51
|
Singh TP, Malik RK, Kaur G. Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0007-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
52
|
Zhu D, Sun Y, Liu F, Li A, Yang L, Meng XC. Identification of surface-associated proteins of Bifidobacterium animalis ssp. lactis KLDS 2.0603 by enzymatic shaving. J Dairy Sci 2016; 99:5155-5172. [PMID: 27132091 DOI: 10.3168/jds.2015-10581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/21/2016] [Indexed: 01/05/2023]
Abstract
Bifidobacteria are commensal microorganisms of the human and animal intestinal tract, and their surface proteins can mediate bacterial communication and chemical sensing in the environment, as well as facilitate interactions between bacteria and the host. However, a systematic study of the outer surface-associated proteome of bifidobacteria has not been undertaken. In the present study, the proteins located on the surface of Bifidobacterium animalis ssp. lactis KLDS 2.0603 were systematically identified by a nongel proteomic approach, which consisted of the shaving of the bacterial surface with trypsin and an analysis of the released peptides by liquid chromatography-tandem mass spectrometry. A total of 105 surface-associated proteins were found, of which 15 proteins could potentially be involved in adhesion and interactions between bifidobacteria and the host. The proteins related to adhesion and interaction between bacteria and the host include pilus structure proteins (Fim A, Fim B), 10 moonlighting proteins, an NLP/P60 family protein, an immunogenic secreted protein, and a putative sugar-binding secreted protein. The results provide the basis for future studies on the molecular mechanisms of the interactions between bifidobacteria and the host.
Collapse
Affiliation(s)
- Dequan Zhu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China; College of Life Sciences, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Yu Sun
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Limei Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
53
|
Wang W, Jeffery CJ. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. MOLECULAR BIOSYSTEMS 2016; 12:1420-31. [DOI: 10.1039/c5mb00550g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dozens of intracellular proteins have a second function on the cell surface, referred to as “intracellular/surface moonlighting proteins”. An analysis of the results of 22 cell surface proteomics studies was performed to address whether the hundreds of intracellular proteins found on the cell surface could be candidates for being additional intracellular/surface moonlighting proteins.
Collapse
Affiliation(s)
- Wangfei Wang
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Constance J. Jeffery
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
- Department of Biological Sciences
| |
Collapse
|
54
|
Wang G, Xia Y, Song X, Ai L. Common Non-classically Secreted Bacterial Proteins with Experimental Evidence. Curr Microbiol 2015; 72:102-11. [DOI: 10.1007/s00284-015-0915-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/15/2015] [Indexed: 12/13/2022]
|
55
|
Koenigs A, Zipfel PF, Kraiczy P. Translation Elongation Factor Tuf of Acinetobacter baumannii Is a Plasminogen-Binding Protein. PLoS One 2015; 10:e0134418. [PMID: 26230848 PMCID: PMC4521846 DOI: 10.1371/journal.pone.0134418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen, causing a variety of opportunistic infections of the skin, soft tissues and wounds, urinary tract infections, secondary meningitis, pneumonia and bacteremia. Over 63% of A. baumannii infections occurring in the United States are caused by multidrug resistant isolates, and pan-resistant isolates have begun to emerge that are resistant to all clinically relevant antibiotics. The complement system represents the first line of defense against invading pathogens. However, many A. baumannii isolates, especially those causing severe bacteremia are resistant to complement-mediated killing, though the underlying mechanisms remain poorly understood. Here we show for the first time that A. baumannii binds host-derived plasminogen and we identify the translation elongation factor Tuf as a moonlighting plasminogen-binding protein that is exposed on the outer surface of A. baumannii. Binding of plasminogen to Tuf is at least partly dependent on lysine residues and ionic interactions. Plasminogen, once bound to Tuf can be converted to active plasmin and proteolytically degrade fibrinogen as well as the key complement component C3b. Thus, Tuf acts as a multifunctional protein that may contribute to virulence of A. baumannii by aiding in dissemination and evasion of the complement system.
