51
|
Sharma A, Sangwan N, Negi V, Kohli P, Khurana JP, Rao DLN, Lal R. Pan-genome dynamics of Pseudomonas gene complements enriched across hexachlorocyclohexane dumpsite. BMC Genomics 2015; 16:313. [PMID: 25898829 PMCID: PMC4405911 DOI: 10.1186/s12864-015-1488-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
Background Phylogenetic heterogeneity across Pseudomonas genus is complemented by its diverse genome architecture enriched by accessory genetic elements (plasmids, transposons, and integrons) conferring resistance across this genus. Here, we sequenced a stress tolerant genotype i.e. Pseudomonas sp. strain RL isolated from a hexachlorocyclohexane (HCH) contaminated pond (45 mg of total HCH g−1 sediment) and further compared its gene repertoire with 17 reference ecotypes belonging to P. stutzeri, P. mendocina, P. aeruginosa, P. psychrotolerans and P. denitrificans, representing metabolically diverse ecosystems (i.e. marine, clinical, and soil/sludge). Metagenomic data from HCH contaminated pond sediment and similar HCH contaminated sites were further used to analyze the pan-genome dynamics of Pseudomonas genotypes enriched across increasing HCH gradient. Results Although strain RL demonstrated clear species demarcation (ANI ≤ 80.03%) from the rest of its phylogenetic relatives, it was found to be closest to P. stutzeri clade which was further complemented functionally. Comparative functional analysis elucidated strain specific enrichment of metabolic pathways like α-linoleic acid degradation and carbazole degradation in Pseudomonas sp. strain RL and P. stutzeri XLDN-R, respectively. Composition based methods (%codon bias and %G + C difference) further highlighted the significance of horizontal gene transfer (HGT) in evolution of nitrogen metabolism, two-component system (TCS) and methionine metabolism across the Pseudomonas genomes used in this study. An intact mobile class-I integron (3,552 bp) with a captured gene cassette encoding for dihydrofolate reductase (dhfra1) was detected in strain RL, distinctly demarcated from other integron harboring species (i.e. P. aeruginosa, P. stutzeri, and P. putida). Mobility of this integron was confirmed by its association with Tnp21-like transposon (95% identity) suggesting stress specific mobilization across HCH contaminated sites. Metagenomics data from pond sediment and recently surveyed HCH adulterated soils revealed the in situ enrichment of integron associated transposase gene (TnpA6100) across increasing HCH contamination (0.7 to 450 mg HCH g−1 of soil). Conclusions Unlocking the potential of comparative genomics supplemented with metagenomics, we have attempted to resolve the environment and strain specific demarcations across 18 Pseudomonas gene complements. Pan-genome analyses of these strains indicate at astoundingly diverse metabolic strategies and provide genetic basis for the cosmopolitan existence of this taxon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1488-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| | - Naseer Sangwan
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| | - Vivek Negi
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| | - Puneet Kohli
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| | - Jitendra Paul Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India.
| | - Desiraju Lakshmi Narsimha Rao
- All India Network Project on Soil Biodiversity and Biofertilizers, Indian Institute of Soil Science, Bhopal, 462038, India.
| | - Rup Lal
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
52
|
Spoils of war: iron at the crux of clinical and ecological fitness of Pseudomonas aeruginosa. Biometals 2015; 28:433-43. [DOI: 10.1007/s10534-015-9848-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/13/2015] [Indexed: 01/07/2023]
|
53
|
The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa. Infect Immun 2014; 83:863-75. [PMID: 25510881 DOI: 10.1128/iai.02707-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosa's iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence.
