51
|
|
52
|
Huang F, Zhang L, Wang Q, Yang Y, Li Q, Wu Y, Chen J, Qu J, Zhou X. Dopamine D1 Receptors Contribute Critically to the Apomorphine-Induced Inhibition of Form-Deprivation Myopia in Mice. ACTA ACUST UNITED AC 2018; 59:2623-2634. [PMID: 29847669 DOI: 10.1167/iovs.17-22578] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Furong Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Lishuai Zhang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Qiongsi Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yanan Yang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Qihang Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yi Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jiangfan Chen
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| |
Collapse
|
53
|
Li HH, Sun YL, Cui DM, Wu J, Zeng JW. Effect of dopamine on bone morphogenesis protein-2 expression in human retinal pigment epithelium. Int J Ophthalmol 2017; 10:1370-1373. [PMID: 28944194 DOI: 10.18240/ijo.2017.09.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/05/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the effect of dopamine on bone morphogenesis protein-2 (BMP-2) expression in retinal pigment epithelium (RPE) cells in vitro. METHODS ARPE-19 cells as a human RPE cell line were cultured with dopamine for different times (2, 4, 6, 8, 12, 16 and 24h) or with different concentrations (0.1, 1, 2, 5, 10, 20, and 100 µg/mL) in vitro. BMP-2 mRNA expression level in ARPE-19 cells was analyzed with real-time polymerase chain reaction (PCR) analysis and BMP-2 protein level was measured with Western blot analysis. The active form of BMP-2 in the culture medium was measured with enzyme-linked immunosorbent assay (ELISA). RESULTS The expression level of BMP-2 increased significantly cultured with 20 µg/mL dopamine, at different time points (P<0.05). BMP-2 mRNA level peaked 2h and the protein level peaked at 6 and 8h after treatment. The concentrations of secreted BMP-2 elevated at 12h and peaked at 24h (P<0.05) in a time-dependent manner. Treated with 100 µg/mL dopamine for 6h, the expression levels of BMP-2 mRNA and protein in ARPE-19 cells were enhanced significantly compared to that in the untreated cells (P<0.05). And secreted BMP-2 protein in the cell culture supernatant was also increased (P<0.05). CONCLUSION Dopamine up-regulate BMP-2 expression in RPE cells, and this may be associated with its inhibitive effect on myopia development.
Collapse
Affiliation(s)
- Hong-Hui Li
- Chengdu University of TCM, Chengdu 610075, Sichuan Province, China
| | - Yan-Li Sun
- Ophthalmology Center, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Dong-Mei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Juan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Jun-Wen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
54
|
The relationship between scleral staphyloma and choroidal thinning in highly myopic eyes: The Beijing Eye Study. Sci Rep 2017; 7:9825. [PMID: 28852194 PMCID: PMC5575118 DOI: 10.1038/s41598-017-10660-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022] Open
Abstract
Based on the Beijing Eye Study 2011, a detailed ophthalmic examination was performed including spectral-domain optical coherence tomography (SD-OCT) with enhanced depth imaging for measurement of subfoveal choroidal thickness (SFCT) and relative height of posterior scleral staphyloma. OCT images were obtained in 103 highly myopic eyes (≤-6.00 diopters) and 227 normal eyes. The mean SFCT in highly myopic eyes was 110.6 ± 85.2 μm (range, 3 to 395 μm). The SFCT of high myopia without posterior scleral staphyloma(55 eyes) was 157.79 ± 85.18 μm, which was significantly greater than that (54.94 ± 49.96 μm) of high myopia with posterior scleral staphyloma (48 eyes) (P < 0.001). In multivariate analysis, posterior scleral staphyloma was the most important factor of choroidal thinning in high myopia (F = 22.63; P < 0.001), then age (F = 19.14; P < 0.001), axial length (F = 17.37; P < 0.001) and gender (F = 17.31; P < 0.001). The SFCT in highly myopic eyes is very thin and undergoes further thinning with increasing age and axial length (refractive error). Posterior staphyloma formation was a key factor in choroidal thinning in highly myopic eyes and to be a good indicator for risk management of choroidal thinning. Abnormalities of the choroid may play a role in the pathogenesis of myopic degeneration.
