51
|
Rahman MA, Kuse N, Murakoshi H, Chikata T, Gatanaga H, Oka S, Takiguchi M. Raltegravir and elvitegravir-resistance mutation E92Q affects HLA-B*40:02-restricted HIV-1-specific CTL recognition. Microbes Infect 2014; 16:434-8. [PMID: 24657622 DOI: 10.1016/j.micinf.2014.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
Interplay between drug-resistance mutations in CTL epitopes and HIV-1-specific CTLs may influence the control of HIV-1 viremia. However, the effect of integrase inhibitor (INI)-resistance mutations on the CTL recognition has not been reported. We here investigated the effect of a raltegravir and elvitegravir-resistance mutation (E92Q) on HLA-B*40:02-restricted Int92-102 (EL11: ETGQETAYFLL)-specific CTLs. EL11-specific CTLs recognized E92Q peptide-pulsed and E92Q mutant virus-infected cells less effectively than EL11 peptide-pulsed and wild-type virus-infected cells, respectively. Ex vivo ELISpot analysis showed no induction of E92Q-specific T cells in chronically HIV-1-infected individuals. Thus, we demonstrated that EL11-specific CTL recognition was affected by the INI-resistance mutation.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
52
|
Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AJ. Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des 2014; 28:327-45. [PMID: 24595873 DOI: 10.1007/s10822-014-9723-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components--a small "virtual screening" challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.
Collapse
Affiliation(s)
- David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Interrogating HIV integrase for compounds that bind--a SAMPL challenge. J Comput Aided Mol Des 2014; 28:347-62. [PMID: 24532034 DOI: 10.1007/s10822-014-9721-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/25/2014] [Indexed: 12/22/2022]
Abstract
Tremendous gains and novel methods are often developed when people are challenged to do something new or difficult. This process is enhanced when people compete against each other-this can be seen in sport as well as in science and technology (e.g. the space race). The SAMPL challenges, like the CASP challenges, aim to challenge modellers and software developers to develop new ways of looking at molecular interactions so the community as a whole can progress in the accurate prediction of these interactions. In order for this challenge to occur, data must be supplied so the prospective test can be done. We have supplied unpublished data related to a drug discovery program run several years ago on HIV integrase for the SAMPL4 challenge. This paper describes the methods used to obtain these data and the chemistry involved.
Collapse
|
54
|
Zhao XZ, Smith SJ, Métifiot M, Johnson BC, Marchand C, Pommier Y, Hughes SH, Burke TR. Bicyclic 1-hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamide-containing HIV-1 integrase inhibitors having high antiviral potency against cells harboring raltegravir-resistant integrase mutants. J Med Chem 2014; 57:1573-82. [PMID: 24471816 PMCID: PMC3983366 DOI: 10.1021/jm401902n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Integrase
(IN) inhibitors are the newest class of antiretroviral
agents developed for the treatment of HIV-1 infections. Merck’s
Raltegravir (RAL) (October 2007) and Gilead’s Elvitegravir
(EVG) (August 2012), which act as IN strand transfer inhibitors (INSTIs),
were the first anti-IN drugs to be approved by the FDA. However, the
virus develops resistance to both RAL and EVG, and there is extensive
cross-resistance to these two drugs. New “2nd-generation”
INSTIs are needed that will have greater efficacy against RAL- and
EVG-resistant strains of IN. The FDA has recently approved the first
second generation INSTI, GSK’s Dolutegravir (DTG) (August 2013).
Our current article describes the design, synthesis, and evaluation
of a series of 1,8-dihydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamides,
1,4-dihydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides,
and 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides.
