51
|
Li JN, Sheets PL. Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala. Pain 2020; 161:166-176. [PMID: 31479066 PMCID: PMC6940027 DOI: 10.1097/j.pain.0000000000001691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022]
Abstract
Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.
Collapse
Affiliation(s)
- Jun-Nan Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick L. Sheets
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
52
|
Functional connectivity of the amygdala is linked to individual differences in emotional pain facilitation. Pain 2019; 161:300-307. [DOI: 10.1097/j.pain.0000000000001714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
53
|
Jarrin S, Finn DP. Optogenetics and its application in pain and anxiety research. Neurosci Biobehav Rev 2019; 105:200-211. [DOI: 10.1016/j.neubiorev.2019.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
|
54
|
|
55
|
Arimura D, Shinohara K, Takahashi Y, Sugimura YK, Sugimoto M, Tsurugizawa T, Marumo K, Kato F. Primary Role of the Amygdala in Spontaneous Inflammatory Pain- Associated Activation of Pain Networks - A Chemogenetic Manganese-Enhanced MRI Approach. Front Neural Circuits 2019; 13:58. [PMID: 31632244 PMCID: PMC6779784 DOI: 10.3389/fncir.2019.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a major health problem, affecting 10–30% of the population in developed countries. While chronic pain is defined as “a persistent complaint of pain lasting for more than the usual period for recovery,” recently accumulated lines of evidence based on human brain imaging have revealed that chronic pain is not simply a sustained state of nociception, but rather an allostatic state established through gradually progressing plastic changes in the central nervous system. To visualize the brain activity associated with spontaneously occurring pain during the shift from acute to chronic pain under anesthetic-free conditions, we used manganese-enhanced magnetic resonance imaging (MEMRI) with a 9.4-T scanner to visualize neural activity-dependent accumulation of manganese in the brains of mice with hind paw inflammation. Time-differential analysis between 2- and 6-h after formalin injection to the left hind paw revealed a significantly increased MEMRI signal in various brain areas, including the right insular cortex, right nucleus accumbens, right globus pallidus, bilateral caudate putamen, right primary/secondary somatosensory cortex, bilateral thalamus, right amygdala, bilateral substantial nigra, and left ventral tegmental area. To analyze the role of the right amygdala in these post-formalin MEMRI signals, we repeatedly inhibited right amygdala neurons during this 2–6-h period using the “designer receptors exclusively activated by designer drugs” (DREADD) technique. Pharmacological activation of inhibitory DREADDs expressed in the right amygdala significantly attenuated MEMRI signals in the bilateral infralimbic cortex, bilateral nucleus accumbens, bilateral caudate putamen, right globus pallidus, bilateral ventral tegmental area, and bilateral substantia nigra, suggesting that the inflammatory pain-associated activation of these structures depends on the activity of the right amygdala and DREADD-expressing adjacent structures. In summary, the combined use of DREADD and MEMRI is a promising approach for revealing regions associated with spontaneous pain-associated brain activities and their causal relationships.
Collapse
Affiliation(s)
- Daigo Arimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Kei Shinohara
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yae K Sugimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Sugimoto
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan.,NeuroSpin, CEA-Saclay, Gif-sur-Yvette, France
| | - Keishi Marumo
- Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
56
|
Touj S, Tokunaga R, Al Aïn S, Bronchti G, Piché M. Pain Hypersensitivity is Associated with Increased Amygdala Volume and c-Fos Immunoreactivity in Anophthalmic Mice. Neuroscience 2019; 418:37-49. [PMID: 31472214 DOI: 10.1016/j.neuroscience.2019.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
It is well established that early blindness results in brain plasticity and behavioral changes in both humans and animals. However, only a few studies have examined the effects of blindness on pain perception. In these studies, pain hypersensitivity was reported in early, but not late, blind humans. The underlying mechanisms remain unclear, but considering its key role in pain perception and modulation, the amygdala may contribute to this pain hypersensitivity. The first aim of this study was to develop an animal model of early blindness to examine the effects of blindness on pain perception. A mouse cross was therefore developed (ZRDBA mice), in which half of the animals are born sighted and half are born anophthalmic, allowing comparisons between blind and sighted mice with the same genetic background. The second aim of the present study was to examine mechanical and thermal pain thresholds as well as pain behaviors and pain-related c-Fos immunoreactivity induced by the formalin test in the amygdalas of blind and sighted mice. Group differences in amygdala volume were also assessed histologically. Blind mice exhibited lower mechanical and thermal pain thresholds and more pain behaviors during the acute phase of the formalin test, compared with sighted mice. Moreover, pain hypersensitivity during the formalin test was associated with increased c-Fos immunoreactivity in the amygdala. Furthermore, amygdala volume was larger bilaterally in blind compared with sighted mice. These results indicate that congenitally blind mice show pain hypersensitivity like early blind individuals and suggest that this is due in part to plasticity in the amygdala.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Ryota Tokunaga
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7.