Collapse
Affiliation(s)
- Arno Koenigs
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
56
|
Amblee V, Jeffery CJ. Physical Features of Intracellular Proteins that Moonlight on the Cell Surface. PLoS One 2015; 10:e0130575. [PMID: 26110848 PMCID: PMC4481411 DOI: 10.1371/journal.pone.0130575] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
Moonlighting proteins comprise a subset of multifunctional proteins that perform two or more biochemical functions that are not due to gene fusions, multiple splice variants, proteolytic fragments, or promiscuous enzyme activities. The project described herein focuses on a sub-set of moonlighting proteins that have a canonical biochemical function inside the cell and perform a second biochemical function on the cell surface in at least one species. The goal of this project is to consider the biophysical features of these moonlighting proteins to determine whether they have shared characteristics or defining features that might suggest why these particular proteins were adopted for a second function on the cell surface, or if these proteins resemble typical intracellular proteins. The latter might suggest that many other normally intracellular proteins found on the cell surface might also be moonlighting in this fashion. We have identified 30 types of proteins that have different functions inside the cell and on the cell surface. Some of these proteins are found to moonlight on the surface of multiple species, sometimes with different extracellular functions in different species, so there are a total of 98 proteins in the study set. Although a variety of intracellular proteins (enzymes, chaperones, etc.) are observed to be re-used on the cell surface, for the most part, these proteins were found to have physical characteristics typical of intracellular proteins. Many other intracellular proteins have also been found on the surface of bacterial pathogens and other organisms in proteomics experiments. It is quite possible that many of those proteins also have a moonlighting function on the cell surface. The increasing number and variety of known moonlighting proteins suggest that there may be more moonlighting proteins than previously thought, and moonlighting might be a common feature of many more proteins.
Collapse
Affiliation(s)
- Vaishak Amblee
- Department of Biological Sciences, University of Illinois at Chicago, MC567, 900 S. Ashland Ave., Chicago, IL 60607, United States of America
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, MC567, 900 S. Ashland Ave., Chicago, IL 60607, United States of America
- * E-mail:
| |
Collapse
|
57
|
Amund O, Ouoba L, Sutherland J, Ghoddusi H. Assessing the effects of exposure to environmental stress on some functional properties of Bifidobacterium animalis ssp. lactis. Benef Microbes 2014; 5:461-9. [DOI: 10.3920/bm2013.0099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study assessed the effects of exposing a strain of Bifidobacterium animalis ssp. lactis to acid, bile and osmotic stresses on antagonistic properties, biofilm formation and antibiotic susceptibility/resistance profile. Exposure to each stress factor appeared to have no significant effect on the antagonism against Escherichia coli NCTC 12900 and Salmonella enterica serovar Enteritidis PT4. No suppression in biofilm formation due to exposure to stress was observed. Bile and osmotic stresses resulted in significantly higher biofilm formation. Expression of an exopolysaccharide synthesis gene, gtf 01207, was significantly higher when the B. animalis ssp. lactis strain was exposed to osmotic stress. Susceptibility of the B. animalis ssp. lactis strain to chloramphenicol, erythromycin, ampicillin and vancomycin, and resistance to tetracycline remained unchanged when exposed to each stress. The expression of a tetracycline resistance gene, tet(W), was significantly higher when exposed to each stress. These results may suggest that the potential for the B. animalis ssp. lactis strain to provide probiotic benefit, after exposure to the stressful conditions of the gastrointestinal tract, remains intact.
Collapse
Affiliation(s)
- O.D. Amund
- Microbiology Research Unit, Faculty of Life Sciences and Computing, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - L.I.I. Ouoba
- Microbiology Research Unit, Faculty of Life Sciences and Computing, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - J.P. Sutherland
- Microbiology Research Unit, Faculty of Life Sciences and Computing, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - H.B. Ghoddusi
- Microbiology Research Unit, Faculty of Life Sciences and Computing, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| |
Collapse
|
58
|
Bifidobacteria-host interactions--an update on colonisation factors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:960826. [PMID: 25295282 PMCID: PMC4177770 DOI: 10.1155/2014/960826] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 01/10/2023]
Abstract
Bifidobacteria are one of the predominant bacterial groups of the human intestinal microbiota and have important functional properties making them interesting for the food and dairy industries. Numerous in vitro and preclinical studies have shown beneficial effects of particular bifidobacterial strains or strain combinations on various health parameters of their hosts. This indicates the potential of bifidobacteria in alternative or supplementary therapeutic approaches in a number of diseased states. Based on these observations, bifidobacteria have attracted considerable interest by the food, dairy, and pharmaceutical industries and they are widely used as so-called probiotics. As a consequence of the rapidly increasing number of available bifidobacterial genome sequences and their analysis, there has been substantial progress in the identification of bifidobacterial structures involved in colonisation of and interaction with the host. With the present review, we aim to provide an update on the current knowledge on the mechanisms by which bifidobacteria colonise their hosts and exert health promoting effects.
