51
|
Early Feasibility Studies of Augmented Reality Navigation for Lateral Skull Base Surgery. Otol Neurotol 2020; 41:883-888. [DOI: 10.1097/mao.0000000000002724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
Fredrickson VL, Lin M, Catapano JS, Attenello FJ. Commentary: Clinical Accuracy of Holographic Navigation Using Point-Based Registration on Augmented-Reality Glasses. Oper Neurosurg (Hagerstown) 2020; 17:E229-E230. [PMID: 31515566 DOI: 10.1093/ons/opz266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vance L Fredrickson
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Frank J Attenello
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
53
|
Lei PF, Su SL, Kong LY, Wang CG, Zhong D, Hu YH. Mixed Reality Combined with Three-Dimensional Printing Technology in Total Hip Arthroplasty: An Updated Review with a Preliminary Case Presentation. Orthop Surg 2020; 11:914-920. [PMID: 31663276 PMCID: PMC6819179 DOI: 10.1111/os.12537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing technology, virtual reality, and augmented reality technology have been used to help surgeons to complete complex total hip arthroplasty, while their respective shortcomings limit their further application. With the development of technology, mixed reality (MR) technology has been applied to improve the success rate of complicated hip arthroplasty because of its unique advantages. We presented a case of a 59-year-old man with an intertrochanteric fracture in the left femur, who had received a prior left hip fusion. After admission to our hospital, a left total hip arthroplasty was performed on the patient using a combination of MR technology and 3D printing technology. Before surgery, 3D reconstruction of a certain bony landmark exposed in the surgical area was first performed. Then a veneer part was designed according to the bony landmark and connected to a reference registration landmark outside the body through a connecting rod. After that, the series of parts were made into a holistic reference registration instrument using 3D printing technology, and the patient's data for bone and surrounding tissue, along with digital 3D information of the reference registration instrument, were imported into the head-mounted display (HMD). During the operation, the disinfected reference registration instrument was installed on the selected bony landmark, and then the automatic real-time registration was realized by HMD through recognizing the registration landmark on the reference registration instrument, whereby the patient's virtual bone and other anatomical structures were quickly and accurately superimposed on the real body of the patient. To the best of our knowledge, this is the first report to use MR combined with 3D printing technology in total hip arthroplasty.
Collapse
Affiliation(s)
- Peng-Fei Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Shi-Long Su
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Yu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng-Gong Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Da Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yi-He Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
54
|
Guo ML, Yue ST, Wang JY, Cui HX. Comparative study on the clinical application of mixed reality technology leading micro-invasive intervertebral foramen puncture location and blind puncture location. Pak J Med Sci 2020; 36:559-564. [PMID: 32292471 PMCID: PMC7150397 DOI: 10.12669/pjms.36.3.1683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To discuss the function of mixed reality (MR) technology in guiding location of intervertebral foramen microscopic puncture and analyze its feasibility and clinical application value. METHODS Sixty patients with lumbar intervertebral disc who were treated between January 2017 to October 2017 were chosen, and classified into navigation group (30 cases) and traditional control (30 cases) according to random number table. Intervertebral foramen microscopic operation was conducted for both groups. MR technology was applied for the navigation group to guide puncture and establish intervertebral foramen microscopic cannula. Traditional C-arm X-ray apparatus was used for traditional group to establish intervertebral foramen microscopic cannula. Intra-operative puncture times, fluoroscopy times, puncture time and VAS score 1d, 3m and 6m after the operation were recorded and compared. RESULTS Postoperative waist and leg pain symptoms of both groups were relieved obviously, and straight leg raising test for the diseased limb turned to be negative. Intra-operative puncture times, fluoroscopy times, puncture time and operation time had statistical significance decrease. CONCLUSION Mixed reality (MR) can accurately guide the establishment of intervertebral foramen microscopic cannula, solve the bottleneck problem of intervertebral foramen microscopic technology, promote puncture success rate, reduce repeated puncture times, avoid by-injury, shorten puncture time and reduce X-ray radiation quantity of operators and patients, so it deserves to be promoted and applied.
