51
|
Sleator RD, Hill C. Compatible solutes: the key to Listeria's success as a versatile gastrointestinal pathogen? Gut Pathog 2010; 2:20. [PMID: 21143981 PMCID: PMC3006354 DOI: 10.1186/1757-4749-2-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 01/05/2023] Open
Abstract
Recently we reported a role for compatible solute uptake in mediating bile tolerance and increased gastrointestinal persistence in the foodborne pathogen Listeria monocytogenes[1]. Herein, we review the evolution in our understanding of how these low molecular weight molecules contribute to growth and survival of the pathogen both inside and outside the body, and how this stress survival mechanism may ultimately be used to target and kill the pathogen.
Collapse
Affiliation(s)
- Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland.
| | | |
Collapse
|
52
|
McKernan DP, Fitzgerald P, Dinan TG, Cryan JF. The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil 2010; 22:1029-35, e268. [PMID: 20518856 DOI: 10.1111/j.1365-2982.2010.01520.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is characterized by recurrent abdominal pain and altering bowel habit with a high percentage of patients displaying comorbid anxiety. Growing clinical and preclinical evidence suggests that probiotic agents may restore the altered brain-gut communication in IBS. In this study, we evaluated the efficacy of repeated treatment with three different probiotics in reducing visceral pain in visceral normosensitive (Sprague-Dawley [SD]) and visceral hypersensitive (Wistar-Kyoto [WKY]) rat strains. METHODS Following 14 days oral gavage of Lactobacillus salivarius UCC118, Bifidobacterium infantis 35624, or Bifidobacterium breve UCC2003 both SD and WKY rats were exposed to a novel stress, the open field arena and their behavior was recorded. Subsequently, the effects of probiotics on visceral nociceptive responses were analyzed by recording pain behaviors during colorectal distension (CRD). KEY RESULTS It was found that there was a difference in the open field behavior between strains but none of the probiotic treatment altered behavior within each strain. Interestingly, the probiotic B. infantis 35624 but not others tested significantly reduced CRD-induced visceral pain behaviors in both rat strains. It significantly increased the threshold pressure of the first pain behavior and also reduced the total number pain behaviors during CRD. CONCLUSIONS & INFERENCES These data confirm that probiotics such as B. infantis 35624 are effective in reducing visceral pain and may be effective in treating certain symptoms of IBS.
Collapse
Affiliation(s)
- D P McKernan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
53
|
Sleator RD. Probiotic therapy - recruiting old friends to fight new foes. Gut Pathog 2010; 2:5. [PMID: 20579345 PMCID: PMC2912230 DOI: 10.1186/1757-4749-2-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/25/2010] [Indexed: 02/08/2023] Open
Abstract
Against a backdrop of increasing antibiotic resistance, and the emergence of new and evolving pathogens, clinicians are increasingly forced to consider alternative therapies - probiotics are one such alternative.
Collapse
Affiliation(s)
- Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland.
| |
Collapse
|
54
|
Dobrogosz WJ, Peacock TJ, Hassan HM. Evolution of the Probiotic Concept. ADVANCES IN APPLIED MICROBIOLOGY 2010; 72:1-41. [DOI: 10.1016/s0065-2164(10)72001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
55
|
Sleator RD, Hill C. Compatible solutes: A listerial passe-partout? Gut Microbes 2010; 1:77-79. [PMID: 21326913 PMCID: PMC3023583 DOI: 10.4161/gmic.1.2.10968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 02/03/2023] Open
Abstract
Recently we reported a role for compatible solute uptake in mediating bile tolerance and increased gastrointestinal persistence in the foodborne pathogen Listeria monocytogenes.1 Herein, we review the evolution in our understanding of how these low molecular weight molecules contribute to growth and survival of the pathogen both inside and outside the body, and how this stress survival mechanism may ultimately be used to target and kill the pathogen.
