51
|
Characterization of opioidergic mechanisms related to the anti-migraine effect of vagus nerve stimulation. Neuropharmacology 2021; 195:108375. [PMID: 33444636 DOI: 10.1016/j.neuropharm.2020.108375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Vagus nerve stimulation (VNS) is a promising neuromodulation approach used in the treatment of migraine, whose therapeutic mechanism is largely unknown. Previous studies suggest that VNS's anti-nociceptive effects may, in part, involve engaging opioidergic mechanisms. We used a validated preclinical model of head pain, with good translational outcomes in migraine, acute intracranial-dural stimulation, which has responded to invasive VNS. We tested the effects of μ (MOR), δ (DOR) and κ (KOR) opioid receptor agonists in this model, and subsequently the effects of opioid receptor antagonists against VNS-mediated neuronal inhibition. MOR, DOR, and KOR agonists all inhibited dural-evoked trigeminocervical neuronal responses. Both DOR and KOR agonists also inhibited ongoing spontaneous firing of dural responsive neurons. Both DOR and KOR agonists were more efficacious than the MOR agonist in this model. We confirm the inhibitory effect of invasive VNS and demonstrate that this effect was prevented by a broad-spectrum opioid receptor antagonist, and by a highly selective DOR antagonist. Our data confirm the role of MOR in dural-trigeminovascular neurotransmission and additionally provide evidence of a role of both DOR and KOR in dural-nociceptive transmission of trigeminocervical neurons. Further, the results here provide evidence of engagement of opioidergic mechanisms in the therapeutic action of VNS in headache, specifically the DOR. These studies provide further support for the important role of the DOR in headache mechanisms, and as a potential therapeutic target. The data begin to dissect the mode of action of the analgesic effects of VNS in the treatment of primary headache disorders.
Collapse
|
52
|
Neuromodulation in headache and craniofacial neuralgia: Guidelines from the Spanish Society of Neurology and the Spanish Society of Neurosurgery. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2020.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
53
|
The Instant Effects of Continuous Transcutaneous Auricular Vagus Nerve Stimulation at Acupoints on the Functional Connectivity of Amygdala in Migraine without Aura: A Preliminary Study. Neural Plast 2020; 2020:8870589. [PMID: 33381165 PMCID: PMC7759401 DOI: 10.1155/2020/8870589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background A growing body of evidence suggests that both auricular acupuncture and transcutaneous auricular vagus nerve stimulation (taVNS) can induce antinociception and relieve symptoms of migraine. However, their instant effects and central treatment mechanism remain unclear. Many studies proved that the amygdalae play a vital role not only in emotion modulation but also in pain processing. In this study, we investigated the modulation effects of continuous taVNS at acupoints on the FC of the bilateral amygdalae in MwoA. Methods Thirty episodic migraineurs were recruited for the single-blind, crossover functional magnetic resonance imaging (fMRI) study. Each participant attended two kinds of eight-minute stimulations, taVNS and sham-taVNS (staVNS), separated by seven days in random order. Finally, 27 of them were included in the analysis of seed-to-voxel FC with the left/right amygdala as seeds. Results Compared with staVNS, the FC decreased during taVNS between the left amygdala and left middle frontal gyrus (MFG), left dorsolateral superior frontal gyrus, right supplementary motor area (SMA), bilateral paracentral lobules, bilateral postcingulum gyrus, and right frontal superior medial gyrus, so did the FC of the right amygdala and left MFG. A significant positive correlation was observed between the FC of the left amygdala and right SMA and the frequency/total time of migraine attacks during the preceding four weeks. Conclusion Continuous taVNS at acupoints can modulate the FC between the bilateral amygdalae and pain-related brain regions in MwoA, involving the limbic system, default mode network, and pain matrix, with obvious differences between the left amygdala and the right amygdala. The taVNS may produce treatment effects by modulating the abnormal FC of the amygdala and pain networks, possibly having the same central mechanism as auricular acupuncture.
Collapse
|
54
|
Bremner JD, Gurel NZ, Jiao Y, Wittbrodt MT, Levantsevych OM, Huang M, Jung H, Shandhi MH, Beckwith J, Herring I, Rapaport MH, Murrah N, Driggers E, Ko YA, Alkhalaf ML, Soudan M, Song J, Ku BS, Shallenberger L, Hankus AN, Nye JA, Park J, Vaccarino V, Shah AJ, Inan OT, Pearce BD. Transcutaneous vagal nerve stimulation blocks stress-induced activation of Interleukin-6 and interferon-γ in posttraumatic stress disorder: A double-blind, randomized, sham-controlled trial. Brain Behav Immun Health 2020; 9:100138. [PMID: 34589887 PMCID: PMC8474180 DOI: 10.1016/j.bbih.2020.100138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory function. Vagus nerve stimulation (VNS) decreases inflammation, however few studies have examined the effects of non-invasive VNS on physiology in human subjects, and no studies in patients with PTSD. The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on inflammatory responses to stress. Thirty subjects with a history of exposure to traumatic stress with (N = 10) and without (N = 20) PTSD underwent exposure to stressful tasks immediately followed by active or sham tcVNS and measurement of multiple biomarkers of inflammation (interleukin-(IL)-6, IL-2, IL-1β, Tumor Necrosis Factor alpha (TNFα) and Interferon gamma (IFNγ) over multiple time points. Stressful tasks included exposure to personalized scripts of traumatic events on day 1, and public speech and mental arithmetic (Mental Stress) tasks on days 2 and 3. Traumatic scripts were associated with a pattern of subjective anger measured with Visual Analogue Scales and increased IL-6 and IFNγ in PTSD patients that was blocked by tcVNS (p < .05). Traumatic stress had minimal effects on these biomarkers in non-PTSD subjects and there was no difference between tcVNS or sham. No significant differences were seen between groups in IL-2, IL-1β, or TNFα. These results demonstrate that tcVNS blocks behavioral and inflammatory responses to stress reminders in PTSD.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Radiology, and Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yunshen Jiao
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Matthew T. Wittbrodt
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Minxuan Huang
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Hewon Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - MdMobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joy Beckwith
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaias Herring
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark H. Rapaport
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nancy Murrah
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Emily Driggers
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Yi-An Ko
- Departments of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
| | | | - Majd Soudan
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jiawei Song
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Benson S. Ku
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucy Shallenberger
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Allison N. Hankus
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jonathon A. Nye
- Departments of Radiology, and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeanie Park
- Departments of Renal Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Viola Vaccarino
- Departments of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Amit J. Shah
- Departments of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bradley D. Pearce
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
55
|
Gurel NZ, Jiao Y, Wittbrodt MT, Ko YA, Hankus A, Driggers EG, Ladd SL, Shallenberger L, Murrah N, Huang M, Haffar A, Alkhalaf M, Levantsevych O, Nye JA, Vaccarino V, Shah AJ, Inan OT, Bremner JD, Pearce BD. Effect of transcutaneous cervical vagus nerve stimulation on the pituitary adenylate cyclase-activating polypeptide (PACAP) response to stress: A randomized, sham controlled, double blind pilot study. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2020; 4:100012. [PMID: 35755625 PMCID: PMC9216713 DOI: 10.1016/j.cpnec.2020.100012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/17/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that plays a key role in the neurobiology of the stress response, and prior studies suggest that its function is dysregulated in post-traumatic stress disorder (PTSD). Transcutaneous cervical vagus nerve stimulation (tcVNS) acts through PACAP and other neurobiological systems to modulate stress responses and/or symptoms of PTSD. In this pilot study, we examined the effects of tcVNS on PACAP in a three day chronic stress laboratory paradigm involving serial traumatic and mental stress exposures in healthy individuals with a history of exposure to psychological trauma (n = 18) and patients with PTSD (n = 12). Methods A total of 30 subjects with a history of exposure to psychological trauma experience were recruited (12 with PTSD diagnosis) for a three-day randomized double-blinded study of tcVNS or sham stimulation. Subjects underwent a protocol that included both personalized trauma recall and non-personalized mental stressors (public speaking, mental arithmetic) paired to tcVNS or sham stimulation over three days. Blood was collected at baseline and multiple time points after exposure to stressors. Linear mixed-effects models were used to assess changes in PACAP over time (in response to stressors) and its relation to active tcVNS or sham stimulation. Results PACAP blood levels increased over the course of three days for both active tcVNS and sham groups. This increase was statistically-significant in the sham group at the end of the second (Cohen's drm = 0.35, p = 0.04), and third days (drm = 0.41, p = 0.04), but not in the active tcVNS group (drm = 0.21, drm = 0.18, and p > 0.20). Conclusion These pilot findings suggest tcVNS may attenuate this neurobiological stress-response. Larger studies are needed to investigate gender and interaction effects.
Collapse
Affiliation(s)
- Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yunshen Jiao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Allison Hankus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Emily G. Driggers
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
| | - Stacy L. Ladd
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
- Department of Radiology, Emory School of Medicine, Atlanta, GA, USA
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Murrah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ammer Haffar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mhmtjamil Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Oleksiy Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jonathon A. Nye
- Department of Radiology, Emory School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory School of Medicine, Atlanta, GA, USA
| | - Amit J. Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
- Department of Radiology, Emory School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
56
|
Gurel NZ, Wittbrodt MT, Jung H, Shandhi MMH, Driggers EG, Ladd SL, Huang M, Ko YA, Shallenberger L, Beckwith J, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Inan OT, Bremner JD. Transcutaneous cervical vagal nerve stimulation reduces sympathetic responses to stress in posttraumatic stress disorder: A double-blind, randomized, sham controlled trial. Neurobiol Stress 2020; 13:100264. [PMID: 33344717 PMCID: PMC7739181 DOI: 10.1016/j.ynstr.2020.100264] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Exacerbated autonomic responses to acute stress are prevalent in posttraumatic stress disorder (PTSD). The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to acute stress in patients with PTSD. The authors hypothesized tcVNS would reduce the sympathetic response to stress compared to a sham device. METHODS Using a randomized double-blind approach, we studied the effects of tcVNS on physiological responses to stress in patients with PTSD (n = 25) using noninvasive sensing modalities. Participants received either sham (n = 12) or active tcVNS (n = 13) after exposure to acute personalized traumatic script stress and mental stress (public speech, mental arithmetic) over a three-day protocol. Physiological parameters related to sympathetic responses to stress were investigated. RESULTS Relative to sham, tcVNS paired to traumatic script stress decreased sympathetic function as measured by: decreased heart rate (adjusted β = -5.7%; 95% CI: ±3.6%, effect size d = 0.43, p < 0.01), increased photoplethysmogram amplitude (peripheral vasodilation) (30.8%; ±28%, 0.29, p < 0.05), and increased pulse arrival time (vascular function) (6.3%; ±1.9%, 0.57, p < 0.0001). Similar (p < 0.05) autonomic, cardiovascular, and vascular effects were observed when tcVNS was applied after mental stress or without acute stress. CONCLUSION tcVNS attenuates sympathetic arousal associated with stress related to traumatic memories as well as mental stress in patients with PTSD, with effects persisting throughout multiple traumatic stress and stimulation testing days. These findings show that tcVNS has beneficial effects on the underlying neurophysiology of PTSD. Such autonomic metrics may also be evaluated in daily life settings in tandem with tcVNS therapy to provide closed-loop delivery and measure efficacy.ClinicalTrials.gov Registration # NCT02992899.
