51
|
Zhao XZ, Maddali K, Smith SJ, Métifiot M, Johnson BC, Marchand C, Hughes SH, Pommier Y, Burke TR. 6,7-Dihydroxy-1-oxoisoindoline-4-sulfonamide-containing HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2012; 22:7309-13. [PMID: 23149229 PMCID: PMC3523327 DOI: 10.1016/j.bmcl.2012.10.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/22/2022]
Abstract
Although an extensive body of scientific and patent literature exists describing the development of HIV-1 integrase (IN) inhibitors, Merck's raltegravir and Gilead's elvitegravir remain the only IN inhibitors FDA-approved for the treatment of AIDS. The emergence of raltegravir-resistant strains of HIV-1 containing mutated forms of IN underlies the need for continued efforts to enhance the efficacy of IN inhibitors against resistant mutants. We have previously described bicyclic 6,7-dihydroxyoxoisoindolin-1-ones that show good IN inhibitory potency. This report describes the effects of introducing substituents into the 4- and 5-positions of the parent 6,7-dihydroxyoxoisoindolin-1-one platform. We have developed several sulfonamide-containing analogs that enhance potency in cell-based HIV assays by more than two orders-of-magnitude and we describe several compounds that are more potent than raltegravir against the clinically relevant Y143R IN mutant.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Kasthuraiah Maddali
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Steven J. Smith
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Mathieu Métifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Barry C. Johnson
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Stephen H. Hughes
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| |
Collapse
|
52
|
Abstract
PURPOSE OF THE REVIEW Changing antiretroviral regimens and the introduction of new antiretroviral drugs have altered drug resistance patterns in human immunodeficiency virus type 1 (HIV-1). This review summarizes recent information on antiretroviral drug resistance. RECENT FINDINGS As tenofovir and abacavir have replaced zidovudine and stavudine in antiretroviral regimens, thymidine analog resistance mutations have become less common in patients failing antiretroviral therapy in developed countries. Similarly, the near universal use of ritonavir-boosted protease inhibitors (PI) in place of unboosted PIs has made the selection of PI resistance mutations uncommon in patients failing a first-line or second-line PI regimen. The challenge of treating patients with multidrug-resistant HIV-1 has largely been addressed by the advent of newer PIs, second-generation non-nucleoside reverse transcriptase inhibitors and drugs in novel classes, including integrase inhibitors and CCR5 antagonists. Resistance to these newer agents can emerge, however, resulting in the appearance of novel drug resistance mutations in the HIV-1 polymerase, integrase and envelope genes. SUMMARY New drugs make possible the effective treatment of multidrug-resistant HIV-1, but the activity of these drugs may be limited by the appearance of novel drug resistance mutations.
Collapse
|
53
|
Wainberg MA, Mesplède T, Quashie PK. The development of novel HIV integrase inhibitors and the problem of drug resistance. Curr Opin Virol 2012; 2:656-62. [PMID: 22989757 DOI: 10.1016/j.coviro.2012.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 08/15/2012] [Accepted: 08/21/2012] [Indexed: 02/06/2023]
Abstract
Although all HIV drugs developed to date are prone to the problem of drug resistance, there is hope that second generation integrase inhibitors may prove to be relatively resilient to this problem and to retain efficacy over long periods. This review summarizes information about the integrase mutations identified to date and about why the most recently developed members of this drug class may be superior to earlier drugs. Several newly identified resistance mutations, such as G118R, R263K and S153Y, have been identified through tissue culture selection studies with second-generation integrase strand-transfer inhibitors (INSTIs). These new mutations add to our understanding of the three previously identified resistance pathways involving mutations at positions Y143, N155 and Q148. Biochemical analyses structural modeling, and deep sequencing are methods that currently help in the understanding of the mechanisms of resistance conferred by these various substitutions. Despite the fact that these new resistance mutations confer only low-level cross-resistance to second-generation drugs, the Q148 pathway with numerous secondary mutations has the potential to significantly decrease susceptibility to all members of the INSTI family of drugs. Selection of mutations in vitro with second-generation INSTIs suggests that only low level cross-resistance may exist between these new drugs and first-generation members of this class. The emergence of mutations at position Q148 should be monitored whenever possible and more data are needed to assess the long-term efficacy of second-generation INSTIs in patients who may have failed older INSTIs such as elvitegravir and raltegravir.
