51
|
Sudarski S, Hagelstein C, Weis M, Schoenberg SO, Apfaltrer P. Dual-energy snap-shot perfusion CT in suspect pulmonary nodules and masses and for lung cancer staging. Eur J Radiol 2015; 84:2393-400. [DOI: 10.1016/j.ejrad.2015.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/27/2015] [Indexed: 10/23/2022]
|
52
|
Nakane J, Kobayashi Y, Shiozawa T. [Isotropic Evaluation of Streak Artifact Using Extreme Value Statistical Analysis]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2015; 71:1165-1173. [PMID: 26685827 DOI: 10.6009/jjrt.2015_jsrt_71.12.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Previous studies have shown that extreme value statistics are useful for quantitative evaluations of streak artifacts on multi-detector computed tomography (MDCT). However, we hypothesized that the scanning direction of the extreme value would affect the quantitative value obtained using the conventional method. In this study, we developed the region of interest rotation method and calculating the extreme value, and we investigated the usefulness of this method in comparison with the conventional approach. For our examination, the high absorber was placed around a water phantom and a head and chest phantom. In the new method, linearity was confirmed in the Gumbel plot of all the phantoms. On the other hand, the value of the location parameter was significantly different according to the scanning direction with the conventional method. In conclusion, compared to the conventional method, the isotropic method of evaluation does not depend on the direction of streak artifact occurrence in the new method.
Collapse
Affiliation(s)
- Jun Nakane
- Department of Radiology, Saitama Medical Center, Saitama Medical University
| | | | | |
Collapse
|
53
|
Dynamic volume perfusion computed tomography parameters versus RECIST for the prediction of outcome in lung cancer patients treated with conventional chemotherapy. J Thorac Oncol 2015; 10:164-71. [PMID: 25247342 DOI: 10.1097/jto.0000000000000376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION To compare dynamic volume perfusion computed tomography (dVPCT) parameters with Response Evaluation Criteria in Solid Tumors (RECIST 1.1) for prediction of therapy response and overall survival (OS) in non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients treated with conventional chemotherapy. METHODS A total of 173 lung cancer patients (131 men; 61 ± 10 years) undergoing dVPCT before (T1) and after chemotherapy (T2) and follow-up were prospectively included. dVPCT-derived blood flow, blood volume, mean transit time, and permeability (PERM) were assessed, compared between NSCLC and SCLC and patients' response to therapy was determined according to RECIST 1.1. RESULTS One hundred of one hundred and seventy-three patients underwent dVPCT at T1 and T2 within a median of 44 (range, 31-108) days. dVPCT values were differing in NSCLC and SCLC, but were not significantly differing between patients with partial response, stable, or progressive disease. Eighty-five patients (NSCLC = 72 and SCLC = 13) with a follow-up for greater than or equal to 6 months were analyzed for OS. Fifty-six of eighty-five patients died during follow-up. Receiver operating characteristic analysis determined T1/T2 with highest predictive values regarding OS for blood flow, blood volume, mean transit time, and permeability (area under the curve: 0.53, 0.61, 0.54, and 0.53, respectively, all p > 0.05). Kaplan-Meier statistics revealed OS of patient groups assigned according to dVPCT T1/T2 cutoff values was not differing for neither dVPCT parameter, whereas RECIST groups significantly differed in OS (p = 0.02). Cox proportional hazards regression determined progressive disease status to independently predict OS (p = 0.004), while none of the dVPCT parameters did so. CONCLUSIONS dVPCT values, differ between NSCLC and SCLC, are not related to RECIST 1.1 classification and do not improve OS prediction in lung cancer patients treated with conventional chemotherapy.