Collapse
|
54
|
Bonchi C, Imperi F, Minandri F, Visca P, Frangipani E. Repurposing of gallium-based drugs for antibacterial therapy. Biofactors 2014; 40:303-12. [PMID: 24532037 DOI: 10.1002/biof.1159] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
While the occurrence and spread of antibiotic resistance in bacterial pathogens is vanishing current anti-infective therapies, the antibiotic discovery pipeline is drying up. In the last years, the repurposing of existing drugs for new clinical applications has become a major research area in drug discovery, also in the field of anti-infectives. This review discusses the potential of repurposing previously approved gallium formulations in antibacterial chemotherapy. Gallium has no proven function in biological systems, but it can act as an iron-mimetic in both prokaryotic and eukaryotic cells. The activity of gallium mostly relies on its ability to replace iron in redox enzymes, thus impairing their function and ultimately hampering cell growth. Cancer cells and bacteria are preferential gallium targets due to their active metabolism and fast growth. The wealth of knowledge on the pharmacological properties of gallium has opened the door to the repurposing of gallium-based drugs for the treatment of infections sustained by antibiotic-resistant bacterial pathogens, such as Acinetobacter baumannii or Pseudomonas aeruginosa, and for suppression of Mycobacterium tuberculosis growth. The promising antibacterial activity of gallium both in vitro and in different animal models of infection raises the hope that gallium will confirm its efficacy in clinical trials, and will become a valuable therapeutic option to cure otherwise untreatable bacterial infections.
Collapse
Affiliation(s)
- Carlo Bonchi
- Department of Sciences, University "Roma Tre,", Rome, Italy
| | | | | | | | | |
Collapse
|
55
|
Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 2014; 196:2265-76. [PMID: 24727222 DOI: 10.1128/jb.01491-14] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment.
Collapse
|
56
|
Oglesby-Sherrouse AG, Djapgne L, Nguyen AT, Vasil AI, Vasil ML. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa. Pathog Dis 2014; 70:307-20. [PMID: 24436170 DOI: 10.1111/2049-632x.12132] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development.
Collapse
Affiliation(s)
- Amanda G Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
57
|
Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013; 3:75. [PMID: 24294593 PMCID: PMC3827675 DOI: 10.3389/fcimb.2013.00075] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review.
Collapse
Affiliation(s)
- Pierre Cornelis
- Research Group Microbiology, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
- Department Structural Biology, VIB, Vrije Universiteit BrusselBrussels, Belgium
| | - Jozef Dingemans
- Research Group Microbiology, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
- Department Structural Biology, VIB, Vrije Universiteit BrusselBrussels, Belgium
| |
Collapse
|
58
|
Balasubramanian D, Kumari H, Jaric M, Fernandez M, Turner KH, Dove SL, Narasimhan G, Lory S, Mathee K. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res 2013; 42:979-98. [PMID: 24157832 PMCID: PMC3902932 DOI: 10.1093/nar/gkt942] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pathogenicity of Pseudomonas aeruginosa, a major cause of many acute and chronic human infections, is determined by tightly regulated expression of multiple virulence factors. Quorum sensing (QS) controls expression of many of these pathogenic determinants. Previous microarray studies have shown that the AmpC β-lactamase regulator AmpR, a member of the LysR family of transcription factors, also controls non-β-lactam resistance and multiple virulence mechanisms. Using RNA-Seq and complementary assays, this study further expands the AmpR regulon to include diverse processes such as oxidative stress, heat shock and iron uptake. Importantly, AmpR affects many of these phenotypes, in part, by regulating expression of non-coding RNAs such as rgP32, asRgsA, asPrrF1 and rgRsmZ. AmpR positively regulates expression of the major QS regulators LasR, RhlR and MvfR, and genes of the Pseudomonas quinolone system. Chromatin immunoprecipitation (ChIP)-Seq and ChIP–quantitative real-time polymerase chain reaction studies show that AmpR binds to the ampC promoter both in the absence and presence of β-lactams. In addition, AmpR directly binds the lasR promoter, encoding the QS master regulator. Comparison of the AmpR-binding sequences from the transcriptome and ChIP-Seq analyses identified an AT-rich consensus-binding motif. This study further attests to the role of AmpR in regulating virulence and physiological processes in P. aeruginosa.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA, Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA, BioRG, School of Computing and Information Science, College of Engineering and Computing, Florida International University, Miami, FL 33199, USA, Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Kelson AB, Carnevali M, Truong-Le V. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol 2013; 13:707-16. [DOI: 10.1016/j.coph.2013.07.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/22/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
|
60
|
Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 2013; 81:2697-704. [PMID: 23690396 DOI: 10.1128/iai.00418-13] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa chronically infects the lungs of more than 80% of adult patients with cystic fibrosis (CF) and is a major contributor to the progression of disease pathology. P. aeruginosa requires iron for growth and has multiple iron uptake systems that have been studied in bacteria grown in laboratory culture. The purpose of this research was to determine which of these are active during infection in CF. RNA was extracted from 149 sputum samples obtained from 23 CF patients. Reverse transcription-quantitative real-time PCR (RT-qPCR) was used to measure the expression of P. aeruginosa genes encoding transport systems for the siderophores pyoverdine and pyochelin, for heme, and for ferrous ions. Expression of P. aeruginosa genes could be quantified in 89% of the sputum samples. Expression of genes associated with siderophore-mediated iron uptake was detected in most samples but was at low levels in some samples, indicating that other iron uptake mechanisms are active. Expression of genes encoding heme transport systems was also detected in most samples, indicating that heme uptake occurs during infection in CF. feoB expression was detected in all sputum samples, implying an important role for ferrous ion uptake by P. aeruginosa in CF. Our data show that multiple P. aeruginosa iron uptake mechanisms are active in chronic CF infection and that RT-qPCR of RNA extracted from sputum provides a powerful tool for investigating bacterial physiology during infection in CF.