Collapse
|
55
|
Kearney S, O'Donoghue L, Pourshahidi LK, Cobice D, Saunders KJ. Myopes have significantly higher serum melatonin concentrations than non-myopes. Ophthalmic Physiol Opt 2017; 37:557-567. [PMID: 28721695 DOI: 10.1111/opo.12396] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Experimental animal models of myopia demonstrate that higher melatonin (Mel) and lower dopamine (DA) concentrations actively promote axial elongation. This study explored the association between myopia and serum concentrations of DA and Mel in humans. METHODS Morning serum concentrations of DA and Mel were measured by solid phase extraction-liquid chromatography-tandem mass spectrometry from 54 participants (age 19.1 ± 0.81 years) in September/October 2014 (phase 1) and March/April 2016 (phase 2). Axial length (AL), corneal radii (CR) and spherical equivalent refraction (SER) were also recorded. Participants were defined as myopic if non-cycloplegic spherical equivalent refractive error ≤-0.50 DS at phase 1. RESULTS Nine participants were lost to follow up. Mel concentrations were measurable for all myopes (phase 1 n = 25, phase 2 n = 22) and non-myopes (phase 1 n = 29, phase 2 n = 23). SER did not change significantly between phases (p = 0.51). DA concentrations were measurable for fewer myopes (phase 1 n = 13, phase 2 n = 12) and non-myopes (phase 1 n = 23, phase 2 n = 16). Myopes exhibited significantly higher Mel concentrations than non-myopes at phase 1 (Median difference: 10 pg mL-1 , p < 0.001) and at phase 2 (Median difference: 7.3 pg mL-1 , p < 0.001) and lower DA concentrations at phase 2 (Median difference: 4.7 pg mL-1 , p = 0.006). Mel concentrations were positively associated with more negative SER (all r ≥ -0.53, all p < 0.001), longer AL (all r ≥ 0.37, all p ≤ 0.008) and higher AL/CR ratio (all r ≥ 0.51, all p < 0.001). CONCLUSION This study reports for the first time in humans that myopes exhibit higher serum Mel concentrations than non-myopes. This may indicate a role for light exposure and circadian rhythm in the human myopic growth mechanism. Further research should focus on younger cohorts exhibiting more dynamic myopic progression and explore the profile of these neurochemicals alongside evaluation of sleep patterns in myopic and non-myopic groups.
Collapse
Affiliation(s)
- Stephanie Kearney
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| | - Lisa O'Donoghue
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| | - L Kirsty Pourshahidi
- Northern Ireland Centre for Food and Health (NICHE), University of Ulster, Coleraine, UK
| | - Diego Cobice
- Metabolomics and Proteomics Core Facility Unit, Biomedical Research Institute, University of Ulster, Coleraine, UK
| | - Kathryn J Saunders
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| |
Collapse
|
56
|
Zhou X, Pardue MT, Iuvone PM, Qu J. Dopamine signaling and myopia development: What are the key challenges. Prog Retin Eye Res 2017; 61:60-71. [PMID: 28602573 DOI: 10.1016/j.preteyeres.2017.06.003] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 01/11/2023]
Abstract
In the face of an "epidemic" increase in myopia over the last decades and myopia prevalence predicted to reach 2.5 billion people by the end of this decade, there is an urgent need to develop effective and safe therapeutic interventions to slow down this "myopia booming" and prevent myopia-related complications and vision loss. Dopamine (DA) is an important neurotransmitter in the retina and mediates diverse functions including retina development, visual signaling, and refractive development. Inspired by the convergence of epidemiological and animal studies in support of the inverse relationship between outdoor activity and risk of developing myopia and by the close biological relationship between light exposure and dopamine release/signaling, we felt it is timely and important to critically review the role of DA in myopia development. This review will revisit several key points of evidence for and against DA mediating light control of myopia: 1) the causal role of extracellular retinal DA levels, 2) the mechanism and action of dopamine D1 and D2 receptors and 3) the roles of cellular/circuit retinal pathways. We examine the experiments that show causation by altering DA, DA receptors and visual pathways using pharmacological, transgenic, or visual environment approaches. Furthermore, we critically evaluate the safety issues of a DA-based treatment strategy and some approaches to address these issues. The review identifies the key questions and challenges in translating basic knowledge on DA signaling and myopia from animal studies into effective pharmacological treatments for myopia in children.