Collapse
|
54
|
Kuchenbecker S, Faby S, Sawall S, Lell M, Kachelrieß M. Dual energy CT: how well can pseudo-monochromatic imaging reduce metal artifacts? Med Phys 2015; 42:1023-36. [PMID: 25652515 DOI: 10.1118/1.4905106] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Dual Energy CT (DECT) provides so-called monoenergetic images based on a linear combination of the original polychromatic images. At certain patient-specific energy levels, corresponding to certain patient- and slice-dependent linear combination weights, e.g., E = 160 keV corresponds to α = 1.57, a significant reduction of metal artifacts may be observed. The authors aimed at analyzing the method for its artifact reduction capabilities to identify its limitations. The results are compared with raw data-based processing. METHODS Clinical DECT uses a simplified version of monochromatic imaging by linearly combining the low and the high kV images and by assigning an energy to that linear combination. Those pseudo-monochromatic images can be used by radiologists to obtain images with reduced metal artifacts. The authors analyzed the underlying physics and carried out a series expansion of the polychromatic attenuation equations. The resulting nonlinear terms are responsible for the artifacts, but they are not linearly related between the low and the high kV scan: A linear combination of both images cannot eliminate the nonlinearities, it can only reduce their impact. Scattered radiation yields additional noncanceling nonlinearities. This method is compared to raw data-based artifact correction methods. To quantify the artifact reduction potential of pseudo-monochromatic images, they simulated the FORBILD abdomen phantom with metal implants, and they assessed patient data sets of a clinical dual source CT system (100, 140 kV Sn) containing artifacts induced by a highly concentrated contrast agent bolus and by metal. In each case, they manually selected an optimal α and compared it to a raw data-based material decomposition in case of simulation, to raw data-based material decomposition of inconsistent rays in case of the patient data set containing contrast agent, and to the frequency split normalized metal artifact reduction in case of the metal implant. For each case, the contrast-to-noise ratio (CNR) was assessed. RESULTS In the simulation, the pseudo-monochromatic images yielded acceptable artifact reduction results. However, the CNR in the artifact-reduced images was more than 60% lower than in the original polychromatic images. In contrast, the raw data-based material decomposition did not significantly reduce the CNR in the virtual monochromatic images. Regarding the patient data with beam hardening artifacts and with metal artifacts from small implants the pseudo-monochromatic method was able to reduce the artifacts, again with the downside of a significant CNR reduction. More intense metal artifacts, e.g., as those caused by an artificial hip joint, could not be suppressed. CONCLUSIONS Pseudo-monochromatic imaging is able to reduce beam hardening, scatter, and metal artifacts in some cases but it cannot remove them. In all cases, the CNR is significantly reduced, thereby rendering the method questionable, unless special post processing algorithms are implemented to restore the high CNR from the original images (e.g., by using a frequency split technique). Raw data-based dual energy decomposition methods should be preferred, in particular, because the CNR penalty is almost negligible.
Collapse
Affiliation(s)
| | - Sebastian Faby
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Stefan Sawall
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Michael Lell
- Friedrich-Alexander-University (FAU), Erlangen 91054, Germany
| | - Marc Kachelrieß
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
55
|
Lam MK, de Greef M, Bouwman JG, Moonen CTW, Viergever MA, Bartels LW. Multi-gradient echo MR thermometry for monitoring of the near-field area during MR-guided high intensity focused ultrasound heating. Phys Med Biol 2015; 60:7729-45. [DOI: 10.1088/0031-9155/60/19/7729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
56
|
|
57
|
Gabbai M, Leichter I, Mahgerefteh S, Sosna J. Spectral material characterization with dual-energy CT: comparison of commercial and investigative technologies in phantoms. Acta Radiol 2015; 56:960-9. [PMID: 25182803 DOI: 10.1177/0284185114545150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dual-energy computed tomography (DECT) enables tissue discrimination based on the X-ray attenuations at different photon energies emitted by the tube. The spectral dependencies of net X-ray attenuation can be analyzed and used to characterize specific materials. PURPOSE To evaluate the capability of DECT to characterize and differentiate high-density materials, using spectral analysis. MATERIAL AND METHODS Images of phantoms containing iodine, barium, gadolinium, and calcium solutions in five concentrations were obtained from three DECT scanners and with sequential scanning at different kV values from three conventional MDCT devices. DECT studies were performed with commercial dual-source and rapid kV-switching systems, and a spectral-detector CT (SDCT) prototype based on dual-layer detector technology. Spectral maps describing Hounsfield Units (HU) in low- versus high-energy images were calculated and characterizing curves for all materials were compared. RESULTS Spectral low- to- high energy maps yielded linear curves (R(2) = 0.98-0.999) with increasing slopes for calcium, gadolinium, barium, and iodine, respectively. Slope differences between all material pairs were highest (reaching 45%) for DECT with dual-source (140/80 kV) and rapid kV-switching (60/80 keV), reaching statistical significance (P < 0.05) with most techniques. Slope differences between all material pairs for sequential scanning were lower (reaching 32%). Slope differences lacked statistical significance for iodine-barium with two sequential-acquisition techniques and the dual-source DECT scanner, and the calcium-gadolium pair with the dual-source scanner. CONCLUSION All designated techniques for dual-energy scanning provide robust and material-specific spectral characterization and differentiation of barium, iodine, calcium, and gadolinium, though to varying degrees.