Collapse
|
61
|
Involvement of Fe uptake systems and AmpC β-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57:2095-102. [PMID: 23422914 DOI: 10.1128/aac.02474-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BAL30072 is a monosulfactam conjugated with an iron-chelating dihydroxypyridone moiety. It is active against Gram-negative bacteria, including multidrug-resistant Pseudomonas aeruginosa. We selected mutants with decreased susceptibilities to BAL30072 in P. aeruginosa PAO1 under a variety of conditions. Under iron-deficient conditions, mutants with overexpression of AmpC β-lactamase predominated. These mutants were cross-resistant to aztreonam and ceftazidime. Similar mutants were obtained after selection at >16× the MIC in iron-sufficient conditions. At 4× to 8× the MIC, mutants with elevated MIC for BAL30072 but unchanged MICs for aztreonam or ciprofloxacin were selected. The expression of ampC and the major efflux pump genes were also unchanged. These BAL30072-specific mutants were characterized by transcriptome analysis, which revealed upregulation of the Fe-dicitrate operon, FecIRA. Whole-genome sequencing showed that this resulted from a single nucleotide change in the Fur-box of the fecI promoter. Overexpression of either the FecI ECF sigma factor or the FecA receptor increased BAL30072 MICs 8- to 16-fold. A fecI mutant and a fecA mutant of PAO1 were hypersusceptible to BAL30072 (MICs < 0.06 μg/ml). The most downregulated gene belonged to the pyochelin synthesis operon, although mutants in pyochelin receptor or synthesis genes had unchanged MICs. The piuC gene, coding for a Fe(II)-dependent dioxygenase located next to the piuA iron receptor gene, was also downregulated. The MICs of BAL30072 for piuC and piuA transposon mutants were increased 8- and 16-fold, respectively. We conclude that the upregulation of the Fe-dicitrate system impacts the expression of other TonB-dependent iron transporters and that PiuA and PiuC contribute to the susceptibility of P. aeruginosa PAO1 to BAL30072.
Collapse
|
62
|
Requirement of siderophore biosynthesis for plant colonization by Salmonella enterica. Appl Environ Microbiol 2012; 78:4561-70. [PMID: 22522683 DOI: 10.1128/aem.07867-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contaminated fresh produce has become the number one vector of nontyphoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of the organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aroA mutant had a significant root colonization defect due to a failure to replicate. AroA is part of the chorismic acid biosynthesis pathway, a central metabolic node involved in aromatic amino acid and siderophore production. Addition of tryptophan or phenylalanine to alfalfa root exudates did not restore aroA mutant replication. However, addition of ferrous sulfate restored replication of the aroA mutant, as well as alfalfa colonization. Tryptophan and phenylalanine auxotrophs had minor plant colonization defects, suggesting that suboptimal concentrations of these amino acids in root exudates were not major limiting factors for Salmonella replication. An entB mutant defective in siderophore biosynthesis had colonization and growth defects similar to those of the aroA mutant, and the defective phenotype was complemented by the addition of ferrous sulfate. Biosynthetic genes of each Salmonella siderophore, enterobactin and salmochelin, were upregulated in alfalfa root exudates, yet only enterobactin was sufficient for plant survival and persistence. Similar results in lettuce leaves indicate that siderophore biosynthesis is a widespread or perhaps universal plant colonization fitness factor for Salmonella, unlike phytobacterial pathogens, such as Pseudomonas and Xanthomonas.