Collapse
Affiliation(s)
- Mark A Wainberg
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
54
|
Schrijvers R, Debyser Z. Combinational therapies for HIV: a focus on EVG/COBI/FTC/TDF. Expert Opin Pharmacother 2012; 13:1969-83. [DOI: 10.1517/14656566.2012.712514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
55
|
De Clercq E. Tenofovir: Quo Vadis Anno 2012 (Where Is It Going in the Year 2012)
? Med Res Rev 2012; 32:765-85. [PMID: 22581627 DOI: 10.1002/med.21267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat; 10, B-3000 Leuven Belgium
| |
Collapse
|
56
|
Marchand C. The elvitegravir Quad pill: the first once-daily dual-target anti-HIV tablet. Expert Opin Investig Drugs 2012; 21:901-4. [PMID: 22571404 DOI: 10.1517/13543784.2012.685653] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anti-HIV combination therapies in a single formulation currently target only HIV-1 reverse transcriptase via two different mechanisms of action by associating a nucleoside and a non-nucleoside reverse transcriptase inhibitor. These combination therapies are therefore referred to as multi-class combination products. The elvitegravir Quad pill (Gilead Sciences), when approved by the Food and Drug Administration for the treatment of HIV/AIDS, will become the first once-daily dual-target anti-HIV tablet. This "4 in 1" tablet targets HIV-1 integrase by elvitegravir boosted by the pharmaco-enhancer cobicistat and HIV-1 reverse transcriptase by the two nucleoside reverse transcriptase inhibitors emtricitabine + tenofovir disoproxil fumarate. A second pill referred to as the 572-Trii pill (Shionogi-ViiV Healthcare, LLC), also based on the dual inhibition of integrase and reverse transcriptase, is currently in late-phase clinical trials. The availability of these novel once-daily anti-HIV tablets will improve treatment adherence and offer new perspective for patient failing existing antiviral regimens.
Collapse
|
57
|
Quashie PK, Sloan RD, Wainberg MA. Novel therapeutic strategies targeting HIV integrase. BMC Med 2012; 10:34. [PMID: 22498430 PMCID: PMC3348091 DOI: 10.1186/1741-7015-10-34] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/12/2012] [Indexed: 01/17/2023] Open
Abstract
Integration of the viral genome into host cell chromatin is a pivotal and unique step in the replication cycle of retroviruses, including HIV. Inhibiting HIV replication by specifically blocking the viral integrase enzyme that mediates this step is an obvious and attractive therapeutic strategy. After concerted efforts, the first viable integrase inhibitors were developed in the early 2000s, ultimately leading to the clinical licensure of the first integrase strand transfer inhibitor, raltegravir. Similarly structured compounds and derivative second generation integrase strand transfer inhibitors, such as elvitegravir and dolutegravir, are now in various stages of clinical development. Furthermore, other mechanisms aimed at the inhibition of viral integration are being explored in numerous preclinical studies, which include inhibition of 3' processing and chromatin targeting. The development of new clinically useful compounds will be aided by the characterization of the retroviral intasome crystal structure. This review considers the history of the clinical development of HIV integrase inhibitors, the development of antiviral drug resistance and the need for new antiviral compounds.