Collapse
Affiliation(s)
- Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hewon Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Md. Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily G. Driggers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Stacy L. Ladd
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
| | - Joy Beckwith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J. Shah
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
57
|
van der Meij A, van Walderveen MAA, Kruyt ND, van Zwet EW, Liebler EJ, Ferrari MD, Wermer MJH. NOn-invasive Vagus nerve stimulation in acute Ischemic Stroke (NOVIS): a study protocol for a randomized clinical trial. Trials 2020; 21:878. [PMID: 33106174 PMCID: PMC7586413 DOI: 10.1186/s13063-020-04794-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Secondary damage due to neurochemical and inflammatory changes in the penumbra in the first days after ischemic stroke contributes substantially to poor clinical outcome. In animal models, vagus nerve stimulation (VNS) inhibits these detrimental changes and thereby reduces tissue injury. The aim of this study is to investigate whether non-invasive cervical VNS (nVNS) in addition to the current standard treatment can improve penumbral recovery and limit final infarct volume. Methods NOVIS is a single-center prospective randomized clinical trial with blinded outcome assessment. One hundred fifty patients will be randomly allocated (1:1) within 12 h from clinical stroke onset to nVNS for 5 days in addition to standard treatment versus standard treatment alone. The primary endpoint is the final infarct volume on day 5 assessed with MRI. Discussion We hypothesize that nVNS will result in smaller final infarct volumes as compared to standard treatment due to improved penumbral recovery. The results of this study will be used to assess the viability and approach to power a larger trial to more definitively assess the clinical efficacy of nVNS after stroke. Trial registration ClinicalTrials.govNCT04050501. Registered on 8 August 2019
Collapse
Affiliation(s)
- Anne van der Meij
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik W van Zwet
- Department of Medical Statistics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
58
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
59
|
Silberstein SD, Yuan H, Najib U, Ailani J, Morais ALD, Mathew PG, Liebler E, Tassorelli C, Diener HC. Non-invasive vagus nerve stimulation for primary headache: A clinical update. Cephalalgia 2020; 40:1370-1384. [PMID: 32718243 DOI: 10.1177/0333102420941864] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Non-invasive vagus nerve stimulation (nVNS) is a proven treatment for cluster headache and migraine. Several possible mechanisms of action by which nVNS mitigates headache have been identified. Methods We conducted a narrative review of recent scientific and clinical research into nVNS for headache, including findings from mechanistic studies and their possible relationships to the clinical effects of nVNS. Results Findings from animal and human studies have provided possible mechanistic explanations for nVNS efficacy in headache involving four core areas: Autonomic nervous system functions; cortical spreading depression inhibition; neurotransmitter regulation; and nociceptive modulation. We discuss how overlap and interplay among these areas may underlie the utility of nVNS in the context of clinical evidence supporting its safety and efficacy as acute and preventive therapy for both cluster headache and migraine. Possible future nVNS applications are also discussed. Conclusion Significant progress over the past several years has yielded valuable mechanistic and clinical evidence that, combined with the excellent safety and tolerability profile of nVNS, suggests that it should be considered a first-line treatment for both acute and preventive treatment of cluster headache, an effective option for acute treatment of migraine, and a highly relevant, practical option for migraine prevention.
Collapse
Affiliation(s)
- Stephen D Silberstein
- Jefferson Headache Center, Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Hsiangkuo Yuan
- Jefferson Headache Center, Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Umer Najib
- Department of Neurology, West Virginia University, Morgantown, West Virginia, USA
| | - Jessica Ailani
- Medstar Georgetown University Hospital, Washington, DC, USA
| | - Andreia Lopes de Morais
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Paul G Mathew
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Vanguard Medical Associates, Braintree, Massachusetts, USA
| | - Eric Liebler
- electroCore, Inc., Basking Ridge, New Jersey, USA
| | - Cristina Tassorelli
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Hans-Christoph Diener
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty of the University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
60
|
Belvís R, Irimia P, Seijo-Fernández F, Paz J, García-March G, Santos-Lasaosa S, Latorre G, González-Oria C, Rodríguez R, Pozo-Rosich P, Láinez JM. Neuromodulation in headache and craniofacial neuralgia: guidelines from the Spanish Society of Neurology and the Spanish Society of Neurosurgery. Neurologia 2020; 36:61-79. [PMID: 32718873 DOI: 10.1016/j.nrl.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Numerous invasive and non-invasive neuromodulation devices have been developed and applied to patients with headache and neuralgia in recent years. However, no updated review addresses their safety and efficacy, and no healthcare institution has issued specific recommendations on their use for these 2 conditions. METHODS Neurologists from the Spanish Society of Neurology's (SEN) Headache Study Group and neurosurgeons specialising in functional neurosurgery, selected by the Spanish Society of Neurosurgery (SENEC), performed a comprehensive review of articles on the MEDLINE database addressing the use of the technique in patients with headache and neuralgia. RESULTS We present an updated review and establish the first set of consensus recommendations of the SEN and SENC on the use of neuromodulation to treat headache and neuralgia, analysing the current levels of evidence on its effectiveness for each specific condition. CONCLUSIONS Current evidence supports the indication of neuromodulation techniques for patients with refractory headache and neuralgia (especially migraine, cluster headache, and trigeminal neuralgia) selected by neurologists and headache specialists, after pharmacological treatment options are exhausted. Furthermore, we recommend that invasive neuromodulation be debated by multidisciplinary committees, and that the procedure be performed by teams of neurosurgeons specialising in functional neurosurgery, with acceptable rates of morbidity and mortality.
Collapse
Affiliation(s)
- R Belvís
- Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - P Irimia
- Clínica Universitaria de Navarra, Pamplona, España.
| | | | - J Paz
- Hospital Universitario La Paz, Madrid, España
| | | | | | - G Latorre
- Hospital Universitario de Fuenlabrada, Madrid, España
| | | | - R Rodríguez
- Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | | | - J M Láinez
- Hospital Clínico Universitario, Valencia, España
| |
Collapse
|
61
|
Vagus nerve stimulation reduces spreading depolarization burden and cortical infarct volume in a rat model of stroke. PLoS One 2020; 15:e0236444. [PMID: 32702055 PMCID: PMC7377493 DOI: 10.1371/journal.pone.0236444] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Cortical spreading depolarization (SD) waves negatively affect neuronal survival and outcome after ischemic stroke. We here aimed to investigate the effects of vagus nerve stimulation (VNS) on SDs in a rat model of focal ischemia. To this end, we delivered non-invasive VNS (nVNS) or invasive VNS (iVNS) during permanent middle cerebral artery occlusion (MCAO), and found that both interventions significantly reduced the frequency of SDs in the cortical peri-infarct area compared to sham VNS, without affecting relative blood flow changes, blood pressure, heart rate or breathing rate. In separate groups of rats subjected to transient MCAO, we found that cortical stroke volume was reduced 72 h after transient MCAO, whereas stroke volume in the basal ganglia remained unchanged. In rats treated with nVNS, motor outcome was improved 2 days after transient MCAO, but was similar to sham VNS animals 3 days after ischemia. We postulate that VNS may be a safe and efficient intervention to reduce the clinical burden of SD waves in stroke and other conditions.
Collapse
|
62
|
Schoenen J, Ambrosini A. Update on noninvasive neuromodulation for migraine treatment-Vagus nerve stimulation. PROGRESS IN BRAIN RESEARCH 2020; 255:249-274. [PMID: 33008508 DOI: 10.1016/bs.pbr.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Noninvasive neurostimulation methods are particularly suited for migraine treatment thanks to their most favorable adverse event profile. Among them, noninvasive vagus nerve stimulation (nVNS) has raised great hope because of the role the vagus nerve is known to play in pain modulation, inflammation and brain excitability. We will critically review the clinical studies performed for migraine attack treatment and migraine prevention with the GammaCore® device, which allows cervical vagus nerve stimulation. nVNS is effective for the abortive treatment of migraine attacks, although the effect size is modest and numbers-to-treat appear not superior to those of other noninvasive neurostimulation methods, and inferior to those of oral triptans. The effect of nVNS with the GammaCore® in migraine prevention is not superior to sham stimulation, except possibly in patients with high adherence to the treatment. Both in acute and preventive trials, nVNS was characterized by an outstanding tolerance and safety profile, like the other noninvasive neurostimulation techniques. In physiological animal and human studies, cervical nVNS was shown to generate somatosensory evoked responses, to modulate pain perception and several areas of the cerebral pain network, and to inhibit experimental cortical spreading depression, which are relevant effects for migraine therapy.