Collapse
|
63
|
Solti A, Kovács K, Basa B, Vértes A, Sárvári E, Fodor F. Uptake and incorporation of iron in sugar beet chloroplasts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 52:91-7. [PMID: 22305071 DOI: 10.1016/j.plaphy.2011.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/29/2011] [Indexed: 05/24/2023]
Abstract
Chloroplasts contain 80-90% of iron taken up by plant cells. Though some iron transport-related envelope proteins were identified recently, the mechanism of iron uptake into chloroplasts remained unresolved. To shed more light on the process of chloroplast iron uptake, trials were performed with isolated intact chloroplasts of sugar beet (Beta vulgaris). Iron uptake was followed by measuring the iron content of chloroplasts in the form of ferrous-bathophenantroline-disulphonate complex after solubilising the chloroplasts in reducing environment. Ferric citrate was preferred to ferrous citrate as substrate for chloroplasts. Strong dependency of ferric citrate uptake on photosynthetic electron transport activity suggests that ferric chelate reductase uses NADPH, and is localised in the inner envelope membrane. The K(m) for iron uptake from ferric-citrate pool was 14.65 ± 3.13 μM Fe((III))-citrate. The relatively fast incorporation of (57)Fe isotope into Fe-S clusters/heme, detected by Mössbauer spectroscopy, showed the efficiency of the biosynthetic machinery of these cofactors in isolated chloroplasts. The negative correlation between the chloroplast iron concentration and the rate of iron uptake refers to a strong feedback regulation of the uptake.
Collapse
Affiliation(s)
- Adám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. lane 1/C, Budapest 1117, Hungary
| | | | | | | | | | | |
Collapse
|
64
|
BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa. J Bacteriol 2011; 194:1195-204. [PMID: 22194456 DOI: 10.1128/jb.05634-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium best known as the predominant opportunistic pathogen infecting the lungs of cystic fibrosis patients. In this context, it is thought to form biofilms, within which locally reducing and acidic conditions can develop that favor the stability of ferrous iron [Fe(II)]. Because iron is a signal that stimulates biofilm formation, we performed a microarray study to determine whether P. aeruginosa strain PA14 exhibits a specific transcriptional response to extracellular Fe(II). Among the genes that were most upregulated in response to Fe(II) were those encoding the two-component system BqsR/BqsS, previously identified for its role in P. aeruginosa strain PAO1 biofilm decay (13); here, we demonstrate its role in extracellular Fe(II) sensing. bqsS and bqsR form an operon together with two small upstream genes, bqsP and bqsQ, and one downstream gene, bqsT. BqsR/BqsS sense extracellular Fe(II) at physiologically relevant concentrations (>10 μM) and elicit a specific transcriptional response, including its autoregulation. The sensor distinguishes between Fe(II), Fe(III), and other dipositive cations [Ca(II), Cu(II), Mg(II), Mn(II), Zn(II)] under aerobic or anaerobic conditions. The gene that is most upregulated by BqsR/BqsS, as measured by quantitative reverse transcription-PCR (qRT-PCR), is PA14_04180, which is predicted to encode a periplasmic oligonucleotide/oligosaccharide-binding domain (OB-fold) protein. Coincident with phenazine production during batch culture growth, Fe(II) becomes the majority of the total iron pool and bqsS is upregulated. The existence of a two-component system that senses Fe(II) indicates that extracellular Fe(II) is an important environmental signal for P. aeruginosa.
