
- Research and Development, Biological Evaluation Technology 2, Olympus Corporation, Hachioji, Tokyo 192-8512, Japan.
| | - Kosuke Takagi
- Research and Development, SSD Technology Innovation 3, Olympus Corporation, Hachioji, Tokyo 192-8512, Japan.
| | - Kazuhito Goda
- Research and Development, Biological Evaluation Technology 2, Olympus Corporation, Hachioji, Tokyo 192-8512, Japan.
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Shinya Watanabe
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Motoki Takagi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan.
| |
Collapse
|
53
|
Van Nyen T, Moiola CP, Colas E, Annibali D, Amant F. Modeling Endometrial Cancer: Past, Present, and Future. Int J Mol Sci 2018; 19:E2348. [PMID: 30096949 PMCID: PMC6121384 DOI: 10.3390/ijms19082348] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Endometrial cancer is the most common type of cancer of the female reproductive tract. Although prognosis is generally good for patients with low-grade and early-stage diseases, the outcomes for high-grade and metastatic/recurrent cases remain poor, since traditional chemotherapy regimens based on platinum and taxanes have limited effects. No targeted agents have been approved so far, although several new drugs have been tested without striking results in clinical trials. Over the last decades, many efforts have been made towards the establishment and development of preclinical models, aiming at recapitulating the structural and molecular determinants of the disease. Here, we present an overview of the most commonly used in vitro and in vivo models and discuss their peculiar features, describing their main applications and the value in the advancement of both fundamental and translational endometrial cancer research.
Collapse
Affiliation(s)
- Tom Van Nyen
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
| | - Cristian P Moiola
- Pathological Oncology Group, Biomedical Research Institute of Lleida (IRBLLEIDA), University Hospital Arnau de Vilanova, 25198 Lleida, Spain.
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, CIBERONC, 08035 Barcelona, Spain.
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, CIBERONC, 08035 Barcelona, Spain.
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
| | - Frédéric Amant
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (Avl-NKI) and University Medical Centra (UMC), 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
54
|
Tamura H, Higa A, Hoshi H, Hiyama G, Takahashi N, Ryufuku M, Morisawa G, Yanagisawa Y, Ito E, Imai JI, Dobashi Y, Katahira K, Soeda S, Watanabe T, Fujimori K, Watanabe S, Takagi M. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues. Oncol Rep 2018; 40:635-646. [PMID: 29917168 PMCID: PMC6072291 DOI: 10.3892/or.2018.6501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Patient-derived tumor xenograft models represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture; however, their use is low-throughput and costly. To overcome this limitation, patient-derived tumor organoids (PDOs) were established from human lung, ovarian and uterine tumor tissues, among others, to accurately and efficiently recapitulate the tissue architecture and function. PDOs were able to be cultured for >6 months, and formed cell clusters with similar morphologies to their source tumors. Comparative histological and comprehensive gene expression analyses proved that the characteristics of PDOs were similar to those of their source tumors, even following long-term expansion in culture. At present, 53 PDOs have been established by the Fukushima Translational Research Project, and were designated as Fukushima PDOs (F-PDOs). In addition, the in vivo tumorigenesis of certain F-PDOs was confirmed using a xenograft model. The present study represents a detailed analysis of three F-PDOs (termed REME9, 11 and 16) established from endometrial cancer tissues. These were used for cell growth inhibition experiments using anticancer agents. A suitable high-throughput assay system, with 96- or 384-well plates, was designed for each F-PDO, and the efficacy of the anticancer agents was subsequently evaluated. REME9 and 11 exhibited distinct responses and increased resistance to the drugs, as compared with conventional cancer cell lines (AN3 CA and RL95-2). REME9 and 11, which were established from tumors that originated in patients who did not respond to paclitaxel and carboplatin (the standard chemotherapy for endometrial cancer), exhibited high resistance (half-maximal inhibitory concentration >10 µM) to the two agents. Therefore, assay systems using F-PDOs may be utilized to evaluate anticancer agents using conditions that better reflect clinical conditions, compared with conventional methods using cancer cell lines, and to discover markers that identify the pharmacological effects of anticancer agents.
Collapse
Affiliation(s)
- Hirosumi Tamura
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Arisa Higa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Hirotaka Hoshi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Gen Hiyama
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Nobuhiko Takahashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Masae Ryufuku
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Gaku Morisawa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Yuka Yanagisawa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Emi Ito
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Jun-Ichi Imai
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Yuu Dobashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Kiyoaki Katahira
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Motoki Takagi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| |
Collapse
|
55
|
Thakuri PS, Liu C, Luker GD, Tavana H. Biomaterials-Based Approaches to Tumor Spheroid and Organoid Modeling. Adv Healthc Mater 2018; 7:e1700980. [PMID: 29205942 PMCID: PMC5867257 DOI: 10.1002/adhm.201700980] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Evolving understanding of structural and biological complexity of tumors has stimulated development of physiologically relevant tumor models for cancer research and drug discovery. A major motivation for developing new tumor models is to recreate the 3D environment of tumors and context-mediated functional regulation of cancer cells. Such models overcome many limitations of standard monolayer cancer cell cultures. Under defined culture conditions, cancer cells self-assemble into 3D constructs known as spheroids. Additionally, cancer cells may recapitulate steps in embryonic development to self-organize into 3D cultures known as organoids. Importantly, spheroids and organoids reproduce morphology and biologic properties of tumors, providing valuable new tools for research, drug discovery, and precision medicine in cancer. This Progress Report discusses uses of both natural and synthetic biomaterials to culture cancer cells as spheroids or organoids, specifically highlighting studies that demonstrate how these models recapitulate key properties of native tumors. The report concludes with the perspectives on the utility of these models and areas of need for future developments to more closely mimic pathologic events in tumors.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Chun Liu
- Departments of Radiology, Biomedical Engineering and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Departments of Radiology, Biomedical Engineering and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|