Collapse
Affiliation(s)
- Jean Schoenen
- Department of Neurology, Headache Research Unit, University of Liège, Citadelle Hospital, Liege, Belgium.
| | | |
Collapse
|
63
|
Gurel NZ, Wittbrodt MT, Jung H, Ladd SL, Shah AJ, Vaccarino V, Bremner JD, Inan OT. Automatic Detection of Target Engagement in Transcutaneous Cervical Vagal Nerve Stimulation for Traumatic Stress Triggers. IEEE J Biomed Health Inform 2020; 24:1917-1925. [PMID: 32175881 PMCID: PMC7393996 DOI: 10.1109/jbhi.2020.2981116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcutaneous cervical vagal nerve stimulation (tcVNS) devices are attractive alternatives to surgical implants, and can be applied for a number of conditions in ambulatory settings, including stress-related neuropsychiatric disorders. Transferring tcVNS technologies to at-home settings brings challenges associated with the assessment of therapy response. The ability to accurately detect whether tcVNS has been effectively delivered in a remote setting such as the home has never been investigated. We designed and conducted a study in which 12 human subjects received active tcVNS and 14 received sham stimulation in tandem with traumatic stress, and measured continuous cardiopulmonary signals including the electrocardiogram (ECG), photoplethysmogram (PPG), seismocardiogram (SCG), and respiratory effort (RSP). We extracted physiological parameters related to autonomic nervous system activity, and created a feature set from these parameters to: 1) detect active (vs. sham) tcVNS stimulation presence with machine learning methods, and 2) determine which sensing modalities and features provide the most salient markers of tcVNS-based changes in physiological signals. Heart rate (ECG), vasomotor activity (PPG), and pulse arrival time (ECG+PPG) provided sufficient information to determine target engagement (compared to sham) in addition to other combinations of sensors. resulting in 96% accuracy, precision, and recall with a receiver operator characteristics area of 0.96. Two commonly utilized sensing modalities (ECG and PPG) that are suitable for home use can provide useful information on therapy response for tcVNS. The methods presented herein could be deployed in wearable devices to quantify adherence for at-home use of tcVNS technologies.
Collapse
|
64
|
Alt LK, Wach K, Liebler EJ, Straube A, Ruscheweyh R. A Randomized Sham-Controlled Cross-Over Study on the Short-Term Effect of Non-Invasive Cervical Vagus Nerve Stimulation on Spinal and Supraspinal Nociception in Healthy Subjects. Headache 2020; 60:1616-1631. [PMID: 32592516 DOI: 10.1111/head.13891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of the present study was to test the effects of vagus nerve stimulation (VNS) on the descending pain inhibition, quantified by the nociceptive flexor (RIII) reflex and the conditioned pain modulation (CPM) paradigm, and on supraspinal nociceptive responses, assessed by pain intensity and unpleasantness ratings and late somatosensory evoked potentials (SEPs), in healthy subjects. BACKGROUND Non-invasive vagus nerve stimulation (nVNS) showed promising effects on headache and pain treatment. Underlying mechanisms are only incompletely understood but may include the activation of the descending pain inhibitory system and/or the modification of emotional responses to pain. METHODS Twenty-seven adult, healthy, and pain-free subjects participated in this double-blind cross-over study conducted at a university research center. They received 4 minutes of cervical nVNS or sham stimulation in randomized order. RIII reflexes, pain ratings, and SEPs were assessed before, during, and 5, 15, 30, and 60 minutes after nVNS/sham stimulation, followed by CPM testing. The primary outcome was the nVNS effect on the RIII reflex size. Three subjects were excluded after the preparatory session (before randomization), 1 subject was excluded after outlier analysis, leaving 23 for analysis. RESULTS RIII reflex areas were 917.1 ± 563.8 µV × ms (mean ± SD) before, 952.4 ± 467.4 µV × ms during and 929.2 ± 484.0 µV × ms immediately after nVNS and 858.4 ± 489.2 µV × ms before, 913.9 ± 539.7 µV × ms during and 862.4 ± 476.0 µV × ms after sham stimulation, revealing no differences between the immediate effects of nVNS and sham stimulation (F [3,66] = 0.67, P = .574). There also were no effects of nVNS over sham on RIII reflex areas up to 60 minutes after nVNS (F [1.7,37.4] = 1.29, P = .283). Similarly, there was no statistically significant effect of nVNS on pain intensity ratings and thresholds, RIII reflex thresholds, late SEP amplitudes, and the CPM effect, compared to sham. Pain unpleasantness ratings statistically significantly decreased from 4.4 ± 2.4 (NRS 0-10) to 4.1 ± 2.5 during nVNS compared to sham stimulation (F [1,22] = 8.74, P = .007), but there were no longer lasting effects (5-60 minutes after stimulation). CONCLUSIONS The present study does not support an acute effect of nVNS on descending pain inhibition, pain intensity perception or supraspinal nociception in healthy adults. However, there was a small effect on pain unpleasantness during nVNS, suggesting that nVNS may preferentially act on affective, not somatosensory pain components.
Collapse
Affiliation(s)
- Laura K Alt
- Department of Neurology, University of Munich, Munich, Germany
| | - Katharina Wach
- Department of Neurology, University of Munich, Munich, Germany
| | | | - Andreas Straube
- Department of Neurology, University of Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Research Training Group 2175, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ruth Ruscheweyh
- Department of Neurology, University of Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Research Training Group 2175, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
65
|
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. PROGRESS IN BRAIN RESEARCH 2020; 255:29-67. [PMID: 33008510 DOI: 10.1016/bs.pbr.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Migraine is among the most common and disabling neurological diseases in the world. Cortical spreading depression (CSD) is a wave of near-complete depolarization of neurons and glial cells that slowly propagates along the cortex creating the perception of aura. Evidence suggests that CSD can trigger migraine headache. Experimental models of CSD have been considered highly translational as they recapitulate migraine-related phenomena and have been validated for screening migraine therapeutics. Here we outline the essential components of validated experimental models of CSD and provide a comprehensive review of potential modulators and targets against CSD. We further focus on novel interventions that have been recently shown to suppress CSD susceptibility that may lead to therapeutic targets in migraine.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio Universrity School of Medicine, Tokyo, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
66
|
Øie LR, Kurth T, Gulati S, Dodick DW. Migraine and risk of stroke. J Neurol Neurosurg Psychiatry 2020; 91:593-604. [PMID: 32217787 PMCID: PMC7279194 DOI: 10.1136/jnnp-2018-318254] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Migraine and stroke are two common and heterogeneous neurovascular disorders responsible for a significant burden for those affected and a great economic cost for the society. There is growing evidence that migraine increases the overall risk of cerebrovascular diseases. In this review, based on available literature through a PubMed search, we found that ischaemic stroke in people with migraine is strongly associated with migraine with aura, young age, female sex, use of oral contraceptives and smoking habits. The risk of transient ischaemic attack also seems to be increased in people with migraine, although this issue has not been extensively investigated. Although migraine appears to be associated with haemorrhagic stroke, the migraine aura status has a small influence on this relationship. Neuroimaging studies have revealed a higher prevalence of asymptomatic structural brain lesions in people with migraine. They are also more likely to have unfavourable vascular risk factors; however, the increased risk of stroke seems to be more apparent among people with migraine without traditional risk factors. The mechanism behind the migraine-stroke association is unknown. In light of the higher risk of stroke in people with migraine with aura, it is important to identify and modify any vascular risk factor. There is currently no direct evidence to support that a migraine prophylactic treatment can reduce future stroke in people with migraine.
Collapse
Affiliation(s)
- Lise R Øie
- Department of Neurology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway .,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Tobias Kurth
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sasha Gulati
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - David W Dodick
- Department of Neurology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| |
Collapse
|
67
|
Cornelison LE, Woodman SE, Durham PL. Inhibition of Trigeminal Nociception by Non-invasive Vagus Nerve Stimulation: Investigating the Role of GABAergic and Serotonergic Pathways in a Model of Episodic Migraine. Front Neurol 2020; 11:146. [PMID: 32194498 PMCID: PMC7066071 DOI: 10.3389/fneur.2020.00146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
Migraine is a prevalent neurological disease that is characterized by unpredictable episodic attacks of intense head pain. The underlying pathology involves sensitization and activation of the trigeminal system. Although non-invasive vagus nerve stimulation (nVNS) is recommended for the treatment of migraine, the abortive mechanism of action is not well-understood. The goal of this study was to compare the ability of nVNS and sumatriptan to inhibit trigeminal activation in two animal models of episodic migraine and to investigate the receptor mechanism of action of nVNS. Nocifensive head withdrawal response was investigated in adult male Sprague Dawley rats using von Frey filaments. To induce trigeminal nociceptor sensitization, complete Freund's adjuvant was injected in the trapezius muscle and trigeminal neurons were activated by exposure to a pungent odor or injection of the nitric oxide donor sodium nitroprusside. Some animals received nVNS or sumatriptan as treatment. Some animals were injected intracisternally with antagonists of GABAA, 5-HT3 or 5-HT7 receptors prior to nVNS since these receptors are implicated in descending modulation. While unsensitized animals exposed to the pungent odor or nitric oxide alone did not exhibit enhanced mechanical nociception, sensitized animals with neck muscle inflammation displayed increased trigeminal nocifensive responses. The enhanced nociceptive response to both stimuli was attenuated by nVNS and sumatriptan. Administration of antagonists of GABAA, 5-HT3, and 5-HT7 receptors in the upper spinal cord suppressed the anti-nocifensive effect of nVNS. Our findings suggest that nVNS inhibits trigeminal activation to a similar degree as sumatriptan in episodic migraine models via involvement of GABAergic and serotonergic signaling to enhance central descending pain modulation.
Collapse
Affiliation(s)
| | | | - Paul L. Durham
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, United States
| |
Collapse
|
68
|
Gurel NZ, Gazi AH, Scott KL, Wittbrodt MT, Shah AJ, Vaccarino V, Bremner JD, Inan OT. Timing Considerations for Noninvasive Vagal Nerve Stimulation in Clinical Studies. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2020; 2019:1061-1070. [PMID: 32308903 PMCID: PMC7153149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Noninvasive vagal nerve stimulation (n-VNS) devices have the potential for widespread applicability in improving the well-being of patients with stress-related psychiatric disorders. n-VNS devices are known to affect physiological signals, and, recently, they have been employed in various protocols involving both acute and longitudinal applications. However, questions regarding response time, "dosage," or optimal treatment paradigms remain open. Prior work evaluated noninvasively obtained biomarkers that quantify the stimulation efficacy based on the changes in autonomic tone in a randomized double-blind study. In this work, we extend the state-of-the-art by investigating the onset of action for n-VNS in these same physiological biomarkers through a three-day clinical trial, including 233 administrations on 24 human participants, with and without immediately preceding acute traumatic stress. Determining n-VNS latency serves as a substantial step toward optimizing stimulation delivery with higher temporal resolution for personalized neuromodulation.
