51
|
Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted Magnetic Nanotheranostics of Cancer. Molecules 2017; 22:E975. [PMID: 28604617 PMCID: PMC6152710 DOI: 10.3390/molecules22060975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Current advances in targeted magnetic nanotheranostics are summarized in this review. Unique structural, optical, electronic and thermal properties of magnetic materials in nanometer scale are attractive in the field of biomedicine. Magnetic nanoparticles functionalized with therapeutic molecules, ligands for targeted delivery, fluorescent and other chemical agents can be used for cancer diagnostic and therapeutic purposes. High selectivity, small size, and low immunogenicity of synthetic nucleic acid aptamers make them attractive delivery agents for therapeutic purposes. Properties, production and functionalization of magnetic nanoparticles and aptamers as ligands for targeted delivery are discussed herein. In recent years, magnetic nanoparticles have been widely used in diagnostic methods, such as scintigraphy, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), and Raman spectroscopy. Therapeutic purposes of magnetic nanoconstructions are also promising. They are used for effective drug delivery, magnetic mediated hypertermia, and megnetodynamic triggering of apoptosis. Thus, magnetic nanotheranostics opens a new venue for complex differential diagnostics, and therapy of metastatic cancer.
Collapse
Affiliation(s)
- Irina Belyanina
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
| | - Olga Kolovskaya
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Sergey Zamay
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Ana Gargaun
- Independent Researcher Vancouver, Vancouver, BC V6K 1C4, Canada.
| | - Tatiana Zamay
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Anna Kichkailo
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
52
|
Nanoformulation-based sequential combination cancer therapy. Adv Drug Deliv Rev 2017; 115:57-81. [PMID: 28412324 DOI: 10.1016/j.addr.2017.04.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
Abstract
Although combining two or more treatments is regarded as an indispensable approach for effectively treating cancer, the traditional cocktail-based combination therapies are seriously limited by coordination issues that fail to account for differences in the pharmacokinetics and action sites of each drug. The careful manipulation of dosing regimens, such as by the sequential application of combination treatments, may satisfy the temporal and spatial needs of each drug and achieve successful combination antitumor therapy. Nanotechnology-based carriers might be the best tools for sequential combination therapy, as they can be loaded with multiple cargos and may provide targeted and sustained delivery to target tumor cells. Single nanoformulations capable of sequentially releasing drugs have shown synergistic anticancer activity, such as by sensitizing tumor cells through cascaded drug delivery or remodeling the tumor vasculature and microenvironment to enhance the tumor distribution of nanotherapeutics. This review highlights the use of nanotechnology-based multistage drug delivery for cancer treatment, focusing on the ability of such formulations to enhance antitumor efficacy by applying sequential treatment and modulating dosing regimens, which are challenges currently being faced in the clinic.
Collapse
|
53
|
Li W, Li X, Liu S, Yang W, Pan F, Yang XY, Du B, Qin L, Pan Y. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial-mesenchymal transition inhibition. Int J Nanomedicine 2017; 12:3509-3520. [PMID: 28496326 PMCID: PMC5422535 DOI: 10.2147/ijn.s128802] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis is a process by which vessels are formed through preexisting ones, and this plays a key role in the progression of solid tumors. However, tumor vessels are influenced by excessive pro-angiogenic factors, resulting in deformed structures that facilitate the intravasation of tumor cells into the circulation and subsequent metastasis. Moreover, abnormal tumor vessels have low blood perfusion and thereby decreased oxygen infusion into tumors. This results in a hostile microenvironment that promotes epithelial-mesenchymal transition (EMT), a process in which epithelial cells lose their polarity and gain increased motility, which is associated with metastasis and invasion. Here, we demonstrate that gold nanoparticles (AuNPs) facilitate tumor vasculature normalization, increase blood perfusion and alleviate hypoxia in melanoma tumors. Additionally, AuNPs were observed to reverse EMT in tumors, accompanied by the alleviation of lung metastasis. These AuNPs inhibited the migration of B16F10 cells and reversed EMT in B16F10 cells, indicating that AuNPs could directly regulate EMT independent of improvements in hypoxia. Taken together, our data demonstrated that AuNPs could induce tumor vasculature normalization and reverse EMT, resulting in decreased melanoma tumor metastasis.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University
| | - Xin Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University
| | - Shuhao Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University
| | - Wende Yang
- Department of General Surgery, The First Affiliated Hospital of Jinan University
| | - Fan Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University