Collapse
Affiliation(s)
- Xiangtian Zhou
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science. 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA 30332, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA 30322, United States; Department of Pharmacology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA 30322, United States
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science. 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China.
| |
Collapse
|
57
|
Jiang WJ, Song HX, Li SY, Guo B, Wu JF, Li GP, Guo DD, Shi DL, Bi HS, Jonas JB. Amphiregulin Antibody and Reduction of Axial Elongation in Experimental Myopia. EBioMedicine 2017; 17:134-144. [PMID: 28256400 PMCID: PMC5360597 DOI: 10.1016/j.ebiom.2017.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/05/2022] Open
Abstract
To examine the mechanism of ocular axial elongation in myopia, guinea pigs (age: 2–3 weeks) which either underwent unilateral or bilateral lens-induced myopization (group 1) or which were primarily myopic at baseline (group 2) received unilateral intraocular injections of amphiregulin antibody (doses: 5, 10, or 15 μg) three times in intervals of 9 days. A third group of emmetropic guinea pigs got intraocular unilateral injections of amphiregulin (doses: 0.25, 0.50 or 1.00 ng, respectively). In each group, the contralateral eyes received intraocular injections of Ringer's solution. In intra-animal inter-eye comparison and intra-eye follow-up comparison in groups 1 and 2, the study eyes as compared to the contralateral eyes showed a dose-dependent reduction in axial elongation. In group 3, study eyes and control eyes did not differ significantly in axial elongation. Immunohistochemistry revealed amphiregulin labelling at the retinal pigment epithelium in eyes with lens-induced myopization and Ringer's solution injection, but not in eyes with amphiregulin antibody injection. Intraocular injections of amphiregulin-antibody led to a reduction of lens-induced axial myopic elongation and of the physiological eye enlargement in young guinea pigs. In contrast, intraocularly injected amphiregulin in a dose of ≤ 1 ng did not show a significant effect. Amphiregulin may be one of several essential molecular factors for axial elongation. Intraocular injections of amphiregulin-antibody led to a reduction of lens-induced axial myopic elongation in guinea pigs. Intraocular injections of amphiregulin-antibody also led to a reduction of the physiological eye growth in guinea pigs. Amphiregulin may be one of several essential molecular factors for axial elongation in young guinea pigs.
Due to an increase in its prevalence, myopia has been feared to become one of the most common causes of irreversible visual impairment worldwide. Although staying indoors in childhood has been identified as the most important factor for the development of myopia, the underlying mechanism leading to myopia has remained elusive so far. In the present experimental study, young guinea pigs which were myopized by a lens, developed less myopia if they simultaneously received intraocular injections of an antibody of amphiregulin, a member of the epithelial growth factor family. It suggests that amphiregulin is associated with axial elongation in myopia.
Collapse
Affiliation(s)
- Wen Jun Jiang
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hui Xin Song
- The Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shao Yu Li
- The Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bin Guo
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jian Feng Wu
- Department of Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guo Ping Li
- The Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Da Dong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - De Long Shi
- The Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hong Sheng Bi
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University Heidelberg, Mannheim, Germany.
| |
Collapse
|
58
|
Different roles of retinal dopamine in albino Guinea pig myopia. Neurosci Lett 2017; 639:94-97. [DOI: 10.1016/j.neulet.2016.12.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 11/23/2022]
|
59
|
Abstract
Myopia is not a simple refractive error, but an eyesight-threatening disease. There is a high prevalence of myopia, 80% to 90%, in young adults in East Asia; myopia has become the leading cause of blindness in this area. As the myopic population increases globally, the severity of its impact is predicted. Approximately one fifth of the myopic population has high myopia (≥-6 diopters), which results in irreversible vision loss such as retinal detachment, choroidal neovascularization, cataracts, glaucoma, and macular atrophy. The increasing prevalence of school myopia in the past few decades may be a result of gene-environment interactions. However, earlier school myopia onset would accompany faster myopia progression and greater risk of high myopia later in life. Recently, there have been effective interventions to delay the onset of myopia, such as outdoor activity and decreasing the duration of near work. Hyperopia (≤0.5 diopters) is a predictor of myopia. Pharmacological agents and optic interventions such as low-concentration atropine and orthokeratology may slow progression in myopic children. Novel surgeries and anti-vascular endothelial growth factor drugs could deal with some myopic complications. From available evidence, the prevention, control, and treatment of myopia seem to be promising. However, to reduce the impact of myopia in future decades, more work and effort are still needed, including that by governments and intercountry eye health organizations.
