51
|
Long Y, Tsai WB, Wang D, Hawke DH, Savaraj N, Feun LG, Hung MC, Chen HHW, Kuo MT. Argininosuccinate synthetase 1 (ASS1) is a common metabolic marker of chemosensitivity for targeted arginine- and glutamine-starvation therapy. Cancer Lett 2016; 388:54-63. [PMID: 27913198 DOI: 10.1016/j.canlet.2016.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
Abstract
Argininosuccinate synthetase 1 (ASS1) is the rate-limiting enzyme that catalyzes the biosynthesis of arginine (Arg). Many malignant human tumors are auxotrophic for Arg because ASS1 is silenced. ASS1 has been established as a sensor of Arg auxotrophic response and a chemosensitivity marker for Arg starvation therapy. Here, we report that ASS1 is also a sensor for glutamine (Gln)-deprivation response, and that upregulation of ASS1 expression is associated with resistance to Gln-starvation treatments. Knockdown of ASS1 expression resulted in increased sensitivity to both Arg- and Gln-starvation, whereas increased ASS1 expression by ectopic transfection is associated with resistance to both Arg- and Gln-starvation. The addition of permeable fumarate, a metabolite that bridges the tricarboxylic acid and urea cycles, resulted in downregulation of ASS1 expression and increased sensitivity to both Arg- and Gln-deprivation treatments. Mechanistically, the Gln-deprivation response, like the arginine-auxotrophic response, downregulates HIF-1α resulting in de-silencing of ASS1. Our results demonstrate that ASS1 is a common biosensor for Arg and Gln deprivation response and a shared target for Arg- and Gln-starvation therapies which have been in several current clinical trials.
Collapse
Affiliation(s)
- Yan Long
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Bin Tsai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dajuan Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niramol Savaraj
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lynn G Feun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen H W Chen
- National Cheng Kung University, National Cheng Kung University Hospital, College of Medicine, Department of Radiation Oncology, Tainan, Taiwan
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
52
|
Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NMFSA. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 2016; 27:283-297. [DOI: 10.1080/13543776.2017.1254194] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- H. S. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C. S. Silva Teixeira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - P. A. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M. J. Ramos
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - N. M. F. S. A. Cerqueira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
53
|
Kim SM, Roy SG, Chen B, Nguyen TM, McMonigle RJ, McCracken AN, Zhang Y, Kofuji S, Hou J, Selwan E, Finicle BT, Nguyen TT, Ravi A, Ramirez MU, Wiher T, Guenther GG, Kono M, Sasaki AT, Weisman LS, Potma EO, Tromberg BJ, Edwards RA, Hanessian S, Edinger AL. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest 2016; 126:4088-4102. [PMID: 27669461 PMCID: PMC5096903 DOI: 10.1172/jci87148] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents. Here, we describe a water-soluble, orally bioavailable synthetic sphingolipid, SH-BC-893, that triggers nutrient transporter internalization and also blocks lysosome-dependent nutrient generation pathways. SH-BC-893 activated protein phosphatase 2A (PP2A), leading to mislocalization of the lipid kinase PIKfyve. The concomitant mislocalization of the PIKfyve product PI(3,5)P2 triggered cytosolic vacuolation and blocked lysosomal fusion reactions essential for LDL, autophagosome, and macropinosome degradation. By simultaneously limiting access to both extracellular and intracellular nutrients, SH-BC-893 selectively killed cells expressing an activated form of the anabolic oncogene Ras in vitro and in vivo. However, slower-growing, autochthonous PTEN-deficient prostate tumors that did not exhibit a classic Warburg phenotype were equally sensitive. Remarkably, normal proliferative tissues were unaffected by doses of SH-BC-893 that profoundly inhibited tumor growth. These studies demonstrate that simultaneously blocking parallel nutrient access pathways with sphingolipid-based drugs is broadly effective and cancer selective, suggesting a potential strategy for overcoming the resistance conferred by tumor heterogeneity.