Collapse
|
65
|
The antibacterial activity of Ga3+ is influenced by ligand complexation as well as the bacterial carbon source. Antimicrob Agents Chemother 2011; 55:5568-80. [PMID: 21947396 DOI: 10.1128/aac.00386-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gallium ions have previously been shown to exhibit antibacterial and antibiofilm properties. In this study, we report differential bactericidal activities of two gallium complexes, gallium desferrioxamine B (Ga-DFOB) and gallium citrate (Ga-Cit). Modeling of gallium speciation in growth medium showed that DFOB and citrate both can prevent precipitation of Ga(OH)(3), but some precipitation can occur above pH 7 with citrate. Despite this, Ga-Cit 90% inhibitory concentrations (IC(90)) were lower than those of Ga-DFOB for clinical isolates of Pseudomonas aeruginosa and several reference strains of other bacterial species. Treatment with Ga compounds mitigated damage inflicted on murine J774 macrophage-like cells infected with P. aeruginosa PAO1. Again, Ga-Cit showed more potent mitigation than did Ga-DFOB. Ga was also taken up more efficiently by P. aeruginosa in the form of Ga-Cit than in the form of Ga-DFOB. Neither Ga-Cit nor Ga-DFOB was toxic to several human cell lines tested, and no proinflammatory activity was detected in human lung epithelial cells after exposure in vitro. Metabolomic analysis was used to delineate the effects of Ga-Cit on the bacterial cell. Exposure to Ga resulted in lower concentrations of glutamate, a key metabolite for P. aeruginosa, and of many amino acids, indicating that Ga affects various biosynthesis pathways. An altered protein expression profile in the presence of Ga-Cit suggested that some compensatory mechanisms were activated in the bacterium. Furthermore, the antibacterial effect of Ga was shown to vary depending on the carbon source, which has importance in the context of medical applications of gallium.
Collapse
|
66
|
Jones AM, Wildermuth MC. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J Bacteriol 2011; 193:2767-75. [PMID: 21441525 PMCID: PMC3133136 DOI: 10.1128/jb.00069-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/11/2011] [Indexed: 11/20/2022] Open
Abstract
High-affinity iron scavenging through the use of siderophores is a well-established virulence determinant in mammalian pathogenesis. However, few examples have been reported for plant pathogens. Here, we use a genetic approach to investigate the role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato. DC3000, an agronomically important pathogen, has two known siderophores for high-affinity iron scavenging, yersiniabactin and pyoverdin, and we uncover a third siderophore, citrate, required for growth when iron is limiting. Though growth of a DC3000 triple mutant unable to either synthesize or import these siderophores is severely restricted in iron-limited culture, it is fully pathogenic. One explanation for this phenotype is that the DC3000 triple mutant is able to directly pirate plant iron compounds such as heme/hemin or iron-nicotianamine, and our data indicate that DC3000 can import iron-nicotianamine with high affinity. However, an alternative explanation, supported by data from others, is that the pathogenic environment of DC3000 (i.e., leaf apoplast) is not iron limited but is iron replete, with available iron of >1 μM. Growth of the triple mutant in culture is restored to wild-type levels by supplementation with a variety of iron chelates at >1 μM, including iron(III) dicitrate, a dominant chelate of the leaf apoplast. This suggests that lower-affinity iron import would be sufficient for DC3000 iron nutrition in planta and is in sharp contrast to the high-affinity iron-scavenging mechanisms required in mammalian pathogenesis.
Collapse
Affiliation(s)
| | - Mary C. Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
67
|
Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 2011; 193:3606-17. [PMID: 21602354 DOI: 10.1128/jb.00396-11] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa forms biofilms, which render it more resistant to antimicrobial agents. Levels of iron in excess of what is required for planktonic growth have been shown to promote biofilm formation, and therapies that interfere with ferric iron [Fe(III)] uptake combined with antibiotics may help treat P. aeruginosa infections. However, use of these therapies presumes that iron is in the Fe(III) state in the context of infection. Here we report the ability of phenazine-1-carboxylic acid (PCA), a common phenazine made by all phenazine-producing pseudomonads, to help P. aeruginosa alleviate Fe(III) limitation by reducing Fe(III) to ferrous iron [Fe(II)]. In the presence of PCA, a P. aeruginosa mutant lacking the ability to produce the siderophores pyoverdine and pyochelin can still develop into a biofilm. As has been previously reported (P. K. Singh, M. R. Parsek, E. P. Greenberg, and M. J. Welsh, Nature 417:552-555, 2002), biofilm formation by the wild type is blocked by subinhibitory concentrations of the Fe(III)-binding innate-immunity protein conalbumin, but here we show that this blockage can be rescued by PCA. FeoB, an Fe(II) uptake protein, is required for PCA to enable this rescue. Unlike PCA, the phenazine pyocyanin (PYO) can facilitate biofilm formation via an iron-independent pathway. While siderophore-mediated Fe(III) uptake is undoubtedly important at early stages of infection, these results suggest that at later stages of infection, PCA present in infected tissues may shift the redox equilibrium between Fe(III) and Fe(II), thereby making iron more bioavailable.