Collapse
Affiliation(s)
- Pei-Chang Wu
- From the Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
60
|
Bowrey HE, Metse AP, Leotta AJ, Zeng G, McFadden SA. The relationship between image degradation and myopia in the mammalian eye. Clin Exp Optom 2016; 98:555-63. [PMID: 26769179 DOI: 10.1111/cxo.12316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/13/2015] [Accepted: 05/15/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND In all species studied, myopia develops if the eye is deprived of detailed vision during development (form deprivation myopia). However, different degrees of spatial image deprivation produce different effects and have not been described in the mammalian eye. Therefore, the effect of image degradation on guinea pig emmetropisation was investigated. METHODS Eighty-one guinea pigs wore a treatment on one eye from 6 to 13 days of age. There were four treatments: a translucent diffuser (no lines or edges were visible through the diffuser); one of five Bangerter foils (BF: 0.8, 0.6, 0.4, 0.2, light perception only), which differed in their cut-off spatial frequencies; a 'ring mount' control with no filter; or one of two neutral density filters that reduced luminance only (ND, optical density grades 0.1 and 0.6). Refractive error and ocular elongation were measured after seven days of treatment. RESULTS The extent of induced myopia and ocular growth were related to the amount of image degradation (mean difference between the treated and untreated eyes changed in a graded manner -7.0 D to -0.2 D and from 85 µm to seven µm respectively, for spatial frequency cut-offs between zero and 24 cycles per degree). Corresponding reductions in luminance from ND filters did not increase eye growth and caused significantly less myopia than the BFs that caused a similar luminance decrement. The greatest myopia occurred when no or limited spatial information was available to the eye, but moderate myopia still occurred with spatial frequency cut-offs of six and 12 cycles per degree, well beyond the visual acuity range of guinea pigs. CONCLUSION Excessive ocular growth and myopia are most robust when induced by spatial frequency reductions within the visual acuity range but can also be induced beyond this. Either the mechanism of ocular growth can detect supra-threshold spatial frequencies, possibly due to aliasing, or it is sensitive to small amounts of contrast degradation.
Collapse
Affiliation(s)
- Hannah E Bowrey
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alexandra P Metse
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Amelia J Leotta
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Guang Zeng
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Daqing Oilfield General Hospital, Saertu, Daqing, China
| | - Sally A McFadden
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
61
|
Mao J, Liu S, Fu C. Citicoline retards myopia progression following form deprivation in guinea pigs. Exp Biol Med (Maywood) 2016; 241:1258-63. [PMID: 26979720 DOI: 10.1177/1535370216638773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/18/2016] [Indexed: 11/17/2022] Open
Abstract
The retinal dopaminergic system is involved in the myopic shift following form deprivation. Citicoline has been demonstrated to stimulate the dopaminergic system in the brain and retina. Furthermore, citicoline has been used in many neurogenic diseases, such as senile cognitive impairment, stroke and Parkinson's disease as well as in amblyopia and glaucoma. Our aim was to investigate the effect of citicoline on the refractive state and retinal dopamine level in form deprivation myopia of guinea pigs. Guinea pigs, at an age of four weeks, were randomly divided into normal control, deprivation, deprived + citicoline and deprived + vehicle groups. Form deprivation myopia was induced by a translucent eye shield covering the right eye. Citicoline was injected intraperitoneally twice a day (500 mg/kg, 9 am and 9 pm) for 10 days. In vitro, retinal explants were cultured with citicoline for 24 h, with a final citicoline concentration of 100 µmol/L. The ocular refractive parameters and retinal dopamine content were measured. After occlusion for 10 days, the form-deprived eyes became myopic with an increase in axial length and a decrease in retinal dopamine content. The intraperitoneal injection of citicoline reduced the myopic degree (from -3.25 ± 0.77D to -0.62 ± 0.47D, P < 0.001) and partially raised retinal dopamine levels (from 0.55 ± 0.21 ng to 0.81 ± 0.24 ng, P < 0.01) in the form-deprived eyes. After 24 h of culturing retinal explants with citicoline, retinal dopamine content increased significantly (from 0.42 ± 0.14 ng to 0.62 ± 0.21 ng, P < 0.05). These results demonstrated that an intraperitoneal injection of citicoline could retard the myopic shift induced by form deprivation in guinea pigs, which was mediated by an increase in the retinal dopamine levels.