Collapse
Affiliation(s)
- Nil Z Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Asim H Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Kristine L Scott
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA
- Department of Radiology, Emory University School of Medicine, Atlanta, GA
| | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
69
|
Suzuki T, Takizawa T, Kamio Y, Qin T, Hashimoto T, Fujii Y, Murayama Y, Patel AB, Ayata C. Noninvasive Vagus Nerve Stimulation Prevents Ruptures and Improves Outcomes in a Model of Intracranial Aneurysm in Mice. Stroke 2020; 50:1216-1223. [PMID: 30943885 DOI: 10.1161/strokeaha.118.023928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background and Purpose- Inflammation is a critical determinant of aneurysmal wall destabilization, growth, and rupture risk. Targeting inflammation may suppress aneurysm rupture. Vagus nerve stimulation (VNS) has been shown to suppress inflammation both systemically and in the central nervous system. Therefore, we tested the effect of a novel noninvasive transcutaneous VNS approach on aneurysm rupture and outcome in a mouse model of intracranial aneurysm formation with wall inflammation. Methods- Aneurysms were induced by a single stereotaxic injection of elastase into the cerebrospinal fluid at the skull base, combined with systemic deoxycorticosterone-salt hypertension, without or with high-salt diet, for mild or severe outcomes, respectively. Cervical VNS (two 2-minute stimulations 5 minutes apart) was delivered once a day starting from the day after elastase injection for the duration of follow-up. Transcutaneous stimulation of the femoral nerve (FNS) served as control. Multiple aneurysms developed in the circle of Willis and its major branches, resulting in spontaneous ruptures and subarachnoid hemorrhage, neurological deficits, and mortality. Results- In the milder model, VNS significantly reduced aneurysm rupture rate compared with FNS (29% versus 80%, respectively). Subarachnoid hemorrhage grades were also lower in the VNS group. In the more severe model, both VNS and FNS arms developed very high rupture rates (77% and 85%, respectively). However, VNS significantly improved the survival rate compared with FNS after rupture (median survival 13 versus 6 days, respectively), without diminishing the subarachnoid hemorrhage grades. Chronic daily VNS reduced MMP-9 (matrix metalloproteinase-9) expression compared with FNS, providing a potential mechanism of action. As an important control, chronic daily VNS did not alter systemic arterial blood pressure compared with FNS. Conclusions- VNS can reduce aneurysm rupture rates and improve the outcome from ruptured aneurysms.
Collapse
Affiliation(s)
- Tomoaki Suzuki
- From the Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown (T.S., T.T., T.Q., C.A.).,Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan (T.S., Y.M.).,Department of Neurosurgery, Brain Research Institute, Niigata University, Japan (T.S., Y.F.)
| | - Tsubasa Takizawa
- From the Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown (T.S., T.T., T.Q., C.A.)
| | - Yoshinobu Kamio
- Departments of Anesthesia and Perioperative Care, University of California, San Francisco (Y.K.)
| | - Tao Qin
- From the Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown (T.S., T.T., T.Q., C.A.)
| | - Tomoki Hashimoto
- Department of Neurosurgery and Neurobiology, Barrow Neurological Institute, Phoenix, AZ (T.H.)
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Japan (T.S., Y.F.)
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan (T.S., Y.M.)
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston (A.B.P.)
| | - Cenk Ayata
- From the Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown (T.S., T.T., T.Q., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Boston (C.A.)
| |
Collapse
|
70
|
Gurel NZ, Huang M, Wittbrodt MT, Jung H, Ladd SL, Shandhi MMH, Ko YA, Shallenberger L, Nye JA, Pearce B, Vaccarino V, Shah AJ, Bremner JD, Inan OT. Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain Stimul 2020; 13:47-59. [PMID: 31439323 PMCID: PMC8252146 DOI: 10.1016/j.brs.2019.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stress is associated with activation of the sympathetic nervous system, and can lead to lasting alterations in autonomic function and in extreme cases symptoms of posttraumatic stress disorder (PTSD). Vagal nerve stimulation (VNS) is a potentially useful tool as a modulator of autonomic nervous system function, however currently available implantable devices are limited by cost and inconvenience. OBJECTIVE The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to stress. METHODS Using a double-blind approach, we investigated the effects of active or sham tcVNS on peripheral cardiovascular and autonomic responses to stress using wearable sensing devices in 24 healthy human participants with a history of exposure to psychological trauma. Participants were exposed to acute stressors over a three-day period, including personalized scripts of traumatic events, public speech, and mental arithmetic tasks. RESULTS tcVNS relative to sham applied immediately after traumatic stress resulted in a decrease in sympathetic function and modulated parasympathetic/sympathetic autonomic tone as measured by increased pre-ejection period (PEP) of the heart (a marker of cardiac sympathetic function) of 4.2 ms (95% CI 1.6-6.8 ms, p < 0.01), decreased peripheral sympathetic function as measured by increased photoplethysmogram (PPG) amplitude (decreased vasoconstriction) by 47.9% (1.4-94.5%, p < 0.05), a 9% decrease in respiratory rate (-14.3 to -3.7%, p < 0.01). Similar effects were seen when tcVNS was applied after other stressors and in the absence of a stressor. CONCLUSION Wearable sensing modalities are feasible to use in experiments in human participants, and tcVNS modulates cardiovascular and peripheral autonomic responses to stress.
Collapse
Affiliation(s)
- Nil Z Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hewon Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stacy L Ladd
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Md Mobashir H Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
71
|
Sokolov AY, Lyubashina OA, Vaganova YS, Amelin AV. [Peripheral neurostimulation in headache treatment]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:79-88. [PMID: 31793548 DOI: 10.17116/jnevro201911910179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
According to rough estimates, at least one third of the population in developed countries suffers, to varying degrees, from certain forms of primary headache, the modern pharmacotherapy of which is not always effective and has a number of limitations. The non-pharmacological treatment of headache can be an alternative to the prescription of pharmacological agents and the only possible assistance option for patients developing drug-resistant cephalalgias. This review describes various methods of electrical neuromodulation that are used for the management of primary headaches. The authors provide information on current stages in implementation of implantable and non-invasive equipment into clinical practice, which makes possible electrical stimulations of peripheral nerves and of the sphenopalatine ganglion, as well as allows transcranial magnetic stimulation. Also the appearance and usage of portable electrical devices available on the world market are described, and mechanisms that can underlie anticephalgic action of neuromodulation therapy are discussed. Special attention is paid to the methods that are applied for electrostimulation of the vagus nerve and occipital nerves.
Collapse
Affiliation(s)
- A Yu Sokolov
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - O A Lyubashina
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Yu S Vaganova
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - A V Amelin
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
72
|
Hou AY, Chen AY, Yuan H, Silberstein SD. Peripheral neuromodulation for the treatment of migraine and headache: recent advances. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/bem-2019-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Noninvasive neuromodulation is a rapidly developing field that offers an attractive nonpharmacologic treatment option for headache patients. Devices that stimulate peripheral nerves (e.g., vagus nerve, trigeminal sensory nerve, somatic sensory nerve) or brain parenchyma (e.g., occipital cortex) have been developed for this purpose, with promising results in clinical trials. There are currently four US FDA-cleared devices for the treatment of migraine and/or cluster headache: Cefaly®, a trigeminal nerve stimulator; gammaCore™, a vagus nerve stimulator; sTMS mini™, a transcranial magnetic stimulator and Nerivio™, a remote electrical neurostimulator. This narrative review will provide an overview of FDA-cleared neuromodulatory devices, including their proposed mechanisms of action as well as device safety and efficacy as demonstrated in clinical trials.
Collapse
Affiliation(s)
- Angela Y Hou
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anna Y Chen
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hsiangkuo Yuan
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stephen D Silberstein
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
73
|
Tolner EA, Chen SP, Eikermann-Haerter K. Current understanding of cortical structure and function in migraine. Cephalalgia 2019; 39:1683-1699. [PMID: 30922081 PMCID: PMC6859601 DOI: 10.1177/0333102419840643] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To review and discuss the literature on the role of cortical structure and function in migraine. DISCUSSION Structural and functional findings suggest that changes in cortical morphology and function contribute to migraine susceptibility by modulating dynamic interactions across cortical and subcortical networks. The involvement of the cortex in migraine is well established for the aura phase with the underlying phenomenon of cortical spreading depolarization, while increasing evidence suggests an important role for the cortex in perception of head pain and associated sensations. As part of trigeminovascular pain and sensory processing networks, cortical dysfunction is likely to also affect initiation of attacks. CONCLUSION Morphological and functional changes identified across cortical regions are likely to contribute to initiation, cyclic recurrence and chronification of migraine. Future studies are needed to address underlying mechanisms, including interactions between cortical and subcortical regions and effects of internal (e.g. genetics, gender) and external (e.g. sensory inputs, stress) modifying factors, as well as possible clinical and therapeutic implications.
Collapse
Affiliation(s)
- Else A Tolner
- Departments of Neurology and Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Shih-Pin Chen
- Insitute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei
| | | |
Collapse
|
74
|
Soldozy S, Sharifi KA, Desai B, Giraldo D, Yeghyayan M, Liu L, Norat P, Sokolowski JD, Yağmurlu K, Park MS, Tvrdik P, Kalani MYS. Cortical Spreading Depression in the Setting of Traumatic Brain Injury. World Neurosurg 2019; 134:50-57. [PMID: 31655239 DOI: 10.1016/j.wneu.2019.10.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Cortical spreading depression (CSD) is a pathophysiologic phenomenon that describes an expanding wave of depolarization within the cortical gray matter. Originally described over 70 years ago, this spreading depression disrupts neuronal and glial ionic equilibrium, leading to increased energy demands that can cause a metabolic crisis. This results in secondary insult, further perpetuating brain injury and neuronal death. Initially not thought to be of clinical significance, the view of CSD was modified with the advent of intracranial electroencephalography, or electrocorticography. With these improved monitoring techniques, CSD has been identified as a major mechanism by which traumatic brain injury (TBI) imparts its negative sequalae. TBI is a heterogenous disease process that runs the gamut of clinical presentations. This includes concussion, epidural and subdural hematoma, diffuse axonal injury, and subarachnoid hemorrhage. Nonetheless, CSD appears to be frequently occurring among the various types of TBI, thus allowing for the potential development of targeted therapies in an otherwise ill-fated patient cohort. Although a complete understanding of the interplay between CSD and TBI has not yet been achieved, the authors recount the efforts that have been employed over the last several decades in an effort to bridge this gap. In addition, our current understanding of the role neuroimmune cells play in CSD is discussed in the context of TBI. Finally, current therapeutic strategies using CSD as a pharmacologic target are explored with respect to their clinical use in patients with TBI.