Collapse
|
68
|
Hartney SL, Mazurier S, Kidarsa TA, Quecine MC, Lemanceau P, Loper JE. TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. Biometals 2010; 24:193-213. [PMID: 21080032 DOI: 10.1007/s10534-010-9385-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/16/2010] [Indexed: 12/30/2022]
Abstract
The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the conserved β-barrel and plug domains of TonB-dependent proteins but only 18 of them have an N-terminal signaling domain characteristic of TonB-dependent transducers (TBDTs), which participate in cell-surface signaling systems. Phylogenetic analyses of the 18 TBDTs and 27 TonB-dependent receptors (TBDRs), which lack the N-terminal signaling domain, suggest a complex evolutionary history including horizontal transfer among different microbial lineages. Putative functions were assigned to certain TBDRs and TBDTs in clades including well-characterized orthologs from other Pseudomonas spp. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. The mutant could utilize as iron sources a large number of pyoverdines with diverse structures as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin. The diversity and complexity of the TBDTs and TBDRs with roles in iron uptake clearly indicate the importance of iron in the fitness and survival of Pf-5 in the environment.
Collapse
Affiliation(s)
- Sierra L Hartney
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
69
|
|
70
|
Buch AD, Archana G, Kumar GN. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. MICROBIOLOGY-SGM 2009; 155:2620-2629. [PMID: 19443543 DOI: 10.1099/mic.0.028878-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Citric acid secretion by fluorescent pseudomonads has a distinct significance in microbial phosphate solubilization. The role of citrate synthase in citric acid biosynthesis and glucose catabolism in pseudomonads was investigated by overexpressing the Escherichia coli citrate synthase (gltA) gene in Pseudomonas fluorescens ATCC 13525. The resultant approximately 2-fold increase in citrate synthase activity in the gltA-overexpressing strain Pf(pAB7) enhanced the intracellular and extracellular citric acid yields during the stationary phase, by about 2- and 26-fold, respectively, as compared to the control, without affecting the growth rate, glucose depletion rate or biomass yield. Decreased glucose consumption was paralleled by increased gluconic acid production due to an increase in glucose dehydrogenase activity. While the extracellular acetic acid yield increased in Pf(pAB7), pyruvic acid secretion decreased, correlating with an increase in pyruvate carboxylase activity and suggesting an increased demand for the anabolic precursor oxaloacetate. Activities of two other key enzymes, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, remained unaltered, and the contribution of phosphoenolpyruvate carboxylase and isocitrate lyase to glucose catabolism was negligible. Strain Pf(pAB7) demonstrated an enhanced phosphate-solubilizing ability compared to the control. Co-expression of the Synechococcus elongatus PCC 6301 phosphoenolpyruvate carboxylase and E. coli gltA genes in P. fluorescens ATCC 13525, so as to supplement oxaloacetate for citrate biosynthesis, neither significantly affected citrate biosynthesis nor caused any change in the other physiological and biochemical parameters measured, despite approximately 1.3- and 5-fold increases in citrate synthase and phosphoenolpyruvate carboxylase activities, respectively. Thus, our results demonstrate that citrate synthase is rate-limiting in enhancing citrate biosynthesis in P. fluorescens ATCC 13525. Significantly low extracellular citrate levels as compared to the intracellular levels in Pf(pAB7) suggested a probable limitation of efficient citrate transport.
Collapse
Affiliation(s)
- Aditi D Buch
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, India
| | - G Archana
- Department of Microbiology and Biotechnology Center, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, India
| | - G Naresh Kumar
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, India
| |
Collapse
|