Collapse
Affiliation(s)
- Junfeng Mao
- Department of Ophthalmology, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Shuangzhen Liu
- Department of Ophthalmology, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Chunyan Fu
- Department of Pathology, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
62
|
Adhikari P, Pearson CA, Anderson AM, Zele AJ, Feigl B. Effect of Age and Refractive Error on the Melanopsin Mediated Post-Illumination Pupil Response (PIPR). Sci Rep 2015; 5:17610. [PMID: 26620343 PMCID: PMC4664956 DOI: 10.1038/srep17610] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022] Open
Abstract
Melanopsin containing intrinsically photosensitive Retinal Ganglion cells (ipRGCs) mediate the pupil light reflex (PLR) during light onset and at light offset (the post-illumination pupil response, PIPR). Recent evidence shows that the PLR and PIPR can provide non-invasive, objective markers of age-related retinal and optic nerve disease; however there is no consensus on the effects of healthy ageing or refractive error on the ipRGC mediated pupil function. Here we isolated melanopsin contributions to the pupil control pathway in 59 human participants with no ocular pathology across a range of ages and refractive errors. We show that there is no effect of age or refractive error on ipRGC inputs to the human pupil control pathway. The stability of the ipRGC mediated pupil response across the human lifespan provides a functional correlate of their robustness observed during ageing in rodent models.
Collapse
Affiliation(s)
- Prakash Adhikari
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane QLD 4059, Australia
| | - Candice A Pearson
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane QLD 4059, Australia
| | - Alexandra M Anderson
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane QLD 4059, Australia
| | - Andrew J Zele
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane QLD 4059, Australia
| | - Beatrix Feigl
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane QLD 4059, Australia.,Queensland Eye Institute, South Brisbane QLD, Australia
| |
Collapse
|
63
|
Janowski M, Bulte JWM, Handa JT, Rini D, Walczak P. Concise Review: Using Stem Cells to Prevent the Progression of Myopia-A Concept. Stem Cells 2015; 33:2104-13. [PMID: 25752937 DOI: 10.1002/stem.1984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/06/2014] [Indexed: 12/27/2022]
Abstract
The prevalence of myopia has increased in modern society due to the educational load of children. This condition is growing rapidly, especially in Asian countries where it has already reached a pandemic level. Typically, the younger the child's age at the onset of myopia, the more rapidly the condition will progress and the greater the likelihood that it will develop the known sight-threatening complications of high myopia. This rise in incidence of severe myopia has contributed to an increased frequency of eye diseases in adulthood, which often complicate therapeutic procedures. Currently, no treatment is available to prevent myopia progression. Stem cell therapy can potentially address two components of myopia. Regardless of the exact etiology, myopia is always associated with scleral weakness. In this context, a strategy aimed at scleral reinforcement by transplanting connective tissue-supportive mesenchymal stem cells is an attractive approach that could yield effective and universal therapy. Sunlight exposure appears to have a protective effect against myopia. It is postulated that this effect is mediated via local ocular production of dopamine. With a variety of dopamine-producing cells already available for the treatment of Parkinson's disease, stem cells engineered for dopamine production could be used for the treatment of myopia. In this review, we further explore these concepts and present evidence from the literature to support the use of stem cell therapy for the treatment of myopia.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James T Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Rini
- Department of Art as Applied to Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
64
|