| | - Xiao-Yan Yang
- Department of General Surgery, The First Affiliated Hospital of Jinan University.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University
| | - Bin Du
- Department of Pathology, The First Affiliated Hospital of Jinan University
| | - Li Qin
- Department of Histology, and Embryology, Medical School of Jinan University, Guangzhou, People's Republic of China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University
| |
Collapse
|
54
|
Li L, Zhang Y, Wang J. Effects of ligand distribution on receptor-diffusion-mediated cellular uptake of nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170063. [PMID: 28573012 PMCID: PMC5451813 DOI: 10.1098/rsos.170063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/03/2017] [Indexed: 05/18/2023]
Abstract
Biophysical-factor-dependent cellular uptake of nanoparticles (NPs) through receptor-diffusion-mediated endocytosis bears significance in pathology, cellular immunity and drug-delivery systems. Advanced nanotechnology of NP synthesis provides methods for modifying NP surface with different ligand distributions. However, no report discusses effects of ligand distribution on NP surface on receptor-diffusion-mediated cellular uptake. In this article, we used a statistical dynamics model of receptor-diffusion-mediated endocytosis to examine ligand-distribution-dependent cellular uptake dynamics by considering that ligand-receptor complexes drive engulfing to overcome resistance to membrane deformation and changes in configuration entropy of receptors. Results showed that cellular internalization of NPs strongly depended on ligand distribution and that cellular-uptake efficiency of NPs was high when ligand distribution was within a range around uniform distribution. This feature of endocytosis ensures robust infection ability of viruses to enter host cells. Interestingly, results also indicated that optimal ligand distribution associated with highest cellular-uptake efficiency slightly depends on distribution pattern of ligands and density of receptors, and the optimal distribution becomes uniform when receptor density is sufficiently large. Position of initial contact point is also a factor affecting dynamic wrapping. This study explains why most enveloped viruses present almost homogeneous ligand distribution and is useful in designing controlled-release drug-delivery systems.
Collapse
Affiliation(s)
| | | | - Jizeng Wang
- Author for correspondence: Jizeng Wang e-mail:
| |
Collapse
|
55
|
Miyamoto N, Mochizuki S, Fujii S, Yoshida K, Sakurai K. Adjuvant Activity Enhanced by Cross-Linked CpG-Oligonucleotides in β-Glucan Nanogel and Its Antitumor Effect. Bioconjug Chem 2017; 28:565-573. [PMID: 27951636 DOI: 10.1021/acs.bioconjchem.6b00675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer vaccine has the ability to directly eradicate tumor cells by creating and activating cytotoxic T lymphocytes (CTLs). To achieve efficient CTL activity and to induce Th1 responses, it is essential to administer an appropriate adjuvant as well as an antigen. CpG-ODN is known as a ligand of Toll-like receptor 9 (TLR9) and strongly induces Th1 responses. In our previous study, we developed a CpG-ODN delivery system by use of the formation of complexes between ODN and a β-glucan SPG, denoted as CpG/SPG, and demonstrated that CpG/SPG induces high Th1 responses. In this study, we created a nanogel made from CpG/SPG complexes through DNA-DNA hybridization (cross-linked (CL)-CpG). Immunization with CL-CpG induced much stronger antigen-specific Th1 responses in combination with the antigenic protein ovalbumin (OVA) than that with CpG/SPG. Mice preimmunized with CL-CpG and OVA exhibited a long delay in tumor growth and an improved survival rate after tumor inoculation. These immune inductions can be attributed to the improvement of cellular uptake by the combination of increased size and the cluster effect of the β-glucan recognition site in the nanogel structure. In other words, the particle nature of CL-CpG, instead of the semiflexible rod conformation of CpG/SPG, enhanced the efficacy of a cancer vaccine. The present results indicate that CL-CpG can be used as a potent vaccine adjuvant for the treatment of cancers and infectious diseases.
Collapse
Affiliation(s)
- Noriko Miyamoto
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| | - Shinichi Mochizuki
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| | - Shota Fujii
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| | - Kenta Yoshida
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| | - Kazuo Sakurai
- The University of Kitakyushu , Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan 808-0135
| |
Collapse
|
56
|
Abstract
Targeted cancer nanotherapeutics offers numerous opportunities for the selective uptake of toxic chemotherapies within tumors and cancer cells. The unique properties of nanoparticles, such as their small size, large surface-to-volume ratios, and the ability to achieve multivalency of targeting ligands on their surface, provide superior advantages for nanoparticle-based drug delivery to a variety of cancers. This review highlights various key concepts in the design of targeted nanotherapeutics for cancer therapy, and discusses physicochemical parameters affecting nanoparticle targeting, along with recent developments for cancer-targeted nanomedicines.