| |
Collapse
|
57
|
Pain-Associated Neural Plasticity in the Parabrachial to Central Amygdala Circuit : Pain Changes the Brain, and the Brain Changes the Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1099:157-166. [PMID: 30306523 DOI: 10.1007/978-981-13-1756-9_14] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In addition to the canonical spino-thalamo-cortical pathway, lines of recently accumulated anatomical and physiological evidence suggest that projections originating in nociception-specific neurons in lamina I of the dorsal horn or the spinal nucleus of the trigeminal nerve to the lateral parabrachial nucleus (LPB) and then to the central amygdala (CeA) play essential roles in the nociception-emotion link and its tightening in chronic pain. With recent advances in the artificial manipulation of central neuronal activity, such as those with optogenetics, it is now possible to address many unanswered questions regarding the molecular and cellular mechanisms underlying the plastic changes in this pathway and their role in the pain chronification process.
Collapse
|
58
|
Prospective administration of anti-nerve growth factor treatment effectively suppresses functional connectivity alterations after cancer-induced bone pain in mice. Pain 2019; 160:151-159. [PMID: 30161041 DOI: 10.1097/j.pain.0000000000001388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancer-induced bone pain is abundant among advanced-stage cancer patients and arises from a primary tumor in the bone or skeletal metastasis of common cancer types such as breast, lung, or prostate cancer. Recently, antibodies targeting nerve growth factor (NGF) have been shown to effectively relieve neuropathic and inflammatory pain states in mice and in humans. Although efficacy has been shown in mice on a behavioral level, effectiveness in preventing pain-induced functional rearrangements in the central nervous system has not been shown. Therefore, we assessed longitudinal whole-brain functional connectivity using resting-state functional magnetic resonance imaging in a mouse model of cancer-induced bone pain. We found functional connectivity between major hubs of ascending and descending pain pathways such as the periaqueductal gray, amygdala, thalamus, and cortical somatosensory regions to be affected by a developing cancer pain state. These changes could be successfully prevented through prospective administration of a monoclonal anti-NGF antibody (mAb911). This indicates efficacy of anti-NGF treatment to prevent pain-induced adaptations in brain functional networks after persistent nociceptive input from cancer-induced bone pain. In addition, it highlights the suitability of resting-state functional magnetic resonance imaging readouts as an indicator of treatment response on the basis of longitudinal functional network changes.