Collapse
Affiliation(s)
- Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Khadijeh A Sharifi
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Neuroscience, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bhargav Desai
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Daniel Giraldo
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michelle Yeghyayan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Lei Liu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Neuroscience, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Jennifer D Sokolowski
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Kaan Yağmurlu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Neuroscience, University of Virginia Health System, Charlottesville, Virginia, USA
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Neuroscience, University of Virginia Health System, Charlottesville, Virginia, USA.
| |
Collapse
|
75
|
Moisset X, Lanteri-Minet M, Fontaine D. Neurostimulation methods in the treatment of chronic pain. J Neural Transm (Vienna) 2019; 127:673-686. [PMID: 31637517 DOI: 10.1007/s00702-019-02092-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
The goal of this narrative review was to give an up-to-date overview of the peripheral and central neurostimulation methods that can be used to treat chronic pain. Special focus has been given to three pain conditions: neuropathic pain, nociplastic pain and primary headaches. Both non-invasive and invasive techniques are briefly presented together with their pain relief potentials. For non-invasive stimulation techniques, data concerning transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), remote electrical neuromodulation (REN) and vagus nerve stimulation (VNS) are provided. Concerning invasive stimulation techniques, occipital nerve stimulation (ONS), vagus nerve stimulation (VNS), epidural motor cortex stimulation (EMCS), spinal cord stimulation (SCS) and deep brain stimulation (DBS) are presented. The action mode of all these techniques is only partly understood but can be very different from one technique to the other. Patients' selection is still a challenge. Recent consensus-based guidelines for clinical practice are presented when available. The development of closed-loop devices could be of interest in the future, although the clinical benefit over open loop is not proven yet.
Collapse
Affiliation(s)
- X Moisset
- Service de Neurologie, Université Clermont-Auvergne, INSERM, Neuro-Dol, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| | - M Lanteri-Minet
- Pain Department, CHU Nice, FHU InovPain Côte Azur University, Nice, France
- Université Clermont-Auvergne, INSERM, Neuro-Dol, Clermont-Ferrand, France
| | - D Fontaine
- Department of Neurosurgery, Université Côte Azur University, CHU de Nice, FHU InovPain, Nice, France
| |
Collapse
|
76
|
Diener HC, Goadsby PJ, Ashina M, Al-Karagholi MAM, Sinclair A, Mitsikostas D, Magis D, Pozo-Rosich P, Irimia Sieira P, Làinez MJA, Gaul C, Silver N, Hoffmann J, Marin J, Liebler E, Ferrari MD. Non-invasive vagus nerve stimulation (nVNS) for the preventive treatment of episodic migraine: The multicentre, double-blind, randomised, sham-controlled PREMIUM trial. Cephalalgia 2019; 39:1475-1487. [PMID: 31522546 PMCID: PMC6791025 DOI: 10.1177/0333102419876920] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Non-invasive vagus nerve stimulation (nVNS; gammaCore®) has the potential to prevent migraine days in patients with migraine on the basis of mechanistic rationale and pilot clinical data. METHODS This multicentre study included a 4-week run-in period, a 12-week double-blind period of randomised treatment with nVNS or sham, and a 24-week open-label period of nVNS. Patients were to administer two 120-second stimulations bilaterally to the neck three times daily (6-8 hours apart). RESULTS Of 477 enrolled patients, 332 comprised the intent-to-treat (ITT) population. Mean reductions in migraine days per month (primary outcome) were 2.26 for nVNS (n = 165; baseline, 7.9 days) and 1.80 for sham (n = 167; baseline, 8.1 days) (p = 0.15). Results were similar across other outcomes. Upon observation of suboptimal adherence rates, post hoc analysis of patients with ≥ 67% adherence per month demonstrated significant differences between nVNS (n = 138) and sham (n = 140) for outcomes including reduction in migraine days (2.27 vs. 1.53; p = 0.043); therapeutic gains were greater in patients with aura than in those without aura. Most nVNS device-related adverse events were mild and transient, with application site discomfort being the most common. CONCLUSIONS Preventive nVNS treatment in episodic migraine was not superior to sham stimulation in the ITT population. The "sham" device inadvertently provided a level of active vagus nerve stimulation. Post hoc analysis showed significant effects of nVNS in treatment-adherent patients. Study identification and registration: PREMIUM; NCT02378844; https://clinicaltrials.gov/ct2/show/NCT02378844.
Collapse
Affiliation(s)
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Messoud Ashina
- Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexandra Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Dimos Mitsikostas
- 1st Neurology Department, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Delphine Magis
- Neurology Department and Pain Clinic, CHR East Belgium, Liège, Belgium
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Miguel JA Làinez
- Catholic University of Valencia, University Clinic Hospital, Valencia, Spain
| | - Charly Gaul
- Migraine and Headache Clinic, Königstein, Germany
| | | | - Jan Hoffmann
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Juana Marin
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Eric Liebler
- electroCore, Inc., Basking Ridge, New Jersey, USA
| | | |
Collapse
|
77
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019; 13:854. [PMID: 31447643 PMCID: PMC6697069 DOI: 10.3389/fnins.2019.00854] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipëda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | |
Collapse
|
78
|
Halker Singh RB, Ailani J, Robbins MS. Neuromodulation for the Acute and Preventive Therapy of Migraine and Cluster Headache. Headache 2019; 59 Suppl 2:33-49. [DOI: 10.1111/head.13586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Affiliation(s)
| | - Jessica Ailani
- Department of Neurology Georgetown University Washington DC USA
| | | |
Collapse
|
79
|
De Icco R, Bitetto V, Martinelli D, Allena M, Guaschino E, Bottiroli S, Liebler E, Tassorelli C, Sances G. Noninvasive peripheral vagal nerve stimulation prevents migraine aura: A case report. CEPHALALGIA REPORTS 2019. [DOI: 10.1177/2515816319855607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We describe a patient affected by migraine with visual and somatosensory aura, whose symptoms were consistently attenuated by noninvasive peripheral vagal nerve stimulation (nVNS) in multiple prospectively recorded attacks. When compared with the current standard of care, nVNS significantly reduced the duration of visual aura in all the attacks ( n = 5) and prevented the somatosensory aura in three of the five attacks. The overall duration of nVNS-treated auras was 19.0 ± 4.2 min, significantly shorter than the duration of aura in attacks treated with standard of care (103.8 ± 10.3 min). This single-case study requires confirmation in a larger sample size, but we believe that this first report is suggestive of likely efficacy given the relatively high number of treated attacks and the consistent effect of nVNS.
Collapse
Affiliation(s)
- Roberto De Icco
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Vito Bitetto
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Martinelli
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marta Allena
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Elena Guaschino
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Sara Bottiroli
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
- Faculty of Law, Giustino Fortunato University, Benevento, Italy
| | | | - Cristina Tassorelli
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Grazia Sances
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
80
|
Tajti J, Szok D, Nyári A, Vécsei L. Therapeutic strategies that act on the peripheral nervous system in primary headache disorders. Expert Rev Neurother 2019; 19:509-533. [DOI: 10.1080/14737175.2019.1615447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- János Tajti
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
81
|
Chaudhry SR, Lendvai IS, Muhammad S, Westhofen P, Kruppenbacher J, Scheef L, Boecker H, Scheele D, Hurlemann R, Kinfe TM. Inter-ictal assay of peripheral circulating inflammatory mediators in migraine patients under adjunctive cervical non-invasive vagus nerve stimulation (nVNS): A proof-of-concept study. Brain Stimul 2019; 12:643-651. [DOI: 10.1016/j.brs.2019.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
|
82
|
Boström A, Scheele D, Stoffel-Wagner B, Hönig F, Chaudhry SR, Muhammad S, Hurlemann R, Krauss JK, Lendvai IS, Chakravarthy KV, Kinfe TM. Saliva molecular inflammatory profiling in female migraine patients responsive to adjunctive cervical non-invasive vagus nerve stimulation: the MOXY Study. J Transl Med 2019; 17:53. [PMID: 30795781 PMCID: PMC6387501 DOI: 10.1186/s12967-019-1801-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Rising evidence indicate that oxytocin and IL-1β impact trigemino-nociceptive signaling. Current perspectives on migraine physiopathology emphasize a cytokine bias towards a pro-inflammatory status. The anti-nociceptive impact of oxytocin has been reported in preclinical and human trials. Cervical non-invasive vagus nerve stimulation (nVNS) emerges as an add-on treatment for the preventive and abortive use in migraine. Less is known about its potential to modulate saliva inflammatory signaling in migraine patients. The rationale was to perform inter-ictal saliva measures of oxytocin and IL-1ß along with headache assessment in migraine patients with 10 weeks adjunctive nVNS compared to healthy controls. Methods 12 migraineurs and 12 suitably matched healthy control were studied with inter-ictal saliva assay of pro- and anti-neuroinflammatory cytokines using enzyme-linked immuno assay techniques along with assessment of headache severity/frequency and associated functional capacity at baseline and after 10 weeks adjunctive cervical nVNS. Results nVNS significantly reduced headache severity (VAS), frequency (headache days and total number of attacks) and significantly improved sleep quality compared to baseline (p < 0.01). Inter-ictal saliva oxytocin and IL-1β were significantly elevated pre- as well as post-nVNS compared to healthy controls (p < 0.01) and similarly showed changes that may reflect the observed clinical effects. Conclusions Our results add to accumulating evidence for a therapeutic efficacy of adjunct cervical non-invasive vagus nerve stimulation in migraine patients. This study failed to provide an evidence-derived conclusion addressed to the predictive value and usefulness of saliva assays due to its uncontrolled study design. However, saliva screening of mediators associated with trigemino-nociceptive traffic represents a novel approach, thus deserve future targeted headache research. Trial registration This study was indexed at the German Register for Clinical Trials (DRKS No. 00011089) registered on 21.09.2016
Collapse
Affiliation(s)
- Azize Boström
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Dirk Scheele
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Frigga Hönig
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Shafqat R Chaudhry
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Rene Hurlemann
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany
| | - Ilana S Lendvai
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Krishnan V Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego, San Diego, CA, USA
| | - Thomas M Kinfe
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany. .,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany. .,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany.