Collapse
|
59
|
Aakko J, Sánchez B, Gueimonde M, Salminen S. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis
subsp. lactis
BB-12 and Lactobacillus rhamnosus
GG. J Appl Microbiol 2014; 117:239-48. [DOI: 10.1111/jam.12520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J. Aakko
- Functional Foods Forum; University of Turku; Turku Finland
- Food Chemistry and Food Development; Department of Biochemistry; University of Turku; Turku Finland
- Department of Microbiology and Biochemistry of Dairy Products; IPLA-CSIC; Villaviciosa Asturias Spain
| | - B. Sánchez
- Department of Microbiology and Biochemistry of Dairy Products; IPLA-CSIC; Villaviciosa Asturias Spain
- Nutrition and Bromatology Group; Department of Analytical and Food Chemistry; Food Science and Technology Faculty; University of Vigo - Ourense Campus; Ourense Spain
| | - M. Gueimonde
- Functional Foods Forum; University of Turku; Turku Finland
- Department of Microbiology and Biochemistry of Dairy Products; IPLA-CSIC; Villaviciosa Asturias Spain
| | - S. Salminen
- Functional Foods Forum; University of Turku; Turku Finland
| |
Collapse
|
60
|
Kainulainen V, Korhonen TK. Dancing to another tune-adhesive moonlighting proteins in bacteria. BIOLOGY 2014; 3:178-204. [PMID: 24833341 PMCID: PMC4009768 DOI: 10.3390/biology3010178] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Biological moonlighting refers to proteins which express more than one function. Moonlighting proteins occur in pathogenic and commensal as well as in Gram-positive and Gram-negative bacteria. The canonical functions of moonlighting proteins are in essential cellular processes, i.e., glycolysis, protein synthesis, chaperone activity, and nucleic acid stability, and their moonlighting functions include binding to host epithelial and phagocytic cells, subepithelia, cytoskeleton as well as to mucins and circulating proteins of the immune and hemostatic systems. Sequences of the moonlighting proteins do not contain known motifs for surface export or anchoring, and it has remained open whether bacterial moonlighting proteins are actively secreted to the cell wall or whether they are released from traumatized cells and then rebind onto the bacteria. In lactobacilli, ionic interactions with lipoteichoic acids and with cell division sites are important for surface localization of the proteins. Moonlighting proteins represent an abundant class of bacterial adhesins that are part of bacterial interactions with the environment and in responses to environmental changes. Multifunctionality in bacterial surface proteins appears common: the canonical adhesion proteins fimbriae express also nonadhesive functions, whereas the mobility organelles flagella as well as surface proteases express adhesive functions.
Collapse
Affiliation(s)
- Veera Kainulainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Timo K Korhonen
- General Microbiology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
61
|
Ruiz L, Margolles A, Sánchez B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 2013; 4:396. [PMID: 24399996 PMCID: PMC3872040 DOI: 10.3389/fmicb.2013.00396] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 12/03/2013] [Indexed: 11/13/2022] Open
Abstract
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile.
Collapse
Affiliation(s)
- Lorena Ruiz
- Laboratory of Probiotics and Prebiotics, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Asturias, Spain
| | - Abelardo Margolles
- Laboratory of Probiotics and Prebiotics, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Asturias, Spain
| | - Borja Sánchez
- Laboratory of Probiotics and Prebiotics, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Asturias, Spain
| |
Collapse
|
62
|
Fernandez B, Hammami R, Savard P, Jean J, Fliss I. Pediococcus acidilactici UL5 and Lactococcus lactis ATCC 11454 are able to survive and express their bacteriocin genes under simulated gastrointestinal conditions. J Appl Microbiol 2013; 116:677-88. [PMID: 24279824 DOI: 10.1111/jam.12391] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/23/2013] [Accepted: 11/07/2013] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this work is to study the expression of stress genes and those involved in pediocin and nisin production in Pediococcus acidilactici UL5 and Lactococcus lactis ATCC11454 under simulated gastrointestinal (GI) physiological conditions. METHODS AND RESULTS The two strains were fed to a dynamic GI model (TIM-1). Samples were taken from different compartments and analysed for strain survival as well as for the expression of pediocin PA-1 operon, nisin A production gene and stress genes using RT-qPCR. Ileal-delivered efflux showed a survival rate of 17 and 0·0007% for Ped. acidilactici and La. lactis, respectively. Pediocin operon genes from stressed cells were generally expressed at least at the same level as for unstressed cells. However, pedA is up-regulated in the effluent at 120 and 180 min. Nisin A genes were always up-regulated with particularly in the stomach after 70 min compared with control. CONCLUSIONS Bacteriocin production of Ped. acidilactici UL5 and Lc. lactis ATCC 11454 are not affected by upper GI simulated conditions and thus could be considered as relevant probiotic candidates. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the capacity of lactic acid bacteria to survive and express their bacteriocins genes under simulated GI conditions.