Collapse
|
59
|
Yang L, Dun W, Li K, Yang J, Wang K, Liu H, Liu J, Zhang M. Altered amygdalar volume and functional connectivity in primary dysmenorrhoea during the menstrual cycle. Eur J Pain 2019; 23:994-1005. [PMID: 30664322 DOI: 10.1002/ejp.1368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Ling Yang
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Radiology Department; Chong Qing General Hospital; Chong Qing China
| | - Wanghuan Dun
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Kang Li
- Radiology Department; Chong Qing General Hospital; Chong Qing China
| | - Jing Yang
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Ke Wang
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Hongjuan Liu
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Jixin Liu
- Center for Brain Imaging; School of Life Science and Technology; Xidian University; Xi'an China
| | - Ming Zhang
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
60
|
Baktay J, Neilan RM, Behun M, McQuaid N, Kolber B. Modeling Neural Behavior and Pain During Bladder Distention using an Agent-based Model of the Central Nucleus of the Amygdala. SPORA : A JOURNAL OF BIOMATHEMATICS 2019; 5:1-13. [PMID: 30793094 PMCID: PMC6380509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chronic bladder pain evokes asymmetric behavior in neurons across the left and right hemispheres of the amygdala. An agent-based computational model was created to simulate the firing of neurons over time and in response to painful bladder stimulation. Each agent represents one neuron and is characterized by its location in the amygdala and response type (excited or inhibited). At each time step, the firing rates (Hz) of all neurons are stochastically updated from probability distributions estimated from data collected in laboratory experiments. A damage accumulation model tracks the damage accrued by neurons during long-term, painful bladder stimulation. Emergent model output uses neural activity to measure temporal changes in pain attributed to bladder stimulation. Simulations demonstrate the model's ability to capture acute and chronic pain and its potential to predict changes in pain similar to those observed in the lab. Asymmetric neural activity during the progression of chronic pain is examined using model output and a sensitivity analysis.
Collapse
Affiliation(s)
- Joshua Baktay
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA
- The Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA
| | - Rachael Miller Neilan
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA
- The Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA
| | - Marissa Behun
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA
- The Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA
| | - Neal McQuaid
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA
- The Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA
| | - Benedict Kolber
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA
- The Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA
| |
Collapse
|
61
|
Miyazawa Y, Takahashi Y, Watabe AM, Kato F. Predominant synaptic potentiation and activation in the right central amygdala are independent of bilateral parabrachial activation in the hemilateral trigeminal inflammatory pain model of rats. Mol Pain 2018; 14:1744806918807102. [PMID: 30270724 PMCID: PMC6243415 DOI: 10.1177/1744806918807102] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nociceptive signals originating in the periphery are conveyed to the brain through specific afferent and ascending pathways. The spino-(trigemino-)parabrachio-amygdaloid pathway is one of the principal pathways mediating signals from nociception-specific ascending neurons to the central amygdala, a limbic structure involved in aversive signal-associated emotional responses, including the emotional aspects of pain. Recent studies suggest that the right and left central amygdala play distinct roles in the regulation of nociceptive responses. Using a latent formalin inflammatory pain model of the rat, we analyzed the right-left differences in synaptic potentiation at the synapses formed between the fibers from the lateral parabrachial nucleus and central amygdala neurons as well as those in the c-Fos expression in the lateral parabrachial nucleus, central amygdala, and the basolateral/lateral amygdala after formalin injection to either the right or left side of the rat upper lip. Although the single-sided formalin injection caused a significant bilateral increase in c-Fos-expressing neurons in the lateral parabrachial nucleus with slight projection-side dependence, the increase in the amplitude of postsynaptic excitatory currents and the number of c-Fos-expressing neurons in the central amygdala occurred predominantly on the right side regardless of the side of the inflammation. Although there was no significant correlation in the number of c-Fos-expressing neurons between the lateral parabrachial nucleus and central amygdala in the formalin-injected animals, these numbers were significantly correlated between the basolateral amygdala and central amygdala. It is thus concluded that the lateral parabrachial nucleus-central amygdala synaptic potentiation reported in various pain models is not a simple Hebbian plasticity in which raised inputs from the lateral parabrachial nucleus cause lateral parabrachial nucleus-central amygdala potentiation but rather an integrative and adaptive response involving specific mechanisms in the right central amygdala.