Collapse
Affiliation(s)
- Seong M. Kim
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Saurabh G. Roy
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Bin Chen
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Tiffany M. Nguyen
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Ryan J. McMonigle
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Alison N. McCracken
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Yanling Zhang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Satoshi Kofuji
- Departments of Internal Medicine, Neurosurgery, and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jue Hou
- Department of Biomedical Engineering, UCI, Irvine, California, USA
| | - Elizabeth Selwan
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Brendan T. Finicle
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Tricia T. Nguyen
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Archna Ravi
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Manuel U. Ramirez
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Tim Wiher
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Garret G. Guenther
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Mari Kono
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Atsuo T. Sasaki
- Departments of Internal Medicine, Neurosurgery, and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lois S. Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric O. Potma
- Department of Biomedical Engineering, UCI, Irvine, California, USA
| | | | - Robert A. Edwards
- Department of Pathology, University of California Irvine School of Medicine, Irvine, California, USA
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Department of Pharmaceutical Sciences, UCI, Irvine, California, USA
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| |
Collapse
|
54
|
Fultang L, Vardon A, De Santo C, Mussai F. Molecular basis and current strategies of therapeutic arginine depletion for cancer. Int J Cancer 2016; 139:501-9. [PMID: 26913960 DOI: 10.1002/ijc.30051] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Renewed interest in the use of therapeutic enzymes combined with an improved knowledge of cancer cell metabolism, has led to the translation of several arginine depletion strategies into early phase clinical trials. Arginine auxotrophic tumors are reliant on extracellular arginine, due to the downregulation of arginosuccinate synthetase or ornithine transcarbamylase-key enzymes for intracellular arginine recycling. Engineered arginine catabolic enzymes such as recombinant human arginase (rh-Arg1-PEG) and arginine deiminase (ADI-PEG) have demonstrated cytotoxicity against arginine auxotrophic tumors. In this review, we discuss the molecular events triggered by extracellular arginine depletion that contribute to tumor cell death.
Collapse
Affiliation(s)
- Livingstone Fultang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ashley Vardon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
55
|
Effects of stereochemistry, saturation, and hydrocarbon chain length on the ability of synthetic constrained azacyclic sphingolipids to trigger nutrient transporter down-regulation, vacuolation, and cell death. Bioorg Med Chem 2016; 24:4390-4397. [PMID: 27475534 DOI: 10.1016/j.bmc.2016.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 01/06/2023]
Abstract
Constrained analogs containing a 2-hydroxymethylpyrrolidine core of the natural sphingolipids sphingosine, sphinganine, N,N-dimethylsphingosine and N-acetyl variants of sphingosine and sphinganine (C2-ceramide and dihydro-C2-ceramide) were synthesized and evaluated for their ability to down-regulate nutrient transporter proteins and trigger cytoplasmic vacuolation in mammalian cells. In cancer cells, the disruptions in intracellular trafficking produced by these sphingolipids lead to cancer cell death by starvation. Structure activity studies were conducted by varying the length of the hydrocarbon chain, the degree of unsaturation and the presence or absence of an aryl moiety on the appended chains, and stereochemistry at two stereogenic centers. In general, cytotoxicity was positively correlated with nutrient transporter down-regulation and vacuolation. This study was intended to identify structural and functional features in lead compounds that best contribute to potency, and to develop chemical biology tools that could be used to isolate the different protein targets responsible for nutrient transporter loss and cytoplasmic vacuolation. A molecule that produces maximal vacuolation and transporter loss is expected to have the maximal anti-cancer activity and would be a lead compound.
Collapse
|
56
|
Abstract
Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically.