Collapse
Affiliation(s)
- B Fernandez
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
63
|
BopA does not have a major role in the adhesion of Bifidobacterium bifidum to intestinal epithelial cells, extracellular matrix proteins, and mucus. Appl Environ Microbiol 2013; 79:6989-97. [PMID: 24014530 DOI: 10.1128/aem.01993-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability of bifidobacteria to adhere to the intestine of the human host is considered to be important for efficient colonization and achieving probiotic effects. Bifidobacterium bifidum strains DSM20456 and MIMBb75 adhere well to the human intestinal cell lines Caco-2 and HT-29. The surface lipoprotein BopA was previously described to be involved in mediating adherence of B. bifidum to epithelial cells, but thioacylated, purified BopA inhibited the adhesion of B. bifidum to epithelial cells in competitive adhesion assays only at very high concentrations, indicating an unspecific effect. In this study, the role of BopA in the adhesion of B. bifidum was readdressed. The gene encoding BopA was cloned and expressed without its lipobox and hydrophobic signal peptide in Escherichia coli, and an antiserum against the recombinant BopA was produced. The antiserum was used to demonstrate the abundant localization of BopA on the cell surface of B. bifidum. However, blocking of B. bifidum BopA with specific antiserum did not reduce adhesion of bacteria to epithelial cell lines, arguing that BopA is not an adhesin. Also, adhesion of B. bifidum to human colonic mucin and fibronectin was found to be BopA independent. The recombinant BopA bound only moderately to human epithelial cells and colonic mucus, and it failed to bind to fibronectin. Thus, our results contrast the earlier findings on the major role of BopA in adhesion, indicating that the strong adhesion of B. bifidum to epithelial cell lines is BopA independent.
Collapse
|
64
|
Wang G, Chen H, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, Zhang H, Chen W. How are the Non-classically Secreted Bacterial Proteins Released into the Extracellular Milieu? Curr Microbiol 2013; 67:688-95. [DOI: 10.1007/s00284-013-0422-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/05/2013] [Indexed: 12/21/2022]
|
65
|
Koenigs A, Hammerschmidt C, Jutras BL, Pogoryelov D, Barthel D, Skerka C, Kugelstadt D, Wallich R, Stevenson B, Zipfel PF, Kraiczy P. BBA70 of Borrelia burgdorferi is a novel plasminogen-binding protein. J Biol Chem 2013; 288:25229-25243. [PMID: 23861404 DOI: 10.1074/jbc.m112.413872] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi lacks endogenous, surface-exposed proteases. In order to efficiently disseminate throughout the host and penetrate tissue barriers, borreliae rely on recruitment of host proteases, such as plasmin(ogen). Here we report the identification of a novel plasminogen-binding protein, BBA70. Binding of plasminogen is dose-dependent and is affected by ionic strength. The BBA70-plasminogen interaction is mediated by lysine residues, primarily located in a putative C-terminal α-helix of BBA70. These lysine residues appear to interact with the lysine-binding sites in plasminogen kringle domain 4 because a deletion mutant of plasminogen lacking that domain was unable to bind to BBA70. Bound to BBA70, plasminogen activated by urokinase-type plasminogen activator was able to degrade both a synthetic chromogenic substrate and the natural substrate fibrinogen. Furthermore, BBA70-bound plasmin was able to degrade the central complement proteins C3b and C5 and inhibited the bacteriolytic effects of complement. Consistent with these functional activities, BBA70 is located on the borrelial outer surface. Additionally, serological evidence demonstrated that BBA70 is produced during mammalian infection. Taken together, recruitment and activation of plasminogen could play a beneficial role in dissemination of B. burgdorferi in the human host and may possibly aid the spirochete in escaping the defense mechanisms of innate immunity.
Collapse
Affiliation(s)
- Arno Koenigs
- From the Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40, D-60596 Frankfurt, Germany
| | - Claudia Hammerschmidt
- From the Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40, D-60596 Frankfurt, Germany
| | - Brandon L Jutras
- the Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40506
| | - Denys Pogoryelov
- the Institute of Biochemistry, Goethe University of Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Diana Barthel
- the Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11a, D-07745 Jena, Germany
| | - Christine Skerka
- the Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | - Reinhard Wallich
- the Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany, and
| | - Brian Stevenson
- the Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40506
| | - Peter F Zipfel
- the Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11a, D-07745 Jena, Germany,; Friedrich Schiller University, D-07743 Jena, Germany
| | - Peter Kraiczy
- From the Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40, D-60596 Frankfurt, Germany,.