| |
Collapse
|
83
|
Vila-Pueyo M, Strother LC, Kefel M, Goadsby PJ, Holland PR. Divergent influences of the locus coeruleus on migraine pathophysiology. Pain 2019; 160:385-394. [PMID: 30371556 PMCID: PMC6343946 DOI: 10.1097/j.pain.0000000000001421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Migraine is a common disabling neurological condition that is associated with several premonitory symptoms that can occur days before the headache onset. The most commonly reported premonitory symptom is marked fatigue that has been shown to be highly predictive of an ensuing migraine attack. The locus coeruleus (LC) is a key nucleus involved in arousal that has also been shown to impact pain processing. It provides one of the major sources of noradrenaline to the dorsal horn of the spinal cord and neocortex. Given the clinical association between migraine, sleep-wake regulation, and fatigue, we sought to determine whether LC modulation could impact migraine-related phenotypes in several validated preclinical models of migraine. To determine its role in migraine-related pain, we recorded dural nociceptive-evoked responses of neurons in the trigeminocervical complex, which receives trigeminal primary afferents from the durovascular complex. In addition, we explored the susceptibility to cortical spreading depression initiation, the presumed underlying phenomenon of migraine aura. Our experiments reveal a potent role for LC disruption in the differential modulation of migraine-related phenotypes, inhibiting dural-evoked activation of wide dynamic neurons in the trigeminocervical complex while increasing cortical spreading depression susceptibility. This highlights the potential divergent impact of LC disruption in migraine physiology, which may help explain the complex interactions between dysfunctional arousal mechanisms and migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lauren C Strother
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Malak Kefel
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust, King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
84
|
Meneses G, Cárdenas G, Espinosa A, Rassy D, Pérez-Osorio IN, Bárcena B, Fleury A, Besedovsky H, Fragoso G, Sciutto E. Sepsis: developing new alternatives to reduce neuroinflammation and attenuate brain injury. Ann N Y Acad Sci 2018; 1437:43-56. [DOI: 10.1111/nyas.13985] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Gabriela Meneses
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Graciela Cárdenas
- Instituto Nacional de Neurología y Neurocirugía; SSA; Mexico City Mexico
| | - Alejandro Espinosa
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Dunia Rassy
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Ivan Nicolás Pérez-Osorio
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Brandon Bárcena
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Agnes Fleury
- Instituto Nacional de Neurología y Neurocirugía; SSA; Mexico City Mexico
| | - Hugo Besedovsky
- The Institute of Physiology and Pathophysiology, Medical Faculty; Philipps University; Marburg Germany
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| |
Collapse
|
85
|
Grazzi L, Tassorelli C, de Tommaso M, Pierangeli G, Martelletti P, Rainero I, Geppetti P, Ambrosini A, Sarchielli P, Liebler E, Barbanti P. Practical and clinical utility of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine: a post hoc analysis of the randomized, sham-controlled, double-blind PRESTO trial. J Headache Pain 2018; 19:98. [PMID: 30340460 PMCID: PMC6742918 DOI: 10.1186/s10194-018-0928-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/03/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The PRESTO study of non-invasive vagus nerve stimulation (nVNS; gammaCore®) featured key primary and secondary end points recommended by the International Headache Society to provide Class I evidence that for patients with an episodic migraine, nVNS significantly increases the probability of having mild pain or being pain-free 2 h post stimulation. Here, we examined additional data from PRESTO to provide further insights into the practical utility of nVNS by evaluating its ability to consistently deliver clinically meaningful improvements in pain intensity while reducing the need for rescue medication. METHODS Patients recorded pain intensity for treated migraine attacks on a 4-point scale. Data were examined to compare nVNS and sham with regard to the percentage of patients who benefited by at least 1 point in pain intensity. We also assessed the percentage of attacks that required rescue medication and pain-free rates stratified by pain intensity at treatment initiation. RESULTS A significantly higher percentage of patients who used acute nVNS treatment (n = 120) vs sham (n = 123) reported a ≥ 1-point decrease in pain intensity at 30 min (nVNS, 32.2%; sham, 18.5%; P = 0.020), 60 min (nVNS, 38.8%; sham, 24.0%; P = 0.017), and 120 min (nVNS, 46.8%; sham, 26.2%; P = 0.002) after the first attack. Similar significant results were seen when assessing the benefit in all attacks. The proportion of patients who did not require rescue medication was significantly higher with nVNS than with sham for the first attack (nVNS, 59.3%; sham, 41.9%; P = 0.013) and all attacks (nVNS, 52.3%; sham, 37.3%; P = 0.008). When initial pain intensity was mild, the percentage of patients with no pain after treatment was significantly higher with nVNS than with sham at 60 min (all attacks: nVNS, 37.0%; sham, 21.2%; P = 0.025) and 120 min (first attack: nVNS, 50.0%; sham, 25.0%; P = 0.018; all attacks: nVNS, 46.7%; sham, 30.1%; P = 0.037). CONCLUSIONS This post hoc analysis demonstrated that acute nVNS treatment quickly and consistently reduced pain intensity while decreasing rescue medication use. These clinical benefits provide guidance in the optimal use of nVNS in everyday practice, which can potentially reduce use of acute pharmacologic medications and their associated adverse events. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02686034 .
Collapse
Affiliation(s)
- Licia Grazzi
- Neuroalgology Unit, Carlo Besta Neurological Institute and Foundation, Milan, Italy
- Department of Fondazione IRCCS Istituto Neurologico C. Besta, U.O. Neurologia III – Cefalee e Neuroalgologia, Via Celoria 11, 20133 Milan, Italy
| | - Cristina Tassorelli
- Headache Science Centre, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marina de Tommaso
- Neurophysiology and Pain Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giulia Pierangeli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | | | | | - Paola Sarchielli
- Neurologic Clinic, Santa Maria della Misericordia Hospital, Perugia, Italy
| | | | - Piero Barbanti
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
86
|
Vecchio E, Bassez I, Ricci K, Tassorelli C, Liebler E, de Tommaso M. Effect of Non-invasive Vagus Nerve Stimulation on Resting-State Electroencephalography and Laser-Evoked Potentials in Migraine Patients: Mechanistic Insights. Front Hum Neurosci 2018; 12:366. [PMID: 30271335 PMCID: PMC6146235 DOI: 10.3389/fnhum.2018.00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
A recent multicenter trial provided Class I evidence that for patients with an episodic migraine, non-invasive vagus nerve stimulation (nVNS) significantly increases the probability of having mild pain or being pain-free 2 h post-stimulation. Here we aimed to investigate the potential effect of nVNS in the modulation of spontaneous and pain related bioelectrical activity in a subgroup of migraine patients enrolled in the PRESTO trial by using resting-state electroencephalography and trigeminal laser-evoked potentials (LEPs). LEPs were recorded for 27 migraine patients who received active or sham nVNS over the cervical vagus nerve. We measured power values for frequencies between 1–100 Hz in a resting-state condition and the latency and amplitude of N1, N2, and P2 components of LEPs in a basal condition during and after active or sham vagus nerve stimulation (T0, T1, T2). The P2 evoked by the right and the left trigeminal branch was smaller during active nVNS. The sham device also attenuated the P2 amplitude evoked by the left trigeminal branch at T1 and T2, but this attenuation did not reach significance. No changes were observed for N1 amplitude, N1, N2, P2 latency, or pain rating. nVNS induced an increase of EEG power in both slow and fast rhythms, but this effect was not significant as compared to the sham device. These findings suggest that nVNS acts on the cortical areas that are responsible for trigeminal pain control and pave the ground for future studies aimed at confirming the possible correlations with clinical outcomes, including the effect on symptoms that are directly correlated with trigeminal pain processing and modulation.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Polyclinic General Hospital, Bari Aldo Moro University, Bari, Italy
| | - Iege Bassez
- Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Polyclinic General Hospital, Bari Aldo Moro University, Bari, Italy
| | - Cristina Tassorelli
- Headache Science Center, C. Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Eric Liebler
- electroCore LLC, Basking Ridge, NJ, United States
| | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Polyclinic General Hospital, Bari Aldo Moro University, Bari, Italy
| |
Collapse
|
87
|
Lendvai IS, Maier A, Scheele D, Hurlemann R, Kinfe TM. Spotlight on cervical vagus nerve stimulation for the treatment of primary headache disorders: a review. J Pain Res 2018; 11:1613-1625. [PMID: 30214271 PMCID: PMC6118287 DOI: 10.2147/jpr.s129202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objectives Cervical noninvasive vagus nerve stimulation (nVNS) emerged as an adjunctive neuromodulation approach for primary headache disorders with limited responsiveness to pharmacologic and behavioral treatment. This narrative review evaluates the safety and efficacy of invasive and noninvasive peripheral nerve stimulation of the cervical branch of the vagal nerve (afferent properties) for primary headache disorders (episodic/chronic migraine [EM/CM] and cluster headache [ECH/CCH]) and provides a brief summary of the preclinical data on the possible mechanism of action of cervical vagus nerve stimulation (VNS) and trigemino-nociceptive head pain transmission. Materials and methods A systematic search of published data was performed in PubMed for randomized controlled trials (RCTs) and prospective cohort clinical studies assessing the efficacy/safety and cost-effectiveness of cervical VNS in primary headache disorders and related preclinical studies. Results Three RCTs were identified for ECH/CCH (ACT-1, ACT-2 and PREVA), one RCT for migraine (EVENT) and several prospective cohort studies and retrospective analyses for both headache disorders. In ACT-1, a significantly higher response rate, a higher pain-free rate and a decrease in mean attack duration were found in nVNS-treated ECH/CCH patients compared to sham stimulation. ACT-2 confirmed these findings (e.g., significantly higher pain-free attacks, pain severity decline and increased responder-rate [defined as ≥50% reduction]). The PREVA study demonstrated the superiority of adjunctive nVNS to standard care alone and observed a significantly higher attack reduction (p=0.02) and responder rate (defined as ≥50% reduction). For CM, the EVENT study assessed a significantly higher frequency of decline in the open-label phase. Mostly transient mild/moderate adverse events were recorded, and no severe device-related adverse events occurred. Conclusion Cervical nVNS represents a novel, safe and efficient adjunctive treatment option for primary headache disorders. In particular, preliminary observations suggest enhanced nVNS responsiveness in favor of episodic subtypes (EM and ECH). However, preclinical studies are urgently warranted to dissect the mechanism of action.