Collapse
Affiliation(s)
- Yuta Miyazawa
- 1 Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,2 Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- 1 Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,2 Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Ayako M Watabe
- 2 Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan.,3 Institute of Clinical Medicine and Research, Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- 1 Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,2 Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
62
|
Cooper AH, Brightwell JJ, Hedden NS, Taylor BK. The left central nucleus of the amygdala contributes to mechanical allodynia and hyperalgesia following right-sided peripheral nerve injury. Neurosci Lett 2018; 684:187-192. [PMID: 30114475 DOI: 10.1016/j.neulet.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
Abstract
The left and right central nucleus of the amygdala (CeA) exert asymmetric pronociceptive functions. In the setting of a transient noxious stimulus or persistent inflammatory pain, neuronal activity increases in the right but not left CeA, regardless of side of injury. Much less is known regarding this lateralization with respect to the behavioral manifestations of persistent neuropathic pain. To address this question, we conducted spared nerve injury (SNI) to the left or right hindlimb and then inactivated the left and/or right CeA with local microinjection of lidocaine. We evaluated injury-induced hypersensitivity with von Frey hairs (mechanical allodynia), a blunt pin (mechanical hyperalgesia), and acetone application (cold allodynia). Following left-sided SNI, inactivation of the right or bilateral CeA attenuated mechanical allodynia and hyperalgesia as well as cold hypersensitivity, while inactivation of the left CeA had no effect. Following right-sided SNI, we observed a modality-dependent effect: mechanical allodynia was attenuated by inactivation of the left but neither the right nor bilateral CeA, mechanical hyperalgesia was attenuated by left, right and bilateral intra-CeA lidocaine, and cold allodynia was unaffected. These data suggest that CeA-mediated control of neuropathic pain is not strictly limited to the right CeA as previously assumed. We conclude that functional lateralization depends on the type of pain, side of injury and the sensory modality, and that the left CeA contributes to mechanical allodynia and hyperalgesia after peripheral nerve injury to the right side of the body.
Collapse
Affiliation(s)
- Andrew H Cooper
- Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jennifer J Brightwell
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Naomi S Hedden
- Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bradley K Taylor
- Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
63
|
Kim H, Thompson J, Ji G, Ganapathy V, Neugebauer V. Monomethyl fumarate inhibits pain behaviors and amygdala activity in a rat arthritis model. Pain 2018; 158:2376-2385. [PMID: 28832396 DOI: 10.1097/j.pain.0000000000001042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroplasticity in the amygdala, a brain center for emotions, leads to increased neuronal activity and output that can generate emotional-affective behaviors and modulate nocifensive responses. Mechanisms of increased activity in the amygdala output region (central nucleus, CeA) include increased reactive oxygen species, and so we explored beneficial effects of monomethyl fumarate (MMF), which can have neuroprotective effects through the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) antioxidant response pathway. Systemic (intraperitoneal) MMF dose-dependently inhibited vocalizations and mechanosensitivity (hindlimb withdrawal reflexes) of rats in an arthritis pain model (kaolin-carrageenan-induced monoarthritis in the knee). Stereotaxic administration of MMF into the CeA by microdialysis also inhibited vocalizations but had a limited effect on mechanosensitivity, suggesting a differential contribution to emotional-affective vs sensory pain aspects. Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that stereotaxic administration of MMF into the CeA by microdialysis inhibited background activity and responses of CeA neurons to knee joint stimulation in the arthritis pain model. Monomethyl fumarate had no effect on behaviors and neuronal activity under normal conditions. The results suggest that MMF can inhibit emotional-affective responses in an arthritis pain model through an action that involves the amygdala (CeA).
Collapse
Affiliation(s)
- Hyunyoung Kim
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| |
Collapse
|
64
|
Tom RL, Ahuja A, Maniates H, Freeland CM, Robinson MJF. Optogenetic activation of the central amygdala generates addiction-like preference for reward. Eur J Neurosci 2018; 50:2086-2100. [PMID: 29797474 DOI: 10.1111/ejn.13967] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/23/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022]
Abstract
Drug and behavioural addictions are characterized by an intense and focused pursuit of a single reward above all others. Pursuit of the addictive reward is often compulsively sought despite adverse consequences and better alternative outcomes. Here, we explored the ability of the central amygdala (CeA) to powerfully bias choice, causing specific rewards to be almost compulsively preferred. Rats were trained on an operant choice task in which they could choose to respond on either of the two levers to receive a sucrose reward, one of which was paired with optogenetic stimulation of the CeA using channelrhodopsin-2 (ChR2). Rats developed an almost exclusive preference for the laser-paired reward over the otherwise equal unpaired reward. We found that this preference for stimulation-paired reward persists even when a much larger sucrose reward is offered as an alternative (contingency management) or when this preferred reward is paired with adverse consequences such as progressively larger electric foot shock, time delays or effort requirements. We also report that when challenged with foot shock, a small proportion of these animals (≈20%) retained an exclusive laser-paired reward preference, whereas others began to seek the alternate reward when the shock reached high levels. Lastly, we confirmed that optogenetic CeA stimulation was not independently rewarding if delivered in the absence of a paired sucrose reward. These results suggest a role for the CeA in focusing motivation and desire to excessive levels, generating addiction-like behaviour that persists in the face of more rewarding alternatives and adverse consequences.