| |
Collapse
|
66
|
Kavanaugh DW, O’Callaghan J, Buttó LF, Slattery H, Lane J, Clyne M, Kane M, Joshi L, Hickey RM. Exposure of Bifidobacterium longum subsp. infantis to Milk Oligosaccharides Increases Adhesion to Epithelial Cells and Induces a Substantial Transcriptional Response. PLoS One 2013; 8:e67224. [PMID: 23805302 PMCID: PMC3689703 DOI: 10.1371/journal.pone.0067224] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/21/2013] [Indexed: 12/30/2022] Open
Abstract
In this study, we tested the hypothesis that milk oligosaccharides may contribute not only to selective growth of bifidobacteria, but also to their specific adhesive ability. Human milk oligosaccharides (3'sialyllactose and 6'sialyllactose) and a commercial prebiotic (Beneo Orafti P95; oligofructose) were assayed for their ability to promote adhesion of Bifidobacterium longum subsp. infantis ATCC 15697 to HT-29 and Caco-2 human intestinal cells. Treatment with the commercial prebiotic or 3'sialyllactose did not enhance adhesion. However, treatment with 6'sialyllactose resulted in increased adhesion (4.7 fold), while treatment with a mixture of 3'- and 6'-sialyllactose substantially increased adhesion (9.8 fold) to HT-29 intestinal cells. Microarray analyses were subsequently employed to investigate the transcriptional response of B. longum subsp. infantis to the different oligosaccharide treatments. This data correlated strongly with the observed changes in adhesion to HT-29 cells. The combination of 3'- and 6'-sialyllactose resulted in the greatest response at the genetic level (both in diversity and magnitude) followed by 6'sialyllactose, and 3'sialyllactose alone. The microarray data was further validated by means of real-time PCR. The current findings suggest that the increased adherence phenotype of Bifidobacterium longum subsp. infantis resulting from exposure to milk oligosaccharides is multi-faceted, involving transcription factors, chaperone proteins, adhesion-related proteins, and a glycoside hydrolase. This study gives additional insight into the role of milk oligosaccharides within the human intestine and the molecular mechanisms underpinning host-microbe interactions.
Collapse
Affiliation(s)
- Devon W. Kavanaugh
- Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - John O’Callaghan
- Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Ludovica F. Buttó
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Helen Slattery
- Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Jonathan Lane
- Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Marguerite Clyne
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Marian Kane
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Rita M. Hickey
- Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| |
Collapse
|
67
|
González-Rodríguez I, Ruiz L, Gueimonde M, Margolles A, Sánchez B. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol Lett 2012. [DOI: 10.1111/1574-6968.12056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Irene González-Rodríguez
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| |
Collapse
|
68
|
Plasminogen binding proteins and plasmin generation on the surface of Leptospira spp.: the contribution to the bacteria-host interactions. J Biomed Biotechnol 2012; 2012:758513. [PMID: 23118516 PMCID: PMC3481863 DOI: 10.1155/2012/758513] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 11/23/2022] Open
Abstract
Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG) and to generate enzimatically active plasmin (PLA) on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i) facilitate host tissue penetration, (ii) help the bacteria to evade the immune system and, as a consequence, (iii) permit Leptospira to reach secondary sites of infection.
Collapse
|
69
|
Anaplasma phagocytophilum Asp14 is an invasin that interacts with mammalian host cells via its C terminus to facilitate infection. Infect Immun 2012; 81:65-79. [PMID: 23071137 DOI: 10.1128/iai.00932-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Anaplasma phagocytophilum, a member of the family Anaplasmataceae, is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis. The life cycle of A. phagocytophilum is biphasic, transitioning between the noninfectious reticulate cell (RC) and infectious dense-cored (DC) forms. We analyzed the bacterium's DC surface proteome by selective biotinylation of surface proteins, NeutrAvidin affinity purification, and mass spectrometry. Transcriptional profiling of selected outer membrane protein candidates over the course of infection revealed that aph_0248 (designated asp14 [14-kDa A. phagocytophilum surface protein]) expression was upregulated the most during A. phagocytophilum cellular invasion. asp14 transcription was induced during transmission feeding of A. phagocytophilum-infected ticks on mice and was upregulated when the bacterium engaged its receptor, P-selectin glycoprotein ligand 1. Asp14 localized to the A. phagocytophilum surface and was expressed during in vivo infection. Treating DC organisms with Asp14 antiserum or preincubating mammalian host cells with glutathione S-transferase (GST)-Asp14 significantly inhibited infection of host cells. Moreover, preincubating host cells with GST-tagged forms of both Asp14 and outer membrane protein A, another A. phagocytophilum invasin, pronouncedly reduced infection relative to treatment with either protein alone. The Asp14 domain that is sufficient for cellular adherence and invasion lies within the C-terminal 12 to 24 amino acids and is conserved among other Anaplasma and Ehrlichia species. These results identify Asp14 as an A. phagocytophilum surface protein that is critical for infection, delineate its invasion domain, and demonstrate the potential of targeting Asp14 in concert with OmpA for protecting against infection by A. phagocytophilum and other Anaplasmataceae pathogens.