Collapse
Affiliation(s)
| | | | - Joseph Kaplinsky
- Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Produktionstorvet, 2800, Kongens Lyngby, Denmark
| | - Nazila Kamaly
- Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Produktionstorvet, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
57
|
Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0409-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
58
|
Shen Z, Loe DT, Awino JK, Kröger M, Rouge JL, Li Y. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles. NANOSCALE 2016; 8:14821-14835. [PMID: 27452209 DOI: 10.1039/c6nr04134e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and potential of simulation-driven approaches for guiding the design of more efficient nanomaterial delivery platforms.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Gold Nanoparticle-Mediated Targeted Delivery of Recombinant Human Endostatin Normalizes Tumour Vasculature and Improves Cancer Therapy. Sci Rep 2016; 6:30619. [PMID: 27470938 PMCID: PMC4965746 DOI: 10.1038/srep30619] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/06/2016] [Indexed: 01/19/2023] Open
Abstract
Tumour vasculature is generally disordered because of the production of excessive angiogenic factors by tumour cells, which results in tumour progression and reduces the effectiveness of radiotherapy or chemotherapy. Transient anti-angiogenic therapies that regulate tumour vascular morphology and function and improve the efficiency of antitumour therapy are under investigation. Recombinant human endostatin (Endostar/rhES) is a vascular angiogenesis–disrupting agent that has been used to treat non-small cell lung cancer (NSCLC) in the clinical setting. In this study, we used gold nanoparticles (AuNPs) as a drug-delivery system (DDS) for targeted tumour delivery of rhES for short therapy, which resulted in transient tumour vascular normalization, reduced permeability and hypoxia, strengthened blood vessel integrity, and increased blood-flow perfusion. Moreover, combination therapy with 5-FU over this timeframe was substantially more effective than 5-FU monotherapy. In conclusion, our research demonstrates the potential use of AuNPs as a drug-delivery platform for transporting rhES into a tumour to induce transient tumour vascular normalization and enhance the antitumour efficacy of cytotoxic drugs.
Collapse
|
60
|
Shen Z, Nieh MP, Li Y. Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges. Polymers (Basel) 2016; 8:E83. [PMID: 30979183 PMCID: PMC6432562 DOI: 10.3390/polym8030083] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
The size, shape, stiffness (composition) and surface properties of nanoparticles (NPs) have been recognized as key design parameters for NP-mediated drug delivery platforms. Among them, the surface functionalization of NPs is of great significance for targeted drug delivery. For instance, targeting moieties are covalently coated on the surface of NPs to improve their selectively and affinity to cancer cells. However, due to a broad range of possible choices of surface decorating molecules, it is difficult to choose the proper one for targeted functions. In this work, we will review several representative experimental and computational studies in selecting the proper surface functional groups. Experimental studies reveal that: (1) the NPs with surface decorated amphiphilic polymers can enter the cell interior through penetrating pathway; (2) the NPs with tunable stiffness and identical surface chemistry can be selectively accepted by the diseased cells according to their stiffness; and (3) the NPs grafted with pH-responsive polymers can be accepted or rejected by the cells due to the local pH environment. In addition, we show that computer simulations could be useful to understand the detailed physical mechanisms behind these phenomena and guide the design of next-generation NP-based drug carriers with high selectivity, affinity, and low toxicity. For example, the detailed free energy analysis and molecular dynamics simulation reveals that amphiphilic polymer-decorated NPs can penetrate into the cell membrane through the "snorkeling" mechanism, by maximizing the interaction energy between the hydrophobic ligands and lipid tails. We anticipate that this work will inspire future studies in the design of environment-responsive NPs for targeted drug delivery.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
61
|
Buehler MJ, Genin GM. Integrated multiscale biomaterials experiment and modelling: a perspective. Interface Focus 2016; 6:20150098. [PMID: 28981126 DOI: 10.1098/rsfs.2015.0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems.
Collapse
Affiliation(s)
- Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, and Department of Neurological Surgery, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
62
|
Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery. JOURNAL OF NANOMATERIALS 2016; 2016:1087250. [PMID: 27398083 PMCID: PMC4936496 DOI: 10.1155/2016/1087250] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this article, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting and physical targeting), compare methods of action, advantages, limitations, and the current stage of research. For the most commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a review of computational simulations and models on nanoparticle-based drug delivery.
Collapse
Affiliation(s)
- Xiaojiao Yu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Ian Trase
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Muqing Ren
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kayla Duval
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Xing Guo
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|