Collapse
Affiliation(s)
- Ilana S Lendvai
- Department of Psychiatry, Rheinische Friedrich-Wilhelms University, Bonn, Germany, .,Department of Psychiatry and Medical Psychology, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany,
| | - Ayline Maier
- Department of Psychiatry, Rheinische Friedrich-Wilhelms University, Bonn, Germany, .,Department of Psychiatry and Medical Psychology, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany,
| | - Dirk Scheele
- Department of Psychiatry, Rheinische Friedrich-Wilhelms University, Bonn, Germany, .,Department of Psychiatry and Medical Psychology, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany,
| | - Rene Hurlemann
- Department of Psychiatry, Rheinische Friedrich-Wilhelms University, Bonn, Germany, .,Department of Psychiatry and Medical Psychology, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany,
| | - Thomas M Kinfe
- Department of Psychiatry, Rheinische Friedrich-Wilhelms University, Bonn, Germany, .,Department of Psychiatry and Medical Psychology, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany,
| |
Collapse
|
88
|
Mertens A, Raedt R, Gadeyne S, Carrette E, Boon P, Vonck K. Recent advances in devices for vagus nerve stimulation. Expert Rev Med Devices 2018; 15:527-539. [DOI: 10.1080/17434440.2018.1507732] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ann Mertens
- Department of Neurology, Ghent University Hospital, Gent, Belgium
| | - Robrecht Raedt
- Department of Neurology, Ghent University Hospital, Gent, Belgium
| | - Stefanie Gadeyne
- Department of Neurology, Ghent University Hospital, Gent, Belgium
| | - Evelien Carrette
- Department of Neurology, Ghent University Hospital, Gent, Belgium
| | - Paul Boon
- Department of Neurology, Ghent University Hospital, Gent, Belgium
| | - Kristl Vonck
- Department of Neurology, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to evaluate and describe recent and emerging treatment options for episodic migraine. RECENT FINDINGS Recent advances have been made in better understanding the pathophysiology of migraine, which has led to further investigation of potential new pharmacologic and non-pharmacologic treatment options. A number of new medications are emerging for the acute and preventive treatment of migraine, including CGRP monoclonal antibodies, CGRP receptor antagonists, serotonin 5-HT1F agonists, and PACAP receptor monoclonal antibodies. Additionally, newer studies on existing non-invasive neuromodulation devices including transcranial magnetic stimulation, supraorbital transcutaneous nerve stimulation, and transcutaneous vagus nerve stimulation have recently received FDA approval for use in migraine. Neuromodulation devices including percutaneous mastoid electrical stimulation, non-painful remote electrical stimulation, and caloric vestibular stimulation are undergoing further investigation and have shown promising results thus far. These new developments are expected to contribute to better treatment and decreased disability in migraine.
Collapse
Affiliation(s)
- Kate W Grimsrud
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | | |
Collapse
|
90
|
Vila-Pueyo M, Hoffmann J, Romero-Reyes M, Akerman S. Brain structure and function related to headache: Brainstem structure and function in headache. Cephalalgia 2018; 39:1635-1660. [PMID: 29969040 DOI: 10.1177/0333102418784698] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To review and discuss the literature relevant to the role of brainstem structure and function in headache. BACKGROUND Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. REVIEW FOCUS This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms of primary headaches, especially migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jan Hoffmann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
91
|
Klass A, Sánchez-Porras R, Santos E. Systematic review of the pharmacological agents that have been tested against spreading depolarizations. J Cereb Blood Flow Metab 2018; 38:1149-1179. [PMID: 29673289 PMCID: PMC6434447 DOI: 10.1177/0271678x18771440] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spreading depolarization (SD) occurs alongside brain injuries and it can lead to neuronal damage. Therefore, pharmacological modulation of SD can constitute a therapeutic approach to reduce its detrimental effects and to improve the clinical outcome of patients. The major objective of this article was to produce a systematic review of all the drugs that have been tested against SD. Of the substances that have been examined, most have been shown to modulate certain SD characteristics. Only a few have succeeded in significantly inhibiting SD. We present a variety of strategies that have been proposed to overcome the notorious harmfulness and pharmacoresistance of SD. Information on clinically used anesthetic, sedative, hypnotic agents, anti-migraine drugs, anticonvulsants and various other substances have been compiled and reviewed with respect to the efficacy against SD, in order to answer the question of whether a drug at safe doses could be of therapeutic use against SD in humans.
Collapse
Affiliation(s)
- Anna Klass
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| | | | - Edgar Santos
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
92
|
Yang Y, Yang LY, Orban L, Cuylear D, Thompson J, Simon B, Yang Y. Non-invasive vagus nerve stimulation reduces blood-brain barrier disruption in a rat model of ischemic stroke. Brain Stimul 2018; 11:689-698. [PMID: 29496430 PMCID: PMC6019567 DOI: 10.1016/j.brs.2018.01.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/19/2017] [Accepted: 01/31/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) significantly reduces infarct volume in rat models of cerebral ischemia, but the mechanism of this protective effect remains open. HYPOTHESIS This study tested the hypothesis that non-invasive VNS (nVNS), during transient middle cerebral artery occlusion (MCAO), protects the blood-brain barrier (BBB), leading to reduced infarct size in ischemic brain. METHODS Spontaneous hypertensive rats (SHRs) were subjected to a 90 min MCAO. nVNS treated rats received 5 stimulations (duration: 2 min; every 10 min) on the skin overlying the cervical vagus nerve in the neck beginning 30 min after MCAO onset. Control rats received the same stimulations on the quadriceps femoris muscle. Twenty-four hours after MCAO onset, MRI and immunohistochemistry (IHC) were performed for analyses of infarct size and BBB leakage. RESULTS Compared with the control group, anatomic MRI T2-weighted images showed significantly smaller infarct sizes in the nVNS group. Dynamic contrast-enhanced (DCE)-MRI showed a significantly decreased BBB transfer rate (Ki map) in the lesion area in the nVNS group, which was spatially correlated with the attenuation of the infarct size. Furthermore, significantly lower serum IgG leakage, visualized by IHC, was seen in the ischemic hemisphere in nVNS treated rats. nVNS also protected vascular tight junction proteins from disruption in microvessels, and reduced expression of matrix metalloproteinases-2/9 in reactive astrocytes surrounding the compromised vessels in the ischemic hemispheres. CONCLUSION Our data suggest that the neuroprotective role of a series of nVNS administrations during MCA occlusion, spatially correlates with protection of BBB integrity from damage and reduction of infarct extent induced by ischemic stroke.
Collapse
Affiliation(s)
- Yirong Yang
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Lisa Y Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Lilla Orban
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Darnell Cuylear
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jeffrey Thompson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Bruce Simon
- ElectroCore LLC, Basking Ridge, NJ 07920, USA
| | - Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW Spreading depolarizations are unique in being discrete pathologic entities that are well characterized experimentally and also occur commonly in patients with substantial acute brain injury. Here, we review essential concepts in depolarization monitoring, highlighting its clinical significance, interpretation, and future potential. RECENT FINDINGS Cortical lesion development in diverse animal models is mediated by tissue waves of mass spreading depolarization that cause the toxic loss of ion homeostasis and limit energy substrate supply through associated vasoconstriction. The signatures of such deterioration are observed in electrocorticographic recordings from perilesional cortex of patients with acute stroke or brain trauma. Experimental work suggests that depolarizations are triggered by energy supply-demand mismatch in focal hotspots of the injury penumbra, and depolarizations are usually observed clinically when other monitoring variables are within recommended ranges. These results suggest that depolarizations are a sensitive measure of relative ischemia and ongoing secondary injury, and may serve as a clinical guide for personalized, mechanistically targeted therapy. Both existing and future candidate therapies offer hope to limit depolarization recurrence. SUMMARY Electrocorticographic monitoring of spreading depolarizations in patients with acute brain injury provides a sensitive measure of relative energy shortage in focal, vulnerable brains regions and indicates ongoing secondary damage. Depolarization monitoring holds potential for targeted clinical trial design and implementation of precision medicine approaches to acute brain injury therapy.