Collapse
|
70
|
Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012; 2012:482096. [PMID: 23118509 PMCID: PMC3477821 DOI: 10.1155/2012/482096] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023] Open
Abstract
In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.
Collapse
|
71
|
Bacterial plasminogen receptors: mediators of a multifaceted relationship. J Biomed Biotechnol 2012; 2012:272148. [PMID: 23118502 PMCID: PMC3478875 DOI: 10.1155/2012/272148] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022] Open
Abstract
Multiple species of bacteria are able to sequester the host zymogen plasminogen to the cell surface. Once localised to the bacterial surface, plasminogen can act as a cofactor in adhesion, or, following activation to plasmin, provide a source of potent proteolytic activity. Numerous bacterial plasminogen receptors have been identified, and the mechanisms by which they interact with plasminogen are diverse. Here we provide an overview of bacterial plasminogen receptors and discuss the diverse role bacterial plasminogen acquisition plays in the relationship between bacteria and the host.
Collapse
|
72
|
Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. ANNALS OF NUTRITION & METABOLISM 2012; 61:160-174. [PMID: 23037511 DOI: 10.1159/000342079] [Citation(s) in RCA: 686] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/28/2022]
Abstract
Probiotics are live microorganisms that provide health benefits to the host when ingested in adequate amounts. The strains most frequently used as probiotics include lactic acid bacteria and bifidobacteria. Probiotics have demonstrated significant potential as therapeutic options for a variety of diseases, but the mechanisms responsible for these effects have not been fully elucidated yet. Several important mechanisms underlying the antagonistic effects of probiotics on various microorganisms include the following: modification of the gut microbiota, competitive adherence to the mucosa and epithelium, strengthening of the gut epithelial barrier and modulation of the immune system to convey an advantage to the host. Accumulating evidence demonstrates that probiotics communicate with the host by pattern recognition receptors, such as toll-like receptors and nucleotide-binding oligomerization domain-containing protein-like receptors, which modulate key signaling pathways, such as nuclear factor-ĸB and mitogen-activated protein kinase, to enhance or suppress activation and influence downstream pathways. This recognition is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage. A clear understanding of these mechanisms will allow for appropriate probiotic strain selection for specific applications and may uncover novel probiotic functions. The goal of this systematic review was to explore probiotic modes of action focusing on how gut microbes influence the host.
Collapse
Affiliation(s)
- Miriam Bermudez-Brito
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology José Mataix, Biomedical Research Center, University of Granada, Armilla, Spain
| | | | | | | | | |
Collapse
|
73
|
|
74
|
Gleinser M, Grimm V, Zhurina D, Yuan J, Riedel CU. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microb Cell Fact 2012; 11:80. [PMID: 22694891 PMCID: PMC3408352 DOI: 10.1186/1475-2859-11-80] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 01/15/2023] Open
Abstract
Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC) lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant bifidobacteria with improved adhesive properties.
Collapse
Affiliation(s)
- Marita Gleinser
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany
| | | | | | | | | |
Collapse
|
75
|
van de Guchte M, Chaze T, Jan G, Mistou MY. Properties of probiotic bacteria explored by proteomic approaches. Curr Opin Microbiol 2012; 15:381-9. [PMID: 22658701 DOI: 10.1016/j.mib.2012.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/09/2012] [Accepted: 04/05/2012] [Indexed: 02/07/2023]
Abstract
The study of health-beneficial effects that probiotic bacteria can exert on humans and animals is at its beginning. Pending scientific questions include the identification of molecular markers of the health-promoting activity of specific strains, which may be used to select novel probiotic strains and to gain understanding of the mechanisms underlying their effects. In that perspective, the role of bacterial proteins must be evaluated, placing proteomics-based approaches at the core of the field. Until now, most proteomic analyses focused on the dynamics of abundant cytoplasmic proteins during adaptation of bacteria to conditions mimicking the gastro-intestinal tract environment. The development of in silico and experimental procedures allowing identification and quantification of surface-exposed and secreted proteins should boost our understanding of bacteria-host crosstalk.