Collapse
Affiliation(s)
- Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Cork, Ireland,Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
| |
Collapse
|
56
|
Hill C. Probiotics and pharmabiotics: alternative medicine or an evidence-based alternative? Bioeng Bugs 2009; 1:79-84. [PMID: 21326932 DOI: 10.4161/bbug.1.2.10796] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 12/26/2022] Open
Abstract
That commensal bacteria play an important role in human health is beyond doubt, and it is now widely accepted that humans function as super organisms, whose collective metabolic potential exceeds the sum of our individual eukaryotic and prokaryotic components. However, while it is has been established that the prokaryotic component of the human superorganism is amenable to manipulation by chemotherapeutic, dietary or microbial interventions, the significance of such alterations in terms of human health or well being is less well established. Prebiotics (non- digestible food ingredients that stimulate the growth and/or activity of bacteria in the digestive system) and probiotics (live microorganisms that when administered in adequate amounts, confer a health benefit on the host) are often bracketed among 'alternative' approaches to influencing human health, such as homeopathy, naturopathy, acupuncture and hypnotherapy. Others believe that prebiotics and probiotics have proven their effectiveness in properly conducted, clinically controlled human trials and therefore can be considered as evidence-based alternatives or adjuncts to conventional medicines. My journey from a position of total skepticism to 'reluctant convert' is the basis of this article, which should not be considered in any sense as a review of the literature but simply a personal account of this transition. While I am not bent on converting other doubters, I will recount some of the thought processes and evidence that has helped to form my current opinion.
Collapse
Affiliation(s)
- Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Ireland.
| |
Collapse
|
57
|
Culligan EP, Hill C, Sleator RD. Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathog 2009; 1:19. [PMID: 19930635 PMCID: PMC2789095 DOI: 10.1186/1757-4749-1-19] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/23/2009] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal disease is a major cause of morbidity and mortality worldwide each year. Treatment of chronic inflammatory gastrointestinal conditions such as ulcerative colitis and Crohn's disease is difficult due to the ambiguity surrounding their precise aetiology. Infectious gastrointestinal diseases, such as various types of diarrheal disease are also becoming increasingly difficult to treat due to the increasing dissemination of antibiotic resistance among microorganisms and the emergence of the so-called 'superbugs'. Taking into consideration these problems, the need for novel therapeutics is essential. Although described for over a century probiotics have only been extensively researched in recent years. Their use in the treatment and prevention of disease, particularly gastrointestinal disease, has yielded many successful results, some of which we outline in this review. Although promising, many probiotics are hindered by inherent physiological and technological weaknesses and often the most clinically promising strains are unusable. Consequently we discuss various strategies whereby probiotics may be engineered to create designer probiotics. Such innovative approaches include; a receptor mimicry strategy to create probiotics that target specific pathogens and toxins, a patho-biotechnology approach using pathogen-derived genes to create more robust probiotic stains with increased host and processing-associated stress tolerance profiles and meta-biotechnology, whereby, functional metagenomics may be used to identify novel genes from diverse and vastly unexplored environments, such as the human gut, for use in biotechnology and medicine.
Collapse
Affiliation(s)
- Eamonn P Culligan
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
58
|
SÁNCHEZ BORJA, de los REYES-GAVILÁN CLARAG, MARGOLLES ABELARDO, GUEIMONDE MIGUEL. Probiotic fermented milks: Present and future. INT J DAIRY TECHNOL 2009. [DOI: 10.1111/j.1471-0307.2009.00528.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
59
|
Lee HJ, Orlovich DA, Tagg JR, Fawcett JP. Detection and Specific Enumeration of Multi-Strain Probiotics in the Lumen Contents and Mucus Layers of the Rat Intestine After Oral Administration. Probiotics Antimicrob Proteins 2009; 1:113-20. [PMID: 26783165 DOI: 10.1007/s12602-009-9019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/02/2009] [Indexed: 01/23/2023]
Abstract
Although the detection of viable probiotic bacteria following their ingestion and passage through the gastrointestinal tract (GIT) has been well documented, their mucosal attachment in vivo is more difficult to assess. In this study, we investigated the survival and mucosal attachment of multi-strain probiotics transiting the rat GIT. Rats were administered a commercial mixture of the intestinal probiotics Lactobacillus acidophilus LA742, Lactobacillus rhamnosus L2H and Bifidobacterium lactis HN019 and the oral probiotic Streptococcus salivarius K12 every 12 h for 3 days. Intestinal contents, mucus and faeces were tested 6 h, 3 days and 7 days after the last dose by strain-specific enumeration on selective media and by denaturing gradient gel electrophoresis. At 6 h, viable cells and DNA corresponding to all four probiotics were detected in the faeces and in both the lumen contents and mucus layers of the ileum and colon. Viable probiotic cells of B. lactis and L. rhamnosus were detected for 7 days and L. acidophilus for 3 days after the last dose. B. lactis and L. rhamnosus persisted in the ileal mucus and colon contents, whereas the retention of L. acidophilus appeared to be relatively higher in colonic mucus. No viable cells of S. salivarius K12 were detected in any of the samples at either day 3 or 7. The study demonstrates that probiotic strains of intestinal origin but not of oral origin exhibit temporary colonisation of the rat GIT and that these strains may have differing relative affinities for colonic and ileal mucosa.