Collapse
Affiliation(s)
- Rebecca L Tom
- Neuroscience & Behavior Program, Wesleyan University, Middletown, Connecticut.,Dartmouth Geisel School of Medicine, Hanover, New Hampshire
| | - Aarit Ahuja
- Neuroscience & Behavior Program, Wesleyan University, Middletown, Connecticut.,Psychology Department, Wesleyan University, Middletown, Connecticut.,Neuroscience Graduate Program, Brown University, Providence, Rhode Island
| | - Hannah Maniates
- Neuroscience & Behavior Program, Wesleyan University, Middletown, Connecticut.,National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts
| | | | - Mike J F Robinson
- Neuroscience & Behavior Program, Wesleyan University, Middletown, Connecticut.,Psychology Department, Wesleyan University, Middletown, Connecticut
| |
Collapse
|
65
|
Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses. J Neurosci 2018; 38:5788-5798. [PMID: 29789376 DOI: 10.1523/jneurosci.0837-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022] Open
Abstract
Epithelial cells of the colon provide a vital interface between the internal environment (lumen of the colon) and colon parenchyma. To examine epithelial-neuronal signaling at this interface, we analyzed mice in which channelrhodopsin (ChR2) was targeted to either TRPV1-positive afferents or to villin-expressing colon epithelial cells. Expression of a ChR2-EYFP fusion protein was directed to either primary sensory neurons or to colon epithelial cells by crossing Ai32 mice with TRPV1-Cre or villin-Cre mice, respectively. An ex vivo preparation of the colon was used for single-fiber analysis of colon sensory afferents of the pelvic nerve. Afferents were characterized using previously described criteria as mucosal, muscular, muscular-mucosal, or serosal and then tested for blue light-induced activation. Light activation of colon epithelial cells produced robust firing of action potentials, similar to that elicited by physiologic stimulation (e.g., circumferential stretch), in 50.5% of colon afferents of mice homozygous for ChR2 expression. Light-induced activity could be reduced or abolished in most fibers using a cocktail of purinergic receptor blockers suggesting ATP release by the epithelium contributed to generation of sensory neuron action potentials. Using electromyographic recording of visceromotor responses we found that light stimulation of the colon epithelium evoked behavioral responses in Vil-ChR2 mice that was similar to that seen with balloon distension of the colon. These ex vivo and in vivo data indicate that light stimulation of colon epithelial cells alone, without added mechanical or chemical stimuli, can directly activate colon afferents and elicit behavioral responses.SIGNIFICANCE STATEMENT Abdominal pain that accompanies inflammatory diseases of the bowel is particularly vexing because it can occur without obvious changes in the structure or inflammatory condition of the colon. Pain reflects abnormal sensory neuron activity that may be controlled in part by release of substances from lining epithelial cells. In support of this mechanism we determined that blue-light stimulation of channelrhodopsin-expressing colon epithelial cells could evoke action potential firing in sensory neurons and produce changes in measures of behavioral sensitivity. Thus, activity of colon epithelial cells alone, without added mechanical or chemical stimuli, is sufficient to activate pain-sensing neurons.