Collapse
|
76
|
Siciliano RA, Mazzeo MF. Molecular mechanisms of probiotic action: a proteomic perspective. Curr Opin Microbiol 2012; 15:390-6. [PMID: 22538051 DOI: 10.1016/j.mib.2012.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/22/2012] [Accepted: 03/27/2012] [Indexed: 12/13/2022]
Abstract
Probiotics are living microorganisms that confer beneficial effects to human health when supplied in adequate amounts, by promoting digestion and uptake of dietary nutrients, strengthening intestinal barrier function, modulating immune response and enhancing antagonism towards pathogens. The purpose of the present article is to focus on microbial proteomics, pointing out its usefulness in the investigation of molecular mechanisms underlying probiotic effects. It deals, in particular, with molecular strategies responsible for adaptation to the harsh physical-chemical environment of the gastro-intestinal tract, bacterial adhesion to host epithelial cells and intestinal mucosa and probiotic immunomodulatory properties, as analyzed by proteomics in the past few years.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione, CNR, Avellino, Italy.
| | | |
Collapse
|
77
|
Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 2012; 78:3992-8. [PMID: 22447584 DOI: 10.1128/aem.08024-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability of bifidobacteria to establish in the intestine of mammals is among the main factors considered to be important for achieving probiotic effects. The role of surface molecules from Bifidobacterium bifidum taxon in mucin adhesion capability and the aggregation phenotype of this bacterial species was analyzed. Adhesion to the human intestinal cell line HT29 was determined for a collection of 12 B. bifidum strains. In four of them-B. bifidum LMG13195, DSM20456, DSM20239, and A8-the involvement of surface-exposed macromolecules in the aggregation phenomenon was determined. The aggregation of B. bifidum A8 and DSM20456 was abolished after treatment with proteinase K, this effect being more pronounced for the strain A8. Furthermore, a mucin binding assay of B. bifidum A8 surface proteins showed a high adhesive capability for its transaldolase (Tal). The localization of this enzyme on the surface of B. bifidum A8 was unequivocally demonstrated by immunogold electron microscopy experiments. The gene encoding Tal from B. bifidum A8 was expressed in Lactococcus lactis, and the protein was purified to homogeneity. The pure protein was able to restore the autoaggregation phenotype of proteinase K-treated B. bifidum A8 cells. A recombinant L. lactis strain, engineered to secrete Tal, displayed a mucin- binding level more than three times higher than the strain not producing the transaldolase. These findings suggest that Tal, when exposed on the cell surface of B. bifidum, could act as an important colonization factor favoring its establishment in the gut.
Collapse
|
78
|
Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. J Bacteriol 2012; 194:2509-19. [PMID: 22389474 DOI: 10.1128/jb.06704-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.
Collapse
|
79
|
Wei YX, Zhang ZY, Liu C, Malakar PK, Guo XK. Safety assessment of Bifidobacterium longum JDM301 based on complete genome sequences. World J Gastroenterol 2012; 18:479-88. [PMID: 22346255 PMCID: PMC3270512 DOI: 10.3748/wjg.v18.i5.479] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/31/2011] [Accepted: 08/07/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the safety of Bifidobacterium longum (B. longum) JDM301 based on complete genome sequences. METHODS The complete genome sequences of JDM301 were determined using the GS 20 system. Putative virulence factors, putative antibiotic resistance genes and genes encoding enzymes responsible for harmful metabolites were identified by blast with virulence factors database, antibiotic resistance genes database and genes associated with harmful metabolites in previous reports. Minimum inhibitory concentration of 16 common antimicrobial agents was evaluated by E-test. RESULTS JDM301 was shown to contain 36 genes associated with antibiotic resistance, 5 enzymes related to harmful metabolites and 162 nonspecific virulence factors mainly associated with transcriptional regulation, adhesion, sugar and amino acid transport. B. longum JDM301 was intrinsically resistant to ciprofloxacin, amikacin, gentamicin and streptomycin and susceptible to vancomycin, amoxicillin, cephalothin, chloramphenicol, erythromycin, ampicillin, cefotaxime, rifampicin, imipenem and trimethoprim-sulphamethoxazol. JDM301 was moderately resistant to bacitracin, while an earlier study showed that bifidobacteria were susceptible to this antibiotic. A tetracycline resistance gene with the risk of transfer was found in JDM301, which needs to be experimentally validated. CONCLUSION The safety assessment of JDM301 using information derived from complete bacterial genome will contribute to a wider and deeper insight into the safety of probiotic bacteria.