Collapse
Affiliation(s)
- Hee Ji Lee
- School of Pharmacy, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| | - David A Orlovich
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - John R Tagg
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,BLIS Technologies Ltd., Centre For Innovation, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - J Paul Fawcett
- School of Pharmacy, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
60
|
Rational design of improved pharmabiotics. J Biomed Biotechnol 2009; 2009:275287. [PMID: 19753318 PMCID: PMC2742647 DOI: 10.1155/2009/275287] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 02/06/2023] Open
Abstract
Herein we review the most recent advances in probiotic research and applications with particular emphasis on the novel concept of patho-biotechnology: the application of pathogen-derived (ex vivo and in vivo) stress survival strategies for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications.
Collapse
|
61
|
Specific osmolyte transporters mediate bile tolerance in Listeria monocytogenes. Infect Immun 2009; 77:4895-904. [PMID: 19737907 DOI: 10.1128/iai.00153-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The food-borne pathogenic bacterium Listeria monocytogenes has the potential to adapt to an array of suboptimal growth environments encountered within the host. The pathogen is relatively bile tolerant and has the capacity to survive and grow within both the small intestine and the gallbladder in murine models of oral infection. We have previously demonstrated a role for the principal carnitine transport system of L. monocytogenes (OpuC) in gastrointestinal survival of the pathogen (R. Sleator, J. Wouters, C. G. M. Gahan, T. Abee, and C. Hill, Appl. Environ. Microbiol. 67:2692-2698, 2001). However, the mechanisms by which OpuC, or indeed carnitine, protects the pathogen in this environment are unclear. In the current study, systematic analysis of strains with mutations in osmolyte transporters revealed a role for OpuC in resisting the acute toxicity of bile, with a minor role also played by BetL, a secondary betaine uptake system which also exhibits a low affinity for carnitine. In addition, the toxic effects of bile on wild-type L. monocytogenes cells were ameliorated when carnitine (but not betaine) was added to the medium. lux-promoter fusions to the promoters of the genes encoding the principal osmolyte uptake systems Gbu, BetL, and OpuC and the known bile tolerance system BilE were constructed. Promoter activity for all systems was significantly induced in the presence of bile, with the opuC and bilE promoters exhibiting the highest levels of bile-dependent expression in vitro and the betL and bilE promoters showing the highest expression levels in the intestines of orally inoculated mice. A direct comparison of all osmolyte transporter mutants in a murine oral infection model confirmed a major role for OpuC in intestinal persistence and systemic invasion and a minor role for the BetL transporter in fecal carriage. This study therefore demonstrates a previously unrecognized function for osmolyte uptake systems in bile tolerance in L. monocytogenes.