Collapse
Affiliation(s)
- Ma-Long Guo
- Ma-long Guo, Department of Orthopedics, Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Song-Tao Yue
- Song-tao Yue, Department of Orthopedics, Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Jiang-Yi Wang
- Jiang-yi Wang, Department of Orthopedics, Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Hong-Xun Cui
- Hong-xun Cui, Department of Orthopedics, Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
55
|
Maniam P, Schnell P, Dan L, Portelli R, Erolin C, Mountain R, Wilkinson T. Exploration of temporal bone anatomy using mixed reality (HoloLens): development of a mixed reality anatomy teaching resource prototype. J Vis Commun Med 2019; 43:17-26. [PMID: 31645155 DOI: 10.1080/17453054.2019.1671813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mixed reality (MR), a technology which supplements the real world with virtual objects, is increasingly becoming available as a teaching tool in medical education. The Microsoft HoloLens device allows operators to experience MR using a head-mounted device without interfering with their physical reality, stimulating a realistic learning experience using virtual objects. This project aimed to develop a MR anatomy teaching application with HoloLens for exploring the anatomy of the temporal bone. The educational application was developed from a multidisciplinary collaboration between undergraduate and postgraduate students across several academic disciplines with Medtronic, a medical technology company. 3D anatomical models were built using ZBrush and Blender, while the HoloLens1 application was developed using Windows 10, Visual Studio 2017, Unity and Mixed Reality Toolkit (MRTK). Modules developed within the application included a basic HoloLens tutorial, a virtual temporal bone with surgical anatomy landmarks and free drilling of the temporal bone. The basic tutorial allows the operator to adapt to the MR environment prior to exploring the anatomical landmarks of the 3D temporal bone. The free drilling of the temporal bone using vertex displacement and texture stretching replicates a real-time bone drilling experience and allows the operator to explore the anatomical relationship between different otological structures.
Collapse
Affiliation(s)
- Pavithran Maniam
- School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Philipp Schnell
- Department of Computing, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Lilly Dan
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Rony Portelli
- Department of Computing, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Caroline Erolin
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Rodney Mountain
- Department of Otolaryngology, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Tracey Wilkinson
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
56
|
Abstract
BACKGROUND The field of otology is increasingly at the forefront of innovation in science and medicine. The inner ear, one of the most challenging systems to study, has been rendered much more open to inquiry by recent developments in research methodology. Promising advances of potential clinical impact have occurred in recent years in biological fields such as auditory genetics, ototoxic chemoprevention and organ of Corti regeneration. The interface of the ear with digital technology to remediate hearing loss, or as a consumer device within an intelligent ecosystem of connected devices, is receiving enormous creative energy. Automation and artificial intelligence can enhance otological medical and surgical practice. Otology is poised to enter a new renaissance period, in which many previously untreatable ear diseases will yield to newly introduced therapies. OBJECTIVE This paper speculates on the direction otology will take in the coming decades. CONCLUSION Making predictions about the future of otology is a risky endeavour. If the predictions are found wanting, it will likely be because of unforeseen revolutionary methods.
Collapse
|
57
|
Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, Wong SC, Min JK, Dunham S, Mosadegh B. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS One 2019; 14:e0219174. [PMID: 31260497 PMCID: PMC6602420 DOI: 10.1371/journal.pone.0219174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
The primary mode of visualization during transcatheter procedures for structrural heart disease is fluoroscopy, which suffers from low contrast and lacks any depth perception, thus limiting the ability of an interventionalist to position a catheter accurately. This paper describes a new image guidance system by utilizing augmented reality to provide a 3D visual environment and quantitative feedback of the catheter’s position within the heart of the patient. The real-time 3D position of the catheter is acquired via two fluoroscopic images taken at different angles, and a patient-specific 3D heart rendering is produced pre-operatively from a CT scan. The spine acts as a fiduciary land marker, allowing the position and orientation of the catheter within the heart to be fully registered. The automated registration method is based on Fourier transformation, and has a high success rate (100%), low registration error (0.42 mm), and clinically acceptable computational cost (1.22 second). The 3D renderings are displayed and updated on the augmented reality device (i.e., Microsoft HoloLens), which can provide pre-set views of various angles of the heart using voice-command. This new image-guidance system with augmented reality provides a better visualization to interventionalists and potentially assists them in understanding of complicated cases. Furthermore, this system coupled with the developed 3D printed models can serve as a training tool for the next generation of cardiac interventionalists.
Collapse
Affiliation(s)
- Jun Liu
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Subhi J. Al’Aref
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Gurpreet Singh
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Alexandre Caprio
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Amir Ali Amiri Moghadam
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Sun-Joo Jang
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - S. Chiu Wong
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - James K. Min
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Simon Dunham
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital and Weill Cornell Medicine, New York, United States of America
- * E-mail:
| |
Collapse
|
58
|
Southworth MK, Silva JR, Silva JNA. Use of extended realities in cardiology. Trends Cardiovasc Med 2019; 30:143-148. [PMID: 31076168 DOI: 10.1016/j.tcm.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/04/2019] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
Recent miniaturization of electronic components and advances in image processing software have facilitated the entry of extended reality technology into clinical practice. In the last several years, the number of applications in cardiology has multiplied, with many promising to become standard of care. We review many of these applications in the areas of patient and physician education, cardiac rehabilitation, pre-procedural planning and intraprocedural use. The rapid integration of these approaches into the many facets of cardiology suggests that they will one day become an every-day part of physician practice.
Collapse
Affiliation(s)
| | - Jonathan R Silva
- Sentiar, Inc, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University School of Engineering and Applied Science, Saint Louis, MO, United States.
| | - Jennifer N Avari Silva
- Sentiar, Inc, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University School of Engineering and Applied Science, Saint Louis, MO, United States; Division of Pediatric Cardiology, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|