Collapse
|
80
|
Henderson B, Martin A. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 2011; 79:3476-91. [PMID: 21646455 PMCID: PMC3165470 DOI: 10.1128/iai.00179-11] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Men may not be able to multitask, but it is emerging that proteins can. This capacity of proteins to exhibit more than one function is termed protein moonlighting, and, surprisingly, many highly conserved proteins involved in metabolic regulation or the cell stress response have a range of additional biological actions which are involved in bacterial virulence. This review highlights the multiple roles exhibited by a range of bacterial proteins, such as glycolytic and other metabolic enzymes and molecular chaperones, and the role that such moonlighting activity plays in the virulence characteristics of a number of important human pathogens, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Helicobacter pylori, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom.
| | | |
Collapse
|
81
|
Relevance of Bifidobacterium animalis subsp. lactis plasminogen binding activity in the human gastrointestinal microenvironment. Appl Environ Microbiol 2011; 77:7072-6. [PMID: 21821753 DOI: 10.1128/aem.00413-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human plasmin(ogen) is regarded as a component of the molecular cross talk between the probiotic species Bifidobacterium animalis subsp. lactis and the human host. However, up to now, only in vitro studies have been reported. Here, we demonstrate that the probiotic strain B. animalis subsp. lactis BI07 is capable of recruiting plasmin(ogen) present at physiological concentrations in crude extracts from human feces. Our results provide evidence that supports the significance of the B. lactis-plasmin(ogen) interaction in the human gastrointestinal tract.
Collapse
|
82
|
Henderson B, Martin A. Bacterial Moonlighting Proteins and Bacterial Virulence. Curr Top Microbiol Immunol 2011; 358:155-213. [DOI: 10.1007/82_2011_188] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
83
|
Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjärvi T, de Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics 2010; 10:M110.002741. [PMID: 21078892 DOI: 10.1074/mcp.m110.002741] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactobacillus rhamnosus GG (GG) is a widely used and intensively studied probiotic bacterium. Although the health benefits of strain GG are well documented, the systematic exploration of mechanisms by which this strain exerts probiotic effects in the host has only recently been initiated. The ability to survive the harsh conditions of the gastrointestinal tract, including gastric juice containing bile salts, is one of the vital characteristics that enables a probiotic bacterium to transiently colonize the host. Here we used gene expression profiling at the transcriptome and proteome levels to investigate the cellular response of strain GG toward bile under defined bioreactor conditions. The analyses revealed that in response to growth of strain GG in the presence of 0.2% ox gall the transcript levels of 316 genes changed significantly (p < 0.01, t test), and 42 proteins, including both intracellular and surface-exposed proteins (i.e. surfome), were differentially abundant (p < 0.01, t test in total proteome analysis; p < 0.05, t test in surfome analysis). Protein abundance changes correlated with transcriptome level changes for 14 of these proteins. The identified proteins suggest diverse and specific changes in general stress responses as well as in cell envelope-related functions, including in pathways affecting fatty acid composition, cell surface charge, and thickness of the exopolysaccharide layer. These changes are likely to strengthen the cell envelope against bile-induced stress and signal the GG cells of gut entrance. Notably, the surfome analyses demonstrated significant reduction in the abundance of a protein catalyzing the synthesis of exopolysaccharides, whereas a protein dedicated for active removal of bile compounds from the cells was up-regulated. These findings suggest a role for these proteins in facilitating the well founded interaction of strain GG with the host mucus in the presence of sublethal doses of bile. The significance of these findings in terms of the functionality of a probiotic bacterium is discussed.
Collapse
Affiliation(s)
- Kerttu Koskenniemi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Candela M, Fiori J, Dipalo S, Brigidi P. Development of a high-performance affinity chromatography-based method to study the biological interaction between whole micro-organisms and target proteins. Lett Appl Microbiol 2010; 51:678-82. [PMID: 21054446 DOI: 10.1111/j.1472-765x.2010.02953.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The bacteria-host molecular cross-talk is the matter of primary importance both in pathogenesis and in commensalism. Principally based on immunological methods, the methodologies commonly utilized for these studies are laborious and require specific antibodies. Here, we developed a new high-performance affinity chromatography (HPAC)-based approach that allows a direct measure of the interaction between whole bacterial cells and host molecules. METHODS AND RESULTS Bifidobacterium lactis BI07 cells immobilized on amino-derivatized silica beads were utilized as stationary phase in a high-performance affinity chromatography approach. The analytes plasminogen, collagen I and collagen IV were injected, and interactions were evaluated by the insertion in an HPLC system with UV detection. According to our data, Bif. lactis BI07 is capable of interacting with plasminogen, while it does not exhibit any binding activity to collagen I and IV. CONCLUSIONS In this study, we implemented a high-performance affinity chromatography-based method to characterize the biological interaction between whole micro-organisms and target proteins. SIGNIFICANCE AND IMPACT OF THE STUDY With respect to the approaches commonly utilized to study the interaction between bacteria and host proteins, this HPAC-based approach is fast and cheaper than other methods and allows a direct measure of the interaction between bacterial cells and target molecules.
Collapse
Affiliation(s)
- M Candela
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|