Collapse
Affiliation(s)
- Michal Gabbai
- Department of Radiology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Isaac Leichter
- Department of Radiology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
- Department of Applied Physics, Lev Academic Center, Jerusalem, Israel
| | - Samuel Mahgerefteh
- Department of Radiology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard School of Medicine, Boston, MA, USA
| |
Collapse
|
58
|
Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer HP, Lell M, Kachelrieß M. Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study. Med Phys 2015; 42:4349-66. [DOI: 10.1118/1.4922654] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
59
|
CT Liver Imaging: What is New? CURRENT RADIOLOGY REPORTS 2015. [DOI: 10.1007/s40134-015-0088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
|
61
|
Recent Technological Advances in Computed Tomography and the Clinical Impact Therein. Invest Radiol 2015; 50:119-27. [DOI: 10.1097/rli.0000000000000125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
62
|
Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol 2014; 69:e538-44. [DOI: 10.1016/j.crad.2014.08.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 11/19/2022]
|
63
|
Yamada S, Ueguchi T, Ogata T, Mizuno H, Ogihara R, Koizumi M, Shimazu T, Murase K, Ogawa K. Radiotherapy treatment planning with contrast-enhanced computed tomography: feasibility of dual-energy virtual unenhanced imaging for improved dose calculations. Radiat Oncol 2014; 9:168. [PMID: 25070169 PMCID: PMC4118618 DOI: 10.1186/1748-717x-9-168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background In radiotherapy treatment planning, intravenous administration of an iodine-based contrast agent during computed tomography (CT) improves the accuracy of delineating target volumes. However, increased tissue attenuation resulting from the high atomic number of iodine may result in erroneous dose calculations because the contrast agent is absent during the actual procedure. The purpose of this proof-of-concept study was to present a novel framework to improve the accuracy of dose calculations using dual-energy virtual unenhanced CT in the presence of an iodine-based contrast agent. Methods Simple phantom experiments were designed to assess the feasibility of the proposed concept. By utilizing a “second-generation” dual-source CT scanner equipped with a tin filter for improved spectral separation, four CT datasets were obtained using both a water phantom and an iodine phantom: “true unenhanced” images with attenuation values of 2 ± 11 Hounsfield Units (HU), “enhanced” images with attenuation values of 274 ± 23 HU, and two series of “virtual unenhanced” images synthesized from dual-energy scans of the iodine phantom, each with a different combination of tube voltages. Two series of virtual unenhanced images demonstrated attenuation values of 12 ± 29 HU (with 80 kVp/140 kVp) and 34 ± 10 HU (with 100 kVp/140 kVp) after removing the iodine component from the contrast-enhanced images. Dose distributions of the single photon beams calculated from the enhanced images and two series of virtual unenhanced images were compared to those from true unenhanced images as a reference. Results The dose distributions obtained from both series of virtual unenhanced images were almost equivalent to that from the true unenhanced images, whereas the dose distribution obtained from the enhanced images indicated increased beam attenuation caused by the high attenuation characteristics of iodine. Compared to the reference dose distribution from the true unenhanced images, the dose distribution pass rates from both series of virtual unenhanced images were greater than 90%, while those from the enhanced images were less than approximately 50–60%. Conclusions Dual-energy virtual unenhanced CT improves the accuracy of dose distributions in radiotherapy treatment planning by removing the iodine component from contrast-enhanced images.