Nebbioso M, Plateroti AM, Pucci B, Pescosolido N. Role of the dopaminergic system in the development of myopia in children and adolescents. J Child Neurol 2014; 29:1739-46. [PMID: 24996871 DOI: 10.1177/0883073814538666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review summarizes the experimental evidence that supports the role of dopamine in the regulation of ocular axial growth. The most important functions attributed to dopamine are light adaptation and regulation of the retinal circadian rhythm. An increase of the retinal levels of dopamine activates D1 and D2 dopaminergic receptors present throughout the retina, generating a signal that inhibits axial growth once the eye has reached emmetropization. Researchers induced form-deprivation myopia in animal models in order to assess the different changes of ocular axial growth. Other studies have shown that phenylethylamine is an endogenous precursor-neurotransmitter capable of modulating the activity of dopamine. Considering the role of the dopaminergic system in the development of myopia (in children and adolescents) and the fact that phenylethylamine improves the consequences of a dopamine deficit, it would be interesting to study the effect of phenylethylamine on the regulation of axial growth, which represents the genesis of myopia.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | - Bruna Pucci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Nicola Pescosolido
- Department of Cardiovascular, Respiratory, Nephrology, Geriatric, and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
65
|
Cheng ZY, Wang XP, Schmid KL, Han XG. Inhibition of form-deprivation myopia by a GABAAOr receptor antagonist, (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA), in guinea pigs. Graefes Arch Clin Exp Ophthalmol 2014; 252:1939-46. [PMID: 25120102 DOI: 10.1007/s00417-014-2765-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To investigate the effects of the relatively selective GABAAOr receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on form-deprivation myopia (FDM) in guinea pigs. METHODS A diffuser was applied monocularly to 30 guinea pigs from day 10 to 21. The animals were randomized to one of five treatment groups. The deprived eye received daily sub-conjunctival injections of 100 μl TPMPA at a concentration of (i) 0.03 %, ( ii) 0.3 %, or (iii) 1 %, a fourth group (iv) received saline injections, and another (v) no injections. The fellow eye was left untreated. An additional group received no treatment to either eye. Prior to and at the end of the treatment period, refraction and ocular biometry were performed. RESULTS Visual deprivation produced relative myopia in all groups (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001); myopia was less in deprived eyes receiving either 0.3 % or 1 % TPMPA (saline = -4.38 ± 0.57D, 0.3 % TPMPA = -3.00 ± 0.48D, P < 0.01; 1 % TPMPA = -0.88 ± 0.51D, P < 0.001). The degree of axial elongation was correspondingly less (saline = 0.13 ± 0.02 mm, 0.3 % TPMPA = 0.09 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.02 ± 0.01 mm, P < 0.001) as was the VC elongation (saline = 0.08 ± 0.01 mm, 0.3 % TPMPA = 0.05 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.01 ± 0.01 mm; P < 0.001). ACD and LT were not affected (one-way ANOVA, P > 0.05). One percent TPMPA was more effective at inhibiting myopia than 0.3 % (P < 0.01), and 0.03 % did not appreciably inhibit the myopia (0.03 % TPMPA versus saline, P > 0.05). CONCLUSIONS Sub-conjunctival injections of TPMPA inhibit FDM in guinea pig models in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhen-Ying Cheng
- Department of Ophthalmology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China,
| | | | | | | |
Collapse
|
66
|
Abstract
Dopamine (DA) functions as an essential neuromodulator in the brain and retina such that disruptions in the dopaminergic system are associated with common neurologic disorders such as Parkinson's disease. Although a reduction in DA content has been observed in diabetes, its effects in the development of diabetes-induced neuropathy remains unknown. Because the retina is rich in DA and has a well known diabetes-induced pathology (diabetic retinopathy or DR), this study was designed to examine the role of retinal DA deficiency in early visual defects in DR. Using rodent models of type 1 diabetes mellitus, we investigated whether diabetes caused a reduction in retinal DA content in both rats and mice and determined whether restoring DA levels or activating specific DA receptor pathways could improve visual function (evaluated with optokinetic tracking response) of diabetic mice, potentially via improvement of retinal function (assessed with electroretinography). We found that diabetes significantly reduced DA levels by 4 weeks in rats and by 5 weeks in mice, coincident with the initial detection of visual deficits. Treatment with l-DOPA, a DA precursor, improved overall retinal and visual functions in diabetic mice and acute treatment with DA D1 or D4 receptor agonists improved spatial frequency threshold or contrast sensitivity, respectively. Together, our results indicate that retinal DA deficiency is an underlying mechanism for early, diabetes-induced visual dysfunction and suggest that therapies targeting the retinal dopaminergic system may be beneficial in early-stage DR.