Collapse
|
62
|
Leszczyńska K, Namiot A, Fein DE, Wen Q, Namiot Z, Savage PB, Diamond S, Janmey PA, Bucki R. Bactericidal activities of the cationic steroid CSA-13 and the cathelicidin peptide LL-37 against Helicobacter pylori in simulated gastric juice. BMC Microbiol 2009; 9:187. [PMID: 19728885 PMCID: PMC2748089 DOI: 10.1186/1471-2180-9-187] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/03/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The worldwide appearance of drug-resistant strains of H. pylori motivates a search for new agents with therapeutic potential against this family of bacteria that colonizes the stomach, and is associated with adenocarcinoma development. This study was designed to assess in vitro the anti-H. pylori potential of cathelicidin LL-37 peptide, which is naturally present in gastric juice, its optimized synthetic analog WLBU2, and the non-peptide antibacterial agent ceragenin CSA-13. RESULTS In agreement with previous studies, increased expression of hCAP-18/LL-37 was observed in gastric mucosa obtained from H. pylori infected subjects. MBC (minimum bactericidal concentration) values determined in nutrient-containing media range from 100-800 microg/ml for LL-37, 17.8-142 microg/ml for WLBU2 and 0.275-8.9 microg/ml for ceragenin CSA-13. These data indicate substantial, but widely differing antibacterial activities against clinical isolates of H. pylori. After incubation in simulated gastric juice (low pH with presence of pepsin) CSA-13, but not LL-37 or WLBU2, retained antibacterial activity. Compared to LL-37 and WLBU2 peptides, CSA-13 activity was also more resistant to inhibition by isolated host gastric mucins. CONCLUSION These data indicate that cholic acid-based antimicrobial agents such as CSA-13 resist proteolytic degradation and inhibition by mucin and have potential for treatment of H. pylori infections, including those caused by the clarithromycin and/or metronidazole-resistant strains.
Collapse
Affiliation(s)
- Katarzyna Leszczyńska
- Department of Diagnostic Microbiology, Medical University of Bialystok, 15-230 Bialystok, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Leser TD, Mølbak L. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 2009; 11:2194-206. [DOI: 10.1111/j.1462-2920.2009.01941.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
64
|
Gillor O, Giladi I, Riley MA. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 2009; 9:165. [PMID: 19674447 PMCID: PMC2741469 DOI: 10.1186/1471-2180-9-165] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 08/12/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The ability of a bacterial strain to competitively exclude or displace other strains can be attributed to the production of narrow spectrum antimicrobials, the bacteriocins. In an attempt to evaluate the importance of bacteriocin production for Escherichia coli strain residence in the gastrointestinal tract, a murine model experimental evolution study was undertaken. RESULTS Six colicin-producing, yet otherwise isogenic, E. coli strains were administered and established in the large intestine of streptomycin-treated mice. The strains' persistence, population density, and doubling time were monitored over a period of 112 days. Early in the experiment only minor differences in population density between the various colicin-producing and the non-producing control strains were detected. However, over time, the density of the control strains plummeted, while that of the colicin-producing strains remained significantly higher (F(7,66) = 2.317; P < 0.0008). CONCLUSION The data presented here support prior claims that bacteriocin production may play a significant role in the colonization of E. coli in the gastrointestinal tract. Further, this study suggests that the ability to produce bacteriocins may prove to be a critical factor in determining the success of establishing probiotic E. coli in the gastrointestinal tract of humans and animals.
Collapse
Affiliation(s)
- Osnat Gillor
- Zuckerberg Institute for Water Research, J Blaustein Institutes for Desert Research, Ben-Gurion University, Israel.
| | | | | |
Collapse
|
65
|
Sleator RD, Watson D, Hill C, Gahan CGM. The interaction between Listeria monocytogenes and the host gastrointestinal tract. MICROBIOLOGY-SGM 2009; 155:2463-2475. [PMID: 19542009 DOI: 10.1099/mic.0.030205-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Listeria monocytogenes is a ubiquitous bacterium that causes significant foodborne disease with high mortality rates in immunocompromised adults. In pregnant women foodborne infection can give rise to infection of the fetus resulting in miscarriage. In addition, the bacterium has recently been demonstrated to cause localized gastrointestinal symptoms, predominantly in immunocompetent individuals. The murine model of systemic L. monocytogenes infection has provided numerous insights into the mechanisms of pathogenesis of this organism. However, recent application of transcriptomic and proteomic approaches as well as the development of new model systems has allowed a focus upon factors that influence adaptation to gastrointestinal environments and adhesion to and invasion of the gastrointestinal mucosa. In addition, the availability of a large number of complete L. monocytogenes genome sequences has permitted inter-strain comparisons and the identification of factors that may influence the emergence of 'epidemic' phenotypes. Here we review some of the exciting recent developments in the analysis of the interaction between L. monocytogenes and the host gastrointestinal tract.