Collapse
|
66
|
Johnson AC, Latorre R, Ligon CO, Greenwood-Van Meerveld B. Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G448-G457. [PMID: 29351398 DOI: 10.1152/ajpgi.00370.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vivo optogenetics identifies brain circuits controlling behaviors in conscious animals by using light to alter neuronal function and offers a novel tool to study the brain-gut axis. Using adenoviral-mediated expression, we aimed to investigate whether photoactivation with channelrhodopsin (ChR2) or photoinhibition with halorhodopsin (HR3.0) of fibers originating from the central nucleus of the amygdala (CeA) at the bed nucleus of the stria terminalis (BNST) had any effect on colonic sensitivity. We also investigated whether there was any deleterious effect of the adenovirus on the neuronal population or the neuronal phenotype within the CeA-BNST circuitry activated during the optogenetic stimulation. In male rats, the CeA was infected with vectors expressing ChR2 or HR3.0 and fiber optic cannulae were implanted on the BNST. After 8-10 wk, the response to graded, isobaric colonic distension was measured with and without laser stimulation of CeA fibers at the BNST. Immunohistochemistry and histology were used to evaluate vector expression, neuronal integrity, and neurochemical phenotype. Photoactivation of CeA fibers at the BNST with ChR2 induced colonic hypersensitivity, whereas photoinhibition of CeA fibers at the BNST with HR3.0 had no effect on colonic sensitivity. Control groups treated with virus expressing reporter proteins showed no abnormalities in neuronal morphology, neuronal number, or neurochemical phenotype following laser stimulation. Our experimental findings reveal that optogenetic activation of discrete brain nuclei can be used to advance our understanding of complex visceral nociceptive circuitry in a freely moving rat model. NEW & NOTEWORTHY Our findings reveal that optogenetic technology can be employed as a tool to advance understanding of the brain-gut axis. Using adenoviral-mediated expression of opsins, which were activated by laser light and targeted by fiber optic cannulae, we examined central nociceptive circuits mediating visceral pain in a freely moving rat. Photoactivation of amygdala fibers in the stria terminalis with channelrhodopsin induced colonic hypersensitivity, whereas inhibition of the same fibers with halorhodopsin did not alter colonic sensitivity.
Collapse
Affiliation(s)
| | - Rocco Latorre
- Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma
| | - Casey O Ligon
- Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Department of Veterans Affairs Medical Center , Oklahoma City, Oklahoma.,Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma.,Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
67
|
Abstract
The amygdala is a limbic brain region that plays a key role in emotional processing, neuropsychiatric disorders, and the emotional-affective dimension of pain. Preclinical and clinical studies have identified amygdala hyperactivity as well as impairment of cortical control mechanisms in pain states. Hyperactivity of basolateral amygdala (BLA) neurons generates enhanced feedforward inhibition and deactivation of the medial prefrontal cortex (mPFC), resulting in pain-related cognitive deficits. The mPFC sends excitatory projections to GABAergic neurons in the intercalated cell mass (ITC) in the amygdala, which project to the laterocapsular division of the central nucleus of the amygdala (CeLC; output nucleus) and serve gating functions for amygdala output. Impairment of these cortical control mechanisms allows the development of amygdala pain plasticity. Mechanisms of abnormal amygdala activity in pain with particular focus on loss of cortical control mechanisms as well as new strategies to correct pain-related amygdala dysfunction will be discussed in the present review.
Collapse
|
68
|
Randich A, DeWitte C, DeBerry JJ, Robbins MT, Ness TJ. Lesions of the central amygdala and ventromedial medulla reduce bladder hypersensitivity produced by acute but not chronic foot shock. Brain Res 2017; 1675:1-7. [PMID: 28867481 DOI: 10.1016/j.brainres.2017.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023]
Abstract
Both acute and chronic stress has been shown to exacerbate symptoms of chronic visceral pain conditions such as interstitial cystitis. Studies using animal models support these findings in that both acute and chronic exposure to foot shock-induced stress (FS) augment nociceptive reflex responses to urinary bladder distension (UBD). Only a few studies have examined the neural substrates mediating these phenomena and it is not clear whether acute and chronic stress engage the same or different substrates to produce bladder hypersensitivity. The present studies examined the role of two important central nervous system structures - the amygdala (AMG) and the ventromedial medulla (VMM) - in mediating/modulating hypersensitivity evoked by acute versus chronic FS using responses to graded UBD in adult, female Sprague-Dawley rats. Bladder hypersensitivity produced by acute FS was significantly reduced by either bilateral central AMG or VMM lesions using measures generated by graded UBD, but these lesions had no significant effects using the same measures on bladder hyperalgesia produced by chronic FS. Our findings provide evidence that neural substrates underlying bladder hypersensitivity produced by chronic stress differ from those produced by acute stress. These findings suggest that while the AMG and VMM participate in pain processing during periods of limited exposure to stress, prolonged stress may recruit a new set of neural substrates not initially activated by acute exposure to stress.