Collapse
|
67
|
Backhouse S, Collins AV, Phillips JR. Influence of periodic vs continuous daily bright light exposure on development of experimental myopia in the chick. Ophthalmic Physiol Opt 2013; 33:563-72. [DOI: 10.1111/opo.12069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Backhouse
- Department of Optometry and Vision Science; The University of Auckland; Auckland; New Zealand
| | - Andrew V Collins
- Department of Optometry and Vision Science; The University of Auckland; Auckland; New Zealand
| | - John R Phillips
- Department of Optometry and Vision Science; The University of Auckland; Auckland; New Zealand
| |
Collapse
|
68
|
Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res 2013; 114:106-19. [PMID: 23434455 DOI: 10.1016/j.exer.2013.02.007] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/23/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
A large body of data is available to support the hypothesis that dopamine (DA) is one of the retinal neurotransmitters involved in the signaling cascade that controls eye growth by vision. Initially, reduced retinal DA levels were observed in eyes deprived of sharp vision by either diffusers ("deprivation myopia", DM) or negative lenses ("lens induced myopia", LIM). Simulating high retinal DA levels by intravitreal application of a DA agonist can suppress the development of both DM and LIM. Also more recent studies using knock-out mouse models of DA receptors support the idea of an association between decreased DA levels and DM. There seem to be differences in the magnitude of the effects of DA on DM and LIM, with larger changes in DM but the degrees of image degradation by both treatments need to be matched to support this conclusion. Although a number of studies have shown that the inhibitory effects of dopamine agonists on DM and LIM are mediated through stimulation of the D2-receptor, there is also recent evidence that the balance of D2- and D1-receptor activation is important. Inhibition of D2-receptors can also slow the development of spontaneous myopia in albino guinea pigs. Retinal DA content displays a distinct endogenous diurnal, and partially circadian rhythm. In addition, retinal DA is regulated by a number of visual stimuli like retinal illuminance, spatial frequency content of the image, temporal contrast and, in chicks, by the light input from the pineal organ. A close interaction was found between muscarinergic and dopaminergic systems, and between nitric oxide and dopaminergic pathways, and there is evidence for crosstalk between the different pathways, perhaps multiple binding of the ligands to different receptors. It was shown that DA agonists interact with the immediate early signaling molecule ZENK which triggers the first steps in eye growth regulation. However, since long treatment periods were often needed to induce significant changes in retinal dopamine synthesis and release, the role of dopamine in the early steps is unclear. The wide spatial distribution of dopaminergic amacrine cells in the retina and the observation that changes in dopamine levels can be locally induced by local retinal deprivation is in line with the assumption that dopaminergic mechanisms control both central and peripheral eye growth. The protective effect of outdoor activity on myopia development in children seems to be partly mediated by the stimulatory effect of light on retinal dopamine production and release. However, the dose-response function linking light exposure to dopamine and to the suppression of myopia is not known and requires further studies.
Collapse
Affiliation(s)
- Marita Feldkaemper
- Centre for Ophthalmology, Institute for Ophthalmic Research, Section of Neurobiology of the Eye, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | | |
Collapse
|
69
|
Mao JF, Liu SZ. Mechanism of the DL-alpha-aminoadipic acid inhibitory effect on form-deprived myopia in guinea pig. Int J Ophthalmol 2013; 6:19-22. [PMID: 23447057 DOI: 10.3980/j.issn.2222-3959.2013.01.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/30/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the effect of intravitreal injection of DL-alpha-aminoadipic acid (DL-α-AAA) on ocular refractive state and retinal dopamine, transforming growth factor-β2 (TGFβ2), vasoactive intestinal polypeptide (VIP) in guinea pig form-deprived myopia. METHODS Four-week-old pigmented guinea pigs were randomly assigned to 4 groups: normal control, deprivation, deprivation plus DL-α-AAA, deprivation plus saline. Form deprivation was induced with the self-made translucent eye shields, and lasted for 14 days. 8µg DL-α-AAA was injected into the vitreous chamber of deprived eyes. The corneal radius of curvature, refraction and axial length were measured. Retinal dopamine content was evaluated by the high-performance liquid chromatography with electrochemical detection, and TGFβ2 and VIP protein were detected by Western blotting. RESULTS Fourteen days of eye occlusion caused the axial length to elongate and become myopic in the form-deprived eyes, with the decrease of retinal dopamine and the increase of TGFβ2 and vasoactive intestinal polypeptide (VIP) protein. Intravitreal injection of DL-α-AAA could inhibit the myopic shift from (-3.65±1.06)D to (-1.48±0.63)D, P<0.01 due to goggles occluding and cause the decrease of retinal TGFβ2 protein in the deprived eyes. However, intravitreal injection of DL-α-AAA had no significant effect on retinal dopamine and VIP protein in deprived eyes. Retinal TGFβ2 protein correlated highly with the ocular refraction (y=-3.34+0.31/x, F=74.75, P<0.001) and axial length (y=8.39-0.02/x, F=48.32, P<0.001) in different treatment groups. CONCLUSION Intravitreal injection of DL-α-AAA is effectively able to suppress the development of form deprivation myopia, which may be associated with retinal TGFβ2 protein in guinea pigs.