This resulted in the identification of noncytotoxic inhibitors that
exhibited single digit nanomolar EC50 values against HIV-1
vectors harboring wild-type IN in cell-based assays. Importantly,
some of these new inhibitors retain greater antiviral efficacy compared
to that of RAL when tested against a panel of IN mutants that included
Y143R, N155H, G140S/Q148H, G118R, and E138K/Q148K.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health , Frederick, Maryland 21702, United States
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Menéndez-Arias L, Alvarez M. Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Res 2014; 102:70-86. [PMID: 24345729 DOI: 10.1016/j.antiviral.2013.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022]
Abstract
One to two million people worldwide are infected with the human immunodeficiency virus type 2 (HIV-2), with highest prevalences in West African countries, but also present in Western Europe, Asia and North America. Compared to HIV-1, HIV-2 infection undergoes a longer asymptomatic phase and progresses to AIDS more slowly. In addition, HIV-2 shows lower transmission rates, probably due to its lower viremia in infected individuals. There is limited experience in the treatment of HIV-2 infection and several antiretroviral drugs used to fight HIV-1 are not effective against HIV-2. Effective drugs against HIV-2 include nucleoside analogue reverse transcriptase (RT) inhibitors (e.g. zidovudine, tenofovir, lamivudine, emtricitabine, abacavir, stavudine and didanosine), protease inhibitors (saquinavir, lopinavir and darunavir), and integrase inhibitors (raltegravir, elvitegravir and dolutegravir). Maraviroc, a CCR5 antagonist blocking coreceptor binding during HIV entry, is active in vitro against CCR5-tropic HIV-2 but more studies are needed to validate its use in therapeutic treatments against HIV-2 infection. HIV-2 strains are naturally resistant to a few antiretroviral drugs developed to suppress HIV-1 propagation such as nonnucleoside RT inhibitors, several protease inhibitors and the fusion inhibitor enfuvirtide. Resistance selection in HIV-2 appears to be faster than in HIV-1. In this scenario, the development of novel drugs specific for HIV-2 is an important priority. In this review, we discuss current anti-HIV-2 therapies and mutational pathways leading to drug resistance.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Mar Alvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
56
|
Hurt CB, Sebastian J, Hicks CB, Eron JJ. Resistance to HIV integrase strand transfer inhibitors among clinical specimens in the United States, 2009-2012. Clin Infect Dis 2013; 58:423-31. [PMID: 24145878 DOI: 10.1093/cid/cit697] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Data on integrase inhibitor resistance come primarily from clinical trials and in vitro studies. We examined results of all clinically indicated integrase genotypic resistance tests (GRTs) performed at a US national referral lab from 2009 through 2012. METHODS Integrase sequences and demographic data were compiled with paired protease-reverse transcriptase (PR-RT) GRT results, when available. Analyses utilized the Stanford HIV Drug Resistance Database. "Major" integrase mutations included T66AIK, E92QV, F121Y, Y143CHR, S147G, Q148HKR, and N155H; multiple accessory mutations were also assessed. RESULTS Among 3294 sequences from 3012 patients, 471 patients had viruses with ≥ 1 raltegravir or elvitegravir resistance mutation (15.6%). Q148 and N155 pathways were equally represented (both n = 197); 84 had Y143 mutations. Q148 rarely occurred without accessory mutations (n = 3). Among 224 patients with serial integrase GRTs, 22 with baseline wild-type acquired a major mutation, after a median 224 days between tests (interquartile range, 148-335 days). Major mutations were observed to persist up to 462 days. Most (62%) had paired PR-RT results. Patients with integrase-resistant viruses were older and more likely to have PR-RT mutations (both P < .001). Among those with PR-RT data, 42 patients had 4-class resistance (2.3%). Sex, geographic region, and test year were not associated with integrase resistance. High-level dolutegravir resistance was predicted in 12% of patients with raltegravir- or elvitegravir-resistant viruses (2% of all patients). CONCLUSIONS Approximately 1 in 6 US patients undergoing integrase GRT for clinical decision making harbors significant resistance, with Q148 and N155 pathways equally common. Dolutegravir is likely to have full or partial activity against most variants observed.
Collapse
Affiliation(s)
- Christopher B Hurt
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | | | | | | |
Collapse
|
57
|
Krotova O, Starodubova E, Petkov S, Kostic L, Agapkina J, Hallengärd D, Viklund A, Latyshev O, Gelius E, Dillenbeck T, Karpov V, Gottikh M, Belyakov IM, Lukashov V, Isaguliants MG. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells. PLoS One 2013; 8:e62720. [PMID: 23667513 PMCID: PMC3648577 DOI: 10.1371/journal.pone.0062720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN) of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V) with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids) were highly expressed in human and murine cell lines (>0.7 ng/cell). Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus-infected cells via both MHC class I and II pathways.
Collapse
Affiliation(s)
- Olga Krotova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Agapkina
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alecia Viklund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Vadim Karpov
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Marina Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor M. Belyakov
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, and the Department of Internal Medicine, University of Michigan, School of Medicine, Ann Arbor, Michigan, United States of America
| | - Vladimir Lukashov
- DI Ivanovsky Institute of Virology, Moscow, Russia
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria G. Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- * E-mail:
| |
Collapse
|