Collapse
Affiliation(s)
- Sachiko Yamada
- Department of Radiology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wang Q, Gaofeng S, Xueli F, Lijia W, Runze W. Comparative study of hepatic venography using non-linear-blending images, monochromatic images and low-voltage images of dual-energy CT. Br J Radiol 2014; 87:20140220. [PMID: 25051976 DOI: 10.1259/bjr.20140220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To investigate the use of non-linear-blending and monochromatic dual-energy CT (DECT) images to improve the image quality of hepatic venography. METHODS 82 patients undergoing abdominal DECT in the portal venous phase were enrolled. For each patient, 31 data sets of monochromatic images and 7 data sets of non-linear-blending images were generated. The data sets of the non-linear-blending and monochromatic images with the best contrast-to-noise ratios (CNRs) for hepatic veins were selected and compared with the images obtained at 80 kVp and a simulated 120 kVp. The subjective image quality of the hepatic veins was evaluated using a four-point scale. The image quality of the hepatic veins was analysed using signal-to-noise ratio (SNR) and CNR values. RESULTS The optimal CNR between hepatic veins and the liver was obtained with the non-linear-blending images. Compared with the other three groups, there were significant differences in the maximum CNR, the SNR, the subjective ratings and the minimum background noise (p < 0.001). A comparison of the monochromatic and 80-kVp images revealed that the CNR and subjective ratings were both improved (p < 0.001). There was no significant difference in the CNR or subjective ratings between the simulated 120-kVp group and the control group (p = 0.090 and 0.053, respectively). CONCLUSION The non-linear-blending technique for acquiring DECT provided the best image quality for hepatic venography. ADVANCES IN KNOWLEDGE DECT can enhance the contrast of hepatic veins and the liver, potentially allowing the wider use of low-dose contrast agents for CT examination of the liver.
Collapse
Affiliation(s)
- Q Wang
- 1 Department of Radiology, the Fourth Clinical Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
65
|
Yang Y, Jia X, Deng Y, Chen J, Zhang LJ. Can virtual non-enhanced CT be used to replace true non-enhanced CT for the detection of palpable cervical lymph nodes? A preliminary study. Jpn J Radiol 2014; 32:324-30. [DOI: 10.1007/s11604-014-0308-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
66
|
Sudarski S, Apfaltrer P, Nance JW, Meyer M, Fink C, Hohenberger P, Leidecker C, Schoenberg SO, Henzler T. Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions: an analysis in patients with gastrointestinal stromal tumor. Acad Radiol 2014; 21:514-22. [PMID: 24594421 DOI: 10.1016/j.acra.2014.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/10/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES To compare in dual-energy CT (DECT) conventionally reconstructed polyenergetic images (PEI) at 120 kVp to virtual monoenergetic images (MEI) at different kiloelectron volt (keV) levels for evaluation of liver and gastrointestinal stromal tumor (GIST) hepatic metastases with regard to objective (IQob) and subjective image quality (IQsub) assessed by two readers of varying experience. Image quality was correlated to patient size and compared between PEI and MEI. MATERIALS AND METHODS From 50 examinations of 17 GIST patients (12 with hepatic metastases) undergoing abdominal dual-source DECT for staging, therapy monitoring or follow-up, PEI and nine MEI in 10-keV intervals from 40 to 120 keV were reconstructed. Liver contrast-to-noise ratios (CNR) and metastasis-to-liver ratios were calculated. MEI reconstructions with the highest IQob were compared to PEI for IQsub by one experienced reader (ER) and one inexperienced reader (IR). Patients' diameters were correlated to IQob and IQsub ratings. RESULTS MEI at 70 keV had the highest IQob with equal liver CNR and metastasis-to-liver ratio compared to PEI. The ER rated 70-keV MEI and PEI equally high (median 4), whereas the IR rated IQsub best in 70-keV MEI (median 5). Unlike in PEI, IQsub ratings in 70-keV MEI were not correlated to patient size. CONCLUSIONS MEI at 70 keV provided an IQob equivalent to PEI. Regarding the IR, IQsub was improved in 70-keV MEI compared to PEI and less dependent on patient size. Therefore, IRs might improve their diagnostic confidence in the assessment of hepatic GIST metastases by evaluating MEI reconstructions at 70 keV.