Collapse
Affiliation(s)
- Peter K Quashie
- McGill University AIDS Centre, Lady Davis Institute, Montreal, Canada
| | | | | |
Collapse
|
58
|
He QQ, Zhang X, Yang LM, Zheng YT, Chen F. Synthesis and biological evaluation of 5-fluoroquinolone-3-carboxylic acids as potential HIV-1 integrase inhibitors. J Enzyme Inhib Med Chem 2012; 28:671-6. [DOI: 10.3109/14756366.2012.668540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Qiu-Qin He
- Department of Chemistry, Fudan University,
Shanghai, P R China
| | - Xuan Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P R China
- Faculty of Pharmacy, Kunming Medical University,
Kunming, P R China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P R China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P R China
| | - Fener Chen
- Department of Chemistry, Fudan University,
Shanghai, P R China
| |
Collapse
|
59
|
Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens. Antimicrob Agents Chemother 2012; 56:2873-8. [PMID: 22450969 DOI: 10.1128/aac.06170-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The failure of raltegravir (RAL) is generally associated with the selection of mutations at integrase position Y143, Q148, or N155. However, a relatively high proportion of failures occurs in the absence of these changes. Here, we report the phenotypic susceptibilities to RAL and elvitegravir (EVG) for a large group of HIV-infected patients failing on RAL-containing regimens. Plasma from HIV-infected individuals failing on RAL-containing regimens underwent genotypic and phenotypic resistance testing (Antivirogram v2.5.01; Virco). A control group of patients failing on other regimens was similarly tested. Sixty-one samples were analyzed, 40 of which belonged to patients failing on RAL-containing regimens. Full RAL susceptibility was found in 20/21 controls, while susceptibility to EVG was diminished in 8 subjects, with a median fold change (FC) of 2.5 (interquartile range [IQR], 2.1 to 3.1). Fourteen samples from patients with RAL failures showed diminished RAL susceptibility, with a median FC of 38.5 (IQR, 10.8 to 103.2). Primary integrase resistance mutations were found in 11 of these samples, displaying a median FC of 68.5 (IQR, 23.5 to 134.3). The remaining 3 samples showed a median FC of 2.5 (IQR, 2 to 2.7). EVG susceptibility was diminished in 19/40 samples from patients with RAL failures (median FC, 7.71 [IQR, 2.48 to 99.93]). Cross-resistance between RAL and EVG was high (R(2) = 0.8; P < 0.001), with drug susceptibility being more frequently reduced for EVG than for RAL (44.3% versus 24.6%; P = 0.035). Susceptibility to RAL and EVG is rarely affected in the absence of primary integrase resistance mutations. There is broad cross-resistance between RAL and EVG, which should preclude their sequential use. Resistance to EVG seems to be more frequent and might be more influenced by integrase variability.
Collapse
|
60
|
Quashie PK, Mesplède T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, Underwood MR, Wainberg MA. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 2012. [PMID: 22205735 DOI: 10.1128/jvi.06591-11/asset/c94b8e9c-dc59-486e-aec2-9c3d1e3bd09a/assets/graphic/zjv9990957020005.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Integrase (IN) strand transfer inhibitors (INSTIs) have been developed to inhibit the ability of HIV-1 integrase to irreversibly link the reverse-transcribed viral DNA to the host genome. INSTIs have proven their high efficiency in inhibiting viral replication in vitro and in patients. However, first-generation INSTIs have only a modest genetic barrier to resistance, allowing the virus to escape these powerful drugs through several resistance pathways. Second-generation INSTIs, such as dolutegravir (DTG, S/GSK1349572), have been reported to have a higher resistance barrier, and no novel drug resistance mutation has yet been described for this drug. Therefore, we performed in vitro selection experiments with DTG using viruses of subtypes B, C, and A/G and showed that the most common mutation to emerge was R263K. Further analysis by site-directed mutagenesis showed that R263K does confer low-level resistance to DTG and decreased integration in cell culture without altering reverse transcription. Biochemical cell-free assays performed with purified IN enzyme containing R263K confirmed the absence of major resistance against DTG and showed a slight decrease in 3' processing and strand transfer activities compared to the wild type. Structural modeling suggested and in vitro IN-DNA binding assays show that the R263K mutation affects IN-DNA interactions.