Collapse
Affiliation(s)
- Jun-Feng Mao
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | | |
Collapse
|
70
|
Mao JF, Liu SZ, Qin WJ, Xiang Q. Modulation of TGFβ(2) and dopamine by PKC in retinal Müller cells of guinea pig myopic eye. Int J Ophthalmol 2011; 4:357-60. [PMID: 22553680 DOI: 10.3980/j.issn.2222-3959.2011.04.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/10/2011] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the effect of protein kinase C (PKC) on transforming growth factor-β(2) (TGFβ(2)) and dopamine in retinal Müller cells of guinea pig myopic eye. METHODS Myopia was induced by translucent goggles in guinea pig, whose retinal Müller cells were cultured using the enzyme-digesting method. Retinal Müller cells were divided into 5 groups: normal control, myopia, myopia plus GF109203X, myopia plus PMA, myopia plus DMSO. PKC activities were detected by the non-radioactive methods. TGFβ(2) and tyrosine hydroxylase (TH) proteins were analyzed by Western Blotting in retinal Müller cells. Dopamine was determined by the high-performance liquid chromatography-electrochemical detection in suspensions. RESULTS After 14 days deprived, the occluded eyes became myopic with ocular axle elongating. Müller cells of guinea pigs were obtained using enzyme digestion. Compared with normal control group, the increase in PKC activity and the up-regulation in TGFβ(2) expression were found in retinal Müller cells of myopic eyes, with the decrease of TH and dopamine content (P<0.05). After PKC activated by PMA, TGFβ(2) and TH content were up-regulated with the increase of dopamine content (P<0.05). While the PKC activities was inhibited by GF109203X, proteins of TGFβ(2) and TH were down-regulated in the myopic eyes, with the decrease of dopamine content (P<0.05). CONCLUSION TGFβ(2) and dopamine are modulated by PKC in Müller cells of the myopic eyes in guinea pig.
Collapse
Affiliation(s)
- Jun-Feng Mao
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | | | | | | |
Collapse
|
71
|
Nickla DL, Totonelly K, Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks. Exp Eye Res 2010; 91:715-20. [PMID: 20801115 PMCID: PMC2962673 DOI: 10.1016/j.exer.2010.08.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 08/12/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
The dopaminergic system has been implicated in ocular growth regulation in chicks and monkeys. In both, dopamine D2 agonists inhibit the development of myopia in response to form deprivation, and in chicks, to negative lenses as well. Because there is mounting evidence that the choroidal response to defocus plays a role in ocular growth regulation, we asked whether the effective agonists also elicit transient thickening of the choroid concomitant with the growth inhibition. Negative lenses mounted on velcro rings were worn on one eye starting at age 8-12 days. Intravitreal injections (20 μl; dose = 10 nmole) of the agonist (dissolved in saline) or saline, were given through the superior temporal sclera using a 30G needle. Eyes were injected daily at noon, for 4 days, and the lenses immediately replaced. Agonists used were apomorphine (non-specific; n = 17), quinpirole (D2; n = 10), SKF-38393 (D1; n = 9), and saline controls (n = 22). For the antagonists, the same protocol was used, but on each day, the lenses were removed for 2 h. Immediately prior to lens-removal, the antagonist was injected (20 μl; dose = 5 nmole). Antagonists used were methylergonovine (non-specific; n = 12), spiperone (D2; n = 20), SCH-23390 (D1; n = 6) and saline controls (n = 27). Comparisons to saline (continuous lens wear) controls were from the agonist experiment. Axial dimensions were measured using high frequency A-scan ultrasonography at the start of lens wear, and on day 4 prior to the injections, and then again 3 h later. Refractive errors were measured using a Hartinger's refractometer at the end of the experiment. Apomorphine and quinpirole inhibited the refractive response to the hyperopic defocus induced by the negative lenses (drug vs saline controls: -1.3 and 1.2 D vs -5.6 D; p < 0.005 for both). This effect was axial: both drugs prevented the excessive ocular elongation (change in axial length: 233 and 205 μm vs 417 μm; p < 0.01 for both). Both drugs were also associated with a transient thickening of the choroid over 3 h (41 and 32 μm vs -1 μm; p < 0.01; p = 0.059 respectively) that did not summate: choroids thinned significantly over the 4 day period in all lens-wearing eyes. Two daily hours of unrestricted vision during negative lens wear normally prevents the development of myopia. Spiperone and SCH-23390 inhibited the ameliorating effects of periods of vision on lens-induced refractive error (-2.9 and -2.8 D vs 0.6 D; p < 0.0001), however, the effects on neither axial length nor choroidal thickness were significant. These data support a role for both D1 and D2 receptors in the ocular growth responses.
Collapse
Affiliation(s)
- Debora L Nickla
- The New England College of Optometry, Dept. of Biosciences, 424 Beacon St., Boston, MA 02115, USA.
| | | | | |
Collapse
|