Collapse
|
57
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
58
|
Reduced arginine availability and nitric oxide synthesis in cancer is related to impaired endogenous arginine synthesis. Clin Sci (Lond) 2016; 130:1185-95. [PMID: 27129191 DOI: 10.1042/cs20160233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/05/2016] [Indexed: 02/04/2023]
Abstract
Reduced plasma arginine (ARG) concentrations are found in various types of cancer. ARG and its product nitric oxide (NO) are important mediators in the immune function and the defense against tumour cells. It remains unclear whether the diminished systemic ARG availability in cancer is related to insufficient endogenous ARG synthesis, negatively affecting NO synthesis, and whether a dietary amino acid mixture is able to restore this. In 13 patients with advanced non-small cell lung cancer (NSCLC) and 11 healthy controls, whole body ARG and CIT (citrulline) rates of appearance were measured by stable isotope methodology before and after intake of a mixture of amino acids as present in whey protein. The conversions of CIT to ARG (indicator of de novo ARG synthesis) and ARG to CIT (marker of NO synthesis), and ARG clearance (reflecting ARG disposal capacity) were calculated. Plasma isotopic enrichments and amino acid concentrations were measured by LC-MS/MS. Conversions of CIT to ARG and ARG to CIT (P<0.05), and CIT rate of appearance (P=0.07) were lower in NSCLC. ARG rate of appearance and clearance were comparable suggesting no enhanced systemic ARG production and disposal capacity in NSCLC. After intake of the mixture, ARG rate of appearance and concentration increased (P<0.001), and ARG to CIT conversion was restored in NSCLC. In conclusion, an impaired endogenous ARG synthesis plays a role in the reduced systemic ARG availability and NO synthesis in advanced NSCLC. Nutritional approaches may restore systemic ARG availability and NO synthesis in cancer, but the clinical implication remains unclear.
Collapse
|
59
|
Selwan EM, Finicle BT, Kim SM, Edinger AL. Attacking the supply wagons to starve cancer cells to death. FEBS Lett 2016; 590:885-907. [PMID: 26938658 DOI: 10.1002/1873-3468.12121] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
The constitutive anabolism of cancer cells not only supports proliferation but also addicts tumor cells to a steady influx of exogenous nutrients. Limiting access to metabolic substrates could be an effective and selective means to block cancer growth. In this review, we define the pathways by which cancer cells acquire the raw materials for anabolism, highlight the actionable proteins in each pathway, and discuss the status of therapeutic interventions that disrupt nutrient acquisition. Critical open questions to be answered before apical metabolic inhibitors can be successfully and safely deployed in the clinic are also outlined. In summary, recent studies provide strong support that substrate limitation is a powerful therapeutic strategy to effectively, and safely, starve cancer cells to death.
Collapse
Affiliation(s)
- Elizabeth M Selwan
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Seong M Kim
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| |
Collapse
|
60
|
Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 2016; 73:377-92. [PMID: 26499846 PMCID: PMC11108301 DOI: 10.1007/s00018-015-2070-4] [Citation(s) in RCA: 520] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 02/08/2023]
Abstract
Metabolic reprogramming is widely observed during cancer development to confer cancer cells the ability to survive and proliferate, even under the stressed, such as nutrient-limiting, conditions. It is famously known that cancer cells favor the "Warburg effect", i.e., the enhanced glycolysis or aerobic glycolysis, even when the ambient oxygen supply is sufficient. In addition, deregulated anabolism/catabolism of fatty acids and amino acids, especially glutamine, serine and glycine, have been identified to function as metabolic regulators in supporting cancer cell growth. Furthermore, extensive crosstalks are being revealed between the deregulated metabolic network and cancer cell signaling. These exciting advancements have inspired new strategies for treating various malignancies by targeting cancer metabolism. Here we review recent findings related to the regulation of glucose, fatty acid and amino acid metabolism, their crosstalk, and relevant cancer therapy strategy.