Collapse
Affiliation(s)
- Peter K Quashie
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
INTRODUCTION Elvitegravir (EVG) is a potent inhibitor of HIV-1 integrase (IN) undergoing Phase III clinical trials. It blocks the strand-transfer step in a multi-step process that allows double-stranded cDNA to be irreversibly incorporated within the host DNA. It is the second member of the HIV-1 IN inhibitor class, following raltegravir. Co-administration with a CYP3A inhibitor, such as ritonavir or cobicistat, substantially increases EVG plasma exposure and prolongs elimination half-life. AREAS COVERED A Medline review of Phase II and III trials involving EVG as well as a review of abstracts from major HIV and infectious disease conferences from 2010 to 2011 was conducted. EVG produces rapid and durable virologic suppression when combined with active background therapy. Trials investigating the efficacy of once-daily co-formulated elvitegravir/cobicistat/emtricitabine/tenofovir (EVG/COBI/FTC/TDF) demonstrate a high rate of virologic suppression with fewer CNS and psychiatric adverse events compared with co-formulated efavirenz/emtricitabine/tenofovir. The resistance profile for EVG is similar to raltegravir. EXPERT OPINION Co-formulated EVG/COBI/FTC/TDF is an option for the treatment of antiretroviral naïve and experienced patients. Once-daily dosing offers an advantage over raltegravir, but the requirement for pharmacologic boosting increases regimen complexity. Dolutegravir in development offers a favorable resistance profile and no requirement for pharmacologic boosting.
Collapse
Affiliation(s)
- Todd Wills
- Division of Infectious Disease and International Medicine, University of South Florida College of Medicine, 1 Tampa General Circle, Tampa, FL, USA.
| | | |
Collapse
|
62
|
Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 2011; 86:2696-705. [PMID: 22205735 DOI: 10.1128/jvi.06591-11] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Integrase (IN) strand transfer inhibitors (INSTIs) have been developed to inhibit the ability of HIV-1 integrase to irreversibly link the reverse-transcribed viral DNA to the host genome. INSTIs have proven their high efficiency in inhibiting viral replication in vitro and in patients. However, first-generation INSTIs have only a modest genetic barrier to resistance, allowing the virus to escape these powerful drugs through several resistance pathways. Second-generation INSTIs, such as dolutegravir (DTG, S/GSK1349572), have been reported to have a higher resistance barrier, and no novel drug resistance mutation has yet been described for this drug. Therefore, we performed in vitro selection experiments with DTG using viruses of subtypes B, C, and A/G and showed that the most common mutation to emerge was R263K. Further analysis by site-directed mutagenesis showed that R263K does confer low-level resistance to DTG and decreased integration in cell culture without altering reverse transcription. Biochemical cell-free assays performed with purified IN enzyme containing R263K confirmed the absence of major resistance against DTG and showed a slight decrease in 3' processing and strand transfer activities compared to the wild type. Structural modeling suggested and in vitro IN-DNA binding assays show that the R263K mutation affects IN-DNA interactions.
Collapse
|
63
|
Zhao XZ, Maddali K, Metifiot M, Smith SJ, Vu BC, Marchand C, Hughes SH, Pommier Y, Burke TR. Bicyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors. Chem Biol Drug Des 2011; 79:157-65. [PMID: 22107736 DOI: 10.1111/j.1747-0285.2011.01270.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HIV-1 integrase (IN) is a validated therapeutic target for the treatment of AIDS. However, the emergence of resistance to raltegravir, the sole marketed FDA-approved IN inhibitor, emphasizes the need to develop second-generation inhibitors that retain efficacy against clinically relevant IN mutants. We report herein bicyclic hydroxy-1H-pyrrolopyridine-triones as a new family of HIV-1 integrase inhibitors that were efficiently prepared using a key 'Pummerer cyclization deprotonation cycloaddition' cascade of imidosulfoxides. In in vitro HIV-1 integrase assays, the analogs showed low micromolar inhibitory potencies with selectivity for strand transfer reactions as compared with 3'-processing inhibition. A representative inhibitor (5e) retained most of its inhibitory potency against the three major raltegravir-resistant IN mutant enzymes, G140S/Q148H, Y143R, and N155H. In antiviral assays employing viral vectors coding these IN mutants, compound 5e was approximately 200- and 20-fold less affected than raltegravir against the G140S/Q148H and Y143R mutations, respectively. Against the N155H mutation, 5e was approximately 10-fold less affected than raltegravir. Thus, our new compounds represent a novel structural class that may be further developed to overcome resistance to raltegravir, particularly in the case of the G140S/Q148H mutations.