Collapse
|
67
|
Lv P, Zhang Y, Liu J, Ji L, Chen Y, Gao J. Material decomposition images generated from spectral CT: detectability of urinary calculi and influencing factors. Acad Radiol 2014; 21:79-85. [PMID: 24331268 DOI: 10.1016/j.acra.2013.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the detectability of urinary calculi on material decomposition (MD) images generated from spectral computed tomography (CT) and identify the influencing factors. MATERIALS AND METHODS Forty-six patients were examined with true nonenhanced (TNE) CT and spectral CT urography in the excretory phase. The contrast medium was removed from excretory phase images using water-based (WB) and calcium-based (CaB) MD analysis. The sensitivity for detection on WB and CaB images was evaluated using TNE results as the reference standard. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) on MD images were evaluated. Using logistic regression, the influences of image noise, attenuation, stone size, and patient's body mass index (BMI) were assessed. Threshold values with maximal sensitivity and specificity were calculated by means of receiver operating characteristic analyses. RESULTS One hundred thirty-six calculi were detected on TNE images; 98 calculi were identified on WB images (sensitivity, 72.06%) and 101 calculi on CaB images (sensitivity, 74.26%). Sensitivities were 76.92% for the 3-5-mm stones and 84.51% for the 5-mm or larger stones on both WB and CaB images but reduced to 46.15% on WB images and 53.85% on CaB images for small calculi (<3 mm). Compared to WB images, CaB images showed lower image noise, higher SNR but similar CNR. Larger stone sizes (both >2.71 mm on WB and CaB) and greater CT attenuation (>280 Hounsfield units [HU] on WB, >215 HU on CaB) of the urinary stones were significantly associated with higher stone visibility rates on WB and CaB images (P ≤ .003). Image noise and BMI showed no impact on the stone detection. CONCLUSIONS MD images generated from spectral CT showed good reliability for the detection of large (>2.71 mm) and hyperattenuating (>280 HU on WB, >215 HU on CaB) urinary calculi.
Collapse
|
68
|
Can Sinogram-Affirmed Iterative Reconstruction Improve the Detection of Small Hypervascular Liver Nodules With Dual-Energy CT? J Comput Assist Tomogr 2014; 38:693-9. [DOI: 10.1097/rct.0000000000000105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
69
|
Second-generation dual-energy computed tomography of the abdomen: radiation dose comparison with 64- and 128-row single-energy acquisition. J Comput Assist Tomogr 2013; 37:543-6. [PMID: 23863529 DOI: 10.1097/rct.0b013e318291f6a0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study was designed to compare the radiation dose in abdominal dual-energy (DE) and single-energy (SE) acquisitions obtained in clinical practice with a second-generation DE computed tomography (DECT) and to analyze the dose variation in comparison with an SE acquisition performed with a 64-row SECT (SECT). METHODS A total of 130 patients divided into 2 groups underwent precontrast and portal abdominal 128-row CT examination. In group A, DE portal acquisition was performed using a detector configuration of 2 × 40 × 0.6 mm, tube A at 80 kVp and a reference value of 559 mAs, tube B at 140 kVp and a reference value of 216 mAs, pitch 0.6, and online dose modulation; group B underwent SE portal acquisition using a detector configuration of 64 × 0.6 mm, 120 kVp and a reference value of 180 mAs, pitch 0.75, and online dose modulation. Group C consisted of 32 subjects from group A previously studied with 64-row SECT using the following parameters: detector configuration 64 × 0.6 mm, 120 kVp and a reference value of 180 mAs, pitch 0.75, and online dose modulation. In each group, the portal phase dose-length product and radiation dose (mSv) were calculated and normalized for a typical abdominal acquisition of 40 cm. RESULTS After normalization to standard 40-cm acquisition, a dose-length product of 599.0 ± 133.5 mGy · cm (range, 367.5 ± 1231.2 mGy · cm) in group A, 525.9 ± 139.2 mGy · cm (range, 215.7-882.8 mGy · cm) in group B, and 515.9 ± 111.3 mGy · cm (range, 305.5-687.2 mGy · cm) in group C was calculated for portal phase acquisition.A significant radiation dose increase (P < 0.05) was observed in group A (10.2 ± 2.3 mSv) compared with group B (8.9 ± 2.4) and group C (8.8 ± 1.9 mSv). No significant difference (P > 0.05) was reported between SE 64- and 128-row acquisitions. A significant positive correlation between radiation dose and body mass index was observed in each group (group A, r = 0.59, P < 0.0001; group B, r = 0.35, P < 0.0001; group C, r = 0.20, P = 0.0098). CONCLUSIONS In clinical practice, abdominal DECT acquisition shows a significant but minimal radiation dose increase, on the order of 1 mSv, compared with 64- and 128-row SE acquisition. The slightly increased radiation dose can be justified if the additional information obtained using a spectral imaging approach directly impacts on patient management or reduce the overall radiation dose with the generation of virtual unenhanced images, which can replace the precontrast acquisition.
Collapse
|