Collapse
Affiliation(s)
- Zhaoyong Li
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
61
|
Lamrani M, Sassi N, Paul C, Yousfi N, Boucher JL, Gauthier N, Labbé J, Seignez C, Racoeur C, Athias A, Guerreiro R, Vergely C, Rochette L, Bettaieb A, Jeannin JF. TLR4/IFNγ pathways induce tumor regression via NOS II-dependent NO and ROS production in murine breast cancer models. Oncoimmunology 2015; 5:e1123369. [PMID: 27467924 DOI: 10.1080/2162402x.2015.1123369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor (TLR) 4 agonists have emerged as a new group of molecules used for cancer therapy. They have been exploited to enhance the immunogenicity of current chemotherapeutic regimens. However, their effects on cancer cells remain elusive. Here, we showed that a TLR4 agonist, namely a synthetic lipid A analog (ALA), OM-174, exhibits antitumor effects in several mammary tumor mouse models. We also showed that immune components are involved in such effects, as attested to by the failure of ALA to induce tumor regression or an increase of animal survival in mice knocked-out for interferon γ (IFNγ) or TLR4. TLR4 and IFNγ receptor (INFR2) expressed by cancer cells are involved in the antitumor efficacy of ALA since this last did not inhibit tumor growth in mice bearing a tumor but lacking TLR4 or IFNγ receptor 2 (IFNR2). Mechanistic investigations revealed that nitric oxide (NO), superoxide and peroxynitrite produced by uncoupling of inducible NO synthase (NOS II) in cancer cells are key mediators of ALA and IFNγ-mediated tumor growth inhibition. We present here a comprehensive picture of tumor cell death induction, in vivo and in vitro, by immunotherapy and for the first time the involvement of the TLR4/IFNγ/NOS II pathway in immunotherapy was investigated.
Collapse
Affiliation(s)
- Myriam Lamrani
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Nejia Sassi
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Catherine Paul
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Nadhir Yousfi
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France
| | | | - Nolwenn Gauthier
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; INSERM U 866, Burgundy University, Dijon, France
| | - Jérôme Labbé
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; INSERM U 866, Burgundy University, Dijon, France
| | - Cédric Seignez
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Cindy Racoeur
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Anne Athias
- INSERM U 866, Burgundy University , Dijon, France
| | | | | | - Luc Rochette
- INSERM U 866, Burgundy University , Dijon, France
| | - Ali Bettaieb
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Jean-François Jeannin
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| |
Collapse
|
62
|
Fang P, Guo M. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Life (Basel) 2015; 5:1703-25. [PMID: 26670257 PMCID: PMC4695845 DOI: 10.3390/life5041703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.
Collapse
Affiliation(s)
- Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
63
|
Burrage LC, Sun Q, Elsea SH, Jiang MM, Nagamani SCS, Frankel AE, Stone E, Alters SE, Johnson DE, Rowlinson SW, Georgiou G, Lee BH. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency. Hum Mol Genet 2015; 24:6417-27. [PMID: 26358771 DOI: 10.1093/hmg/ddv352] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency.
Collapse
Affiliation(s)
- Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA, Texas Children's Hospital, Houston, TX 77030, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA, Texas Children's Hospital, Houston, TX 77030, USA
| | - Arthur E Frankel
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Everett Stone
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA and
| | | | | | | | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA and
| | | | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA, Texas Children's Hospital, Houston, TX 77030, USA,
| |
Collapse
|
64
|
Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett 2015; 364:1-7. [DOI: 10.1016/j.canlet.2015.04.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/28/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
|
65
|
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015; 36:161-78. [PMID: 25687683 DOI: 10.1016/j.it.2015.01.003] [Citation(s) in RCA: 586] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
Thirty years after the discovery of its production by activated macrophages, our appreciation of the diverse roles of nitric oxide (NO) continues to grow. Recent findings have not only expanded our understanding of the mechanisms controlling the expression of NO synthases (NOS) in innate and adaptive immune cells, but have also revealed new functions and modes of action of NO in the control and escape of infectious pathogens, in T and B cell differentiation, and in tumor defense. I discuss these findings, in the context of a comprehensive overview of the various sources and multiple reaction partners of NO, and of the regulation of NOS2 by micromilieu factors, antisense RNAs, and 'unexpected' cytokines.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany.
| |
Collapse
|