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Pommier Y, Marchand C. Interfacial inhibitors: targeting macromolecular complexes. Nat Rev Drug Discov 2011; 11:25-36. [PMID: 22173432 DOI: 10.1038/nrd3404] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interfacial inhibitors belong to a broad class of natural products and synthetic drugs that are commonly used to treat cancers as well as bacterial and HIV infections. They bind selectively to interfaces as macromolecular machines assemble and are set in motion. The bound drugs transiently arrest the targeted molecular machines, which can initiate allosteric effects, or desynchronize macromolecular machines that normally function in concert. Here, we review five archetypical examples of interfacial inhibitors: the camptothecins, etoposide, the quinolone antibiotics, the vinca alkaloids and the novel anti-HIV inhibitor raltegravir. We discuss the common and diverging elements between interfacial and allosteric inhibitors and give a perspective for the rationale and methods used to discover novel interfacial inhibitors.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
65
|
Molecular dynamics approaches estimate the binding energy of HIV-1 integrase inhibitors and correlate with in vitro activity. Antimicrob Agents Chemother 2011; 56:411-9. [PMID: 22037850 DOI: 10.1128/aac.05292-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The design of novel integrase (IN) inhibitors has been aided by recent crystal structures revealing the binding mode of these compounds with a full-length prototype foamy virus (PFV) IN and synthetic viral DNA ends. Earlier docking studies relied on incomplete structures and did not include the contribution of the viral DNA to inhibitor binding. Using the structure of PFV IN as the starting point, we generated a model of the corresponding HIV-1 complex and developed a molecular dynamics (MD)-based approach that correlates with the in vitro activities of novel compounds. Four well-characterized compounds (raltegravir, elvitegravir, MK-0536, and dolutegravir) were used as a training set, and the data for their in vitro activity against the Y143R, N155H, and G140S/Q148H mutants were used in addition to the wild-type (WT) IN data. Three additional compounds were docked into the IN-DNA complex model and subjected to MD simulations. All three gave interaction potentials within 1 standard deviation of values estimated from the training set, and the most active compound was identified. Additional MD analysis of the raltegravir- and dolutegravir-bound complexes gave internal and interaction energy values that closely match the experimental binding energy of a compound related to raltegravir that has similar activity. These approaches can be used to gain a deeper understanding of the interactions of the inhibitors with the HIV-1 intasome and to identify promising scaffolds for novel integrase inhibitors, in particular, compounds that retain activity against a range of drug-resistant mutants, making it possible to streamline synthesis and testing.
Collapse
|
66
|
Hare S, Smith SJ, Métifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, Cherepanov P. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol 2011; 80:565-72. [PMID: 21719464 PMCID: PMC3187526 DOI: 10.1124/mol.111.073189] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022] Open
Abstract
Raltegravir (RAL) and related HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) efficiently block viral replication in vitro and suppress viremia in patients. These small molecules bind to the IN active site, causing it to disengage from the deoxyadenosine at the 3' end of viral DNA. The emergence of viral strains that are highly resistant to RAL underscores the pressing need to develop INSTIs with improved resistance profiles. Herein, we show that the candidate second-generation drug dolutegravir (DTG, S/GSK1349572) effectively inhibits a panel of HIV-1 IN variants resistant to first-generation INSTIs. To elucidate the structural basis for the increased potency of DTG against RAL-resistant INs, we determined crystal structures of wild-type and mutant prototype foamy virus intasomes bound to this compound. The overall IN binding mode of DTG is strikingly similar to that of the tricyclic hydroxypyrrole MK-2048. Both second-generation INSTIs occupy almost the same physical space within the IN active site and make contacts with the β4-α2 loop of the catalytic core domain. The extended linker region connecting the metal chelating core and the halobenzyl group of DTG allows it to enter farther into the pocket vacated by the displaced viral DNA base and to make more intimate contacts with viral DNA, compared with those made by RAL and other INSTIs. In addition, our structures suggest that DTG has the ability to subtly readjust its position and conformation in response to structural changes in the active sites of RAL-resistant INs.