Collapse
Affiliation(s)
- Alan Randich
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Cary DeWitte
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meredith T Robbins
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
69
|
Devonshire IM, Burston JJ, Xu L, Lillywhite A, Prior MJ, Watson DJG, Greenspon CM, Iwabuchi SJ, Auer DP, Chapman V. Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: A new window to study experimental spontaneous pain? Neuroimage 2017. [PMID: 28633971 PMCID: PMC5607296 DOI: 10.1016/j.neuroimage.2017.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim of the present study was to investigate the potential of manganese-enhanced magnetic resonance imaging (MEMRI) to measure neural responses during on-going pain that underpins hyperalgesia in pre-clinical models of nociception. As a proof of concept that MEMRI is sensitive to the neural activity of spontaneous, intermittent behaviour, we studied a separate positive control group undergoing a voluntary running wheel experiment. In the pain models, pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWTs)) was measured at baseline and following either intra-articular injection of nerve growth factor (NGF, 10µg/50µl; acute pain model, n=4 rats per group), or the chondrocyte toxin monosodium iodoacetate (MIA, 1mg/50µl; chronic model, n=8 rats per group), or control injection. Separate groups of rats underwent a voluntary wheel running protocol (n=8 rats per group). Rats were administered with paramagnetic ion Mn2+ as soluble MnCl2 over seven days (subcutaneous osmotic pump) to allow cumulative activity-dependent neural accumulation in the models of pain, or over a period of running. T1-weighted MR imaging at 7T was performed under isoflurane anaesthesia using a receive-only rat head coil in combination with a 72mm volume coil for excitation. The pain models resulted in weight bearing asymmetry (NGF: 20.0 ± 5.2%, MIA: 15 ± 3%), and a reduction in PWT in the MIA model (8.3 ± 1.5g) on the final day of assessment before undergoing MR imaging. Voxel-wise and region-based analysis of MEMRI data did not identify group differences in T1 signal. However, MnCl2 accumulation in the VTA, right Ce amygdala, and left cingulate was negatively correlated with pain responses (greater differences in weight bearing), similarly MnCl2 accumulation was reduced in the VTA in line with hyperalgesia (lower PWTs), which suggests reduced regional activation as a result of the intensity and duration of pain experienced during the 7 days of MnCl2 exposure. Motor cortex T1-weighted signal increase was associated with the distance ran in the wheel running study, while no between group difference was seen. Our data suggest that on-going pain related signal changes identified using MEMRI offers a new window to study the neural underpinnings of spontaneous pain in rats.
Collapse
Affiliation(s)
- I M Devonshire
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - J J Burston
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - L Xu
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - A Lillywhite
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - M J Prior
- Medical Imaging Unit, School of Medicine, University of Nottingham, UK
| | - D J G Watson
- School of Life Sciences, University of Nottingham, UK
| | - C M Greenspon
- School of Life Sciences, University of Nottingham, UK
| | - S J Iwabuchi
- Medical Imaging Unit, School of Medicine, University of Nottingham, UK; Neuroradiology, Nottingham University Hospitals Trust, Nottingham NG7 2UH, UK
| | - D P Auer
- Arthritis Research UK Pain Centre, University of Nottingham, UK; Medical Imaging Unit, School of Medicine, University of Nottingham, UK; Neuroradiology, Nottingham University Hospitals Trust, Nottingham NG7 2UH, UK
| | - V Chapman
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK.
| |
Collapse
|