Collapse
|
94
|
Tao H, Wang T, Dong X, Guo Q, Xu H, Wan Q. Effectiveness of transcutaneous electrical nerve stimulation for the treatment of migraine: a meta-analysis of randomized controlled trials. J Headache Pain 2018; 19:42. [PMID: 29845369 PMCID: PMC5975046 DOI: 10.1186/s10194-018-0868-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/14/2018] [Indexed: 11/12/2022] Open
Abstract
Background Migraine is now ranked as the second most disabling disorder worldwide reported by the Global Burden of Disease Study 2016. As a noninvasive neurostimulation technique, transcutaneous electrical nerve stimulation(TENS) has been applied as an abortive and prophylactic treatment for migraine recently. We conduct this meta-analysis to analyze the effectiveness and safety of TENS on migraineurs. Methods We searched Medline (via PubMed), Embase, the Cochrane Library and the Cochrane Central Register of Controlled Trials to identify randomized controlled trials, which compared the effect of TENS with sham TENS on migraineurs. Data were extracted and methodological quality assessed independently by two reviewers. Change in the number of monthly headache days, responder rate, painkiller intake, adverse events and satisfaction were extracted as outcome. Results Four studies were included in the quantitative analysis with 161 migraine patients in real TENS group and 115 in sham TENS group. We found significant reduction of monthly headache days (SMD: -0.48; 95% CI: -0.73 to − 0.23; P < 0.001) and painkiller intake (SMD: -0.78; 95% CI: -1.14 to − 0.42; P < 0.001). Responder rate (RR: 4.05; 95% CI: 2.06 to 7.97; P < 0.001) and satisfaction (RR: 1.85; 95% CI: 1.31 to 2,61; P < 0.001) were significantly increased compared with sham TENS. Conclusion This meta-analysis suggests that TENS may serve as an effective and well-tolerated alternative for migraineurs. However, low quality of evidence prevents us from reaching definitive conclusions. Future well-designed RCTs are necessary to confirm and update the findings of this analysis. Systematic review registration Our PROSPERO protocol registration number: CRD42018085984. Registered 30 January 2018. Electronic supplementary material The online version of this article (10.1186/s10194-018-0868-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huimin Tao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Teng Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xin Dong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Qi Guo
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Huan Xu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
95
|
Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 2018; 158:1461-1472. [PMID: 28541256 DOI: 10.1097/j.pain.0000000000000930] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Migraine pathophysiology includes altered brainstem excitability, and recent neuromodulatory approaches aimed at controlling migraine episodes have targeted key brainstem relay and modulatory nuclei. In this study, we evaluated the impact of respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel neuromodulatory intervention based on an existing transcutaneous vagus nerve stimulation approach, in the modulation of brainstem activity and connectivity in migraine patients. We applied 3T-functional magnetic resonance imaging with improved in-plane spatial resolution (2.62 × 2.62 mm) in episodic migraine (interictal) and age- and sex-matched healthy controls to evaluate brain response to RAVANS (gated to either inhalation or exhalation) and sham stimulation. We further investigated RAVANS modulation of tactile trigeminal sensory afference response in the brainstem using air-puff stimulation directed to the forehead during functional magnetic resonance imaging. Compared with sham and inhalatory-gated RAVANS (iRAVANS), exhalatory-gated RAVANS (eRAVANS) activated an ipsilateral pontomedullary region consistent with nucleus tractus solitarii (NTS). During eRAVANS, NTS connectivity was increased to anterior insula and anterior midcingulate cortex, compared with both sham and iRAVANS, in migraine patients. Increased connectivity was inversely correlated with relative time to the next migraine attack, suggesting clinical relevance to this change in connectivity. Poststimulation effects were also noted immediately after eRAVANS, as we found increased activation in putative pontine serotonergic (ie, nucleus raphe centralis) and noradrenergic (ie, locus coeruleus) nuclei in response to trigeminal sensory afference. Regulation of activity and connectivity of brainstem and cortical regions involved in serotonergic and noradrenergic regulation and pain modulation may constitute an underlying mechanism supporting beneficial clinical outcomes for eRAVANS applied for episodic migraine.
Collapse
|
96
|
Gurel NZ, Shandhi MMH, Bremner JD, Vaccarino V, Ladd SL, Shallenberger L, Shah A, Inan OT. Toward Closed-Loop Transcutaneous Vagus Nerve Stimulation using Peripheral Cardiovascular Physiological Biomarkers: A Proof-of-Concept Study. ... INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS. INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS 2018; 2018:78-81. [PMID: 37113478 PMCID: PMC10132787 DOI: 10.1109/bsn.2018.8329663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Transcutaneous vagus nerve stimulation (t-VNS) is a promising technology for modulating brain function and possibly treating disorders of the central nervous system. While handheld devices are available for t-VNS, stimulation efficacy can only be quantified using expensive imaging or blood biomarker analyses. Additionally, the parameters and "dosage" recommendations for t-VNS are typically fixed, as there are limited biomarkers that can assess downstream effects of the stimulation outside of clinical settings. In this proof-of-concept study, we evaluated non-invasive peripheral cardiovascular measurements as physiological biomarkers of t-VNS efficacy. Specifically, we hypothesized two physiological biomarkers: (1) the pre-ejection period (PEP) of the heart - a parameter closely linked to sympathetic tone - and (2) the amplitude of peripheral photoplethysmogram (PPG) waveforms - representing changes in vasomotor tone and thus parasympathetic / sympathetic activation. A total of six healthy human subjects participated in the multi-day study, half each undergoing active or sham t-VNS stimulus. The three subjects receiving t-VNS had no decrease in PEP and an increase in PPG amplitude following t-VNS, while the subjects receiving sham stimulus had a decrease in PEP and no change in PPG amplitude. When combined with mental stress (a traumatic script being read back to the subjects), the group with t-VNS had no decrease in PEP and only a slight decrease in PPG amplitude following stimulus, while the group receiving sham stimulus had a decrease in PEP and also a slight decrease in PPG amplitude. These studies suggest that PEP and PPG amplitude measures may provide non-invasive physiological biomarkers of t-VNS efficacy, including in the presence of mental stress.
Collapse
Affiliation(s)
- Nil Z Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Md Mobashir H Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - J Douglas Bremner
- Department of Radiology, Emory University School of Medicine, Atlanta, GA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA, 30033
| | - Viola Vaccarino
- Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Stacy L Ladd
- Department of Radiology, Emory University School of Medicine, Atlanta, GA
| | | | - Amit Shah
- Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
97
|
Grazzi L, Sansone E, Rizzoli P. A Short Review of the Non-invasive Transcutaneous Pericranial Electrical Stimulation Techniques and their Application in Headache. Curr Pain Headache Rep 2018; 22:4. [PMID: 29350303 DOI: 10.1007/s11916-018-0654-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW In this short review, the most common non-invasive neuromodulatory techniques will be described, along with their advantages and disadvantages and their application in headache. Available preventive treatments can be unhelpful or may have unpleasant side effects; moreover, the rate of response to preventive drugs does not exceed 50%, lower in chronic migraine; alternative options would be welcome. Though the concept of neuromodulation was originally developed with invasive methods, newer non-invasive techniques are appearing. RECENT FINDINGS The novel neuromodulatory techniques have been developed with encouraging results: compared with traditional pharmacotherapy, advantages of non-invasive neuromodulation include reduced incidence of adverse effects, improved adherence, and safety and ease of use. The results are encouraging for acute or preventive treatment of different kinds of headache. A variety of neuromodulatory approaches is expanding fastly and has opened new possibilities for treatment of patients suffering from many forms of headache, especially those who have failed traditional pharmacotherapy. The non-invasive treatments can be seen as supplementing traditional management in refractory patients. Current study results are encouraging but preliminary and larger and more rigorous trials are needed to clarify benefit and mode of action.
Collapse
Affiliation(s)
- Licia Grazzi
- 3rd Neurology Unit, Neuroalgology, Fondazione I.R.C.C.S. Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy.
| | - Emanuela Sansone
- 3rd Neurology Unit, Neuroalgology, Fondazione I.R.C.C.S. Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Paul Rizzoli
- John Graham Headache Centre/Faulkner Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
98
|
Errico J. The Role of Vagus Nerve Stimulation in the Treatment of Central and Peripheral Pain Disorders and Related Comorbid Somatoform Conditions. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
99
|
Kaczmarczyk R, Tejera D, Simon BJ, Heneka MT. Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease. J Neurochem 2017; 146:76-85. [PMID: 29266221 DOI: 10.1111/jnc.14284] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 01/04/2023]
Abstract
Chronically activated microglia contribute to the development of neurodegenerative diseases such as Alzheimer's disease (AD) by the release of pro-inflammatory mediators that compromise neuronal function and structure. Modulating microglia functions could be instrumental to interfere with disease pathogenesis. Previous studies have shown anti-inflammatory effects of acetylcholine (ACh) or norepinephrine (NE), which mainly activates the β-receptors on microglial cells. Non-invasive vagus nerve stimulation (nVNS) is used in treatment of drug-resistant depression, which is a risk factor for developing AD. The vagus nerve projects to the brainstem's locus coeruleus from which noradrenergic fibers reach to the Nucleus Basalis of Meynert (NBM) and widely throughout the brain. Pilot studies showed first signs of cognitive-enhancing effects of nVNS in AD patients. In this study, the effects of nVNS on mouse microglia cell morphology were analyzed over a period of 280 min by 2-photon laser scanning in vivo microscopy. Total branch length, average branch order and number of branches, which are commonly used indicators for the microglial activation state were determined and compared between young and old wild-type and amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice. Overall, these experiments show strong morphological changes in microglia, from a neurodestructive to a neuroprotective phenotype, following a brief nVNS in aged animals, especially in APP/PS1 animals, whereas microglia from young animals were morphologically unaffected.
Collapse
Affiliation(s)
- Robert Kaczmarczyk
- Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Dario Tejera
- Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | | | - Michael T Heneka
- Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|
100
|
Hawkins JL, Cornelison LE, Blankenship BA, Durham PL. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine. Pain Rep 2017; 2:e628. [PMID: 29392242 PMCID: PMC5741328 DOI: 10.1097/pr9.0000000000000628] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Although neck muscle tension is considered a risk factor for migraine, pungent odors can act as a trigger to initiate an attack in sensitized individuals. Although noninvasive vagus nerve stimulation (nVNS) is now an approved treatment for chronic migraine, how it functions to inhibit trigeminal nociception in an episodic migraine model is not known. OBJECTIVES The objectives of this study were to determine if nVNS could inhibit trigeminal nociception in a novel model of episodic migraine and investigate changes in the expression of proteins implicated in peripheral and central sensitization. METHODS Sprague-Dawley male rats were injected with an inflammatory agent in the trapezius muscle before exposure to pungent volatile compounds, which was used to initiate trigeminal nociceptor activation. The vagus nerve was stimulated transdermally by a 1-ms pulse of 5 kHz sine waves, repeated at 25 Hz for 2 minutes. Nocifensive head withdrawal response to von Frey filaments was determined and immunoreactive protein levels in the spinal cord and trigeminal ganglion (TG) were investigated. RESULTS Exposure to the pungent odor significantly increased the number of nocifensive withdrawals in response to mechanical stimulation of sensitized TG neurons mediated by neck muscle inflammation. Noninvasive vagus nerve stimulation inhibited nociception and repressed elevated levels of P-ERK in TG, Iba1 in microglia, and GFAP in astrocytes from sensitized animals exposed to the pungent odor. CONCLUSION Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine.
Collapse
|