Collapse
Affiliation(s)
- Stephen Hare
- Division of Infectious Diseases, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
With the U.S. Food and Drug Administration approval of raltegravir (RAL; MK-0518; Merck & Co.), HIV-1 integrase (IN) is the newest therapeutic target for AIDS and HIV infections. Recent structural analyses show that IN strand transfer inhibitors (INSTIs) share a common binding mode in the enzyme active site. While RAL represents a therapeutic breakthrough, the emergence of IN resistance mutations imposes the development of new INSTIs. We report here the biochemical and antiviral activities of MK-0536, a new IN inhibitor. We demonstrate that, like RAL, MK-0536 is highly potent against recombinant IN and viral replication. It is also effective against INs that carry the three main RAL resistance mutations (Y143R, N155H, and to a lesser extent G140S-Q148H) and against the G118R mutant. Modeling of IN developed from recent prototype foamy virus structures is presented to account for the differences in the drug activities of MK-0536 and RAL against the IN mutants.
Collapse
|
68
|
Ni XJ, Delelis O, Charpentier C, Storto A, Collin G, Damond F, Descamps D, Mouscadet JF. G140S/Q148R and N155H mutations render HIV-2 Integrase resistant to raltegravir whereas Y143C does not. Retrovirology 2011; 8:68. [PMID: 21854605 PMCID: PMC3170264 DOI: 10.1186/1742-4690-8-68] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/19/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND HIV-2 is endemic in West Africa and has spread throughout Europe. However, the alternatives for HIV-2-infected patients are more limited than for HIV-1. Raltegravir, an integrase inhibitor, is active against wild-type HIV-2, with a susceptibility to this drug similar to that of HIV-1, and is therefore a promising option for use in the treatment of HIV-2-infected patients. Recent studies have shown that HIV-2 resistance to raltegravir involves one of three resistance mutations, N155H, Q148R/H and Y143C, previously identified as resistance determinants in the HIV-1 integrase coding sequence. The resistance of HIV-1 IN has been confirmed in vitro for mutated enzymes harboring these mutations, but no such confirmation has yet been obtained for HIV-2. RESULTS The integrase coding sequence was amplified from plasma samples collected from ten patients infected with HIV-2 viruses, of whom three RAL-naïve and seven on RAL-based treatment at the time of virological failure. The genomes of the resistant strains were cloned and three patterns involving N155H, G140S/Q148R or Y143C mutations were identified. Study of the susceptibility of integrases, either amplified from clinical isolates or obtained by mutagenesis demonstrated that mutations at positions 155 and 148 render the integrase resistant to RAL. The G140S mutation conferred little resistance, but compensated for the catalytic defect due to the Q148R mutation. Conversely, Y143C alone did not confer resistance to RAL unless E92Q is also present. Furthermore, the introduction of the Y143C mutation into the N155H resistant background decreased the resistance level of enzymes containing the N155H mutation. CONCLUSION This study confirms that HIV-2 resistance to RAL is due to the N155H, G140S/Q148R or E92Q/Y143C mutations. The N155H and G140S/Q148R mutations make similar contributions to resistance in both HIV-1 and HIV-2, but Y143C is not sufficient to account for the resistance of HIV-2 genomes harboring this mutation. For Y143C to confer resistance in vitro, it must be accompanied by E92Q, which therefore plays a more important role in the HIV-2 context than in the HIV-1 context. Finally, the Y143C mutation counteracts the resistance conferred by the N155H mutation, probably accounting for the lack of detection of these mutations together in a single genome.
Collapse
Affiliation(s)
- Xiao-Ju Ni
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | | | | | | | | | | | | | | |
Collapse
|