Collapse
Affiliation(s)
- Roy D Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Debbie Watson
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Colin Hill
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
66
|
Nomoto K, Kiwaki M, Tsuji H. Genetic Modification of Probiotic Microorganisms. HANDBOOK OF PROBIOTICS AND PREBIOTICS 2008:189-255. [DOI: 10.1002/9780470432624.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
67
|
Hakalehto E, Humppi T, Paakkanen H. Dualistic acidic and neutral glucose fermentation balance in small intestine: Simulation in vitro. PATHOPHYSIOLOGY 2008; 15:211-20. [DOI: 10.1016/j.pathophys.2008.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/19/2008] [Accepted: 07/20/2008] [Indexed: 10/21/2022] Open
|
68
|
Sleator RD, Cronin M, Hill C. Why appendectomies may lead to an increased risk of functional gastrointestinal disorders. Med Hypotheses 2008; 71:814-6. [DOI: 10.1016/j.mehy.2008.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 12/19/2022]
|
69
|
Sleator RD, Hill C. Molecular analysis of the microbial food safety implications of food reformulations for improved health. Foodborne Pathog Dis 2008; 5:499-504. [PMID: 18666862 DOI: 10.1089/fpd.2008.0089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Food reformulation is commonly used as a strategy to produce foods for improved health; for example, replacing sugar with aspartame, and salt (NaCl) with KCl may help to reduce the incidence of obesity and heart disease. However, such reformulations will also change the intrinsic physicochemical properties of the food, which may in turn support the growth of foodborne pathogens and ultimately increase the incidence of foodborne disease. Thus, we need a better understanding of the microbiological food safety issues associated with product reformulation. Herein we review the most recent advances in our understanding of how microbial pathogens adapt to changes in the food composition, and how this information may ultimately be used for the design of effective pathogen control measures.
Collapse
Affiliation(s)
- Roy D Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | |
Collapse
|
70
|
Watson D, Sleator RD, Hill C, Gahan CGM. Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiol 2008; 8:176. [PMID: 18844989 PMCID: PMC2577680 DOI: 10.1186/1471-2180-8-176] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 10/09/2008] [Indexed: 12/11/2022] Open
Abstract
Background The majority of commensal gastrointestinal bacteria used as probiotics are highly adapted to the specialised environment of the large bowel. However, unlike pathogenic bacteria; they are often inadequately equipped to endure the physicochemical stresses of gastrointestinal (GI) delivery in the host. Herein we outline a patho-biotechnology strategy to improve gastric delivery and host adaptation of a probiotic strain Bifidobacterium breve UCC2003 and the generally regarded as safe (GRAS) organism Lactococcus lactis NZ9000. Results In vitro bile tolerance of both strains was significantly enhanced (P < 0.001), following heterologous expression of the Listeria monocytogenes bile resistance mechanism BilE. Strains harbouring bilE were also recovered at significantly higher levels (P < 0.001), than control strains from the faeces and intestines of mice (n = 5), following oral inoculation. Furthermore, a B. breve strain expressing bilE demonstrated increased efficacy relative to the wild-type strain in reducing oral L. monocytogenes infection in mice. Conclusion Collectively the data indicates that bile tolerance can be enhanced in Bifidobacterium and Lactococcus species through rational genetic manipulation and that this can significantly improve delivery to and colonisation of the GI tract.
Collapse
Affiliation(s)
- Debbie Watson
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
71
|
Cronin M, Sleator RD, Hill C, Fitzgerald GF, van Sinderen D. Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol 2008; 8:161. [PMID: 18816375 PMCID: PMC2564955 DOI: 10.1186/1471-2180-8-161] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/24/2008] [Indexed: 12/12/2022] Open
Abstract
Background Probiotics such as bifidobacteria have been shown to maintain a healthy intestinal microbial balance and help protect against infections. However, despite these benefits, bifidobacteria still remain poorly understood at the biochemical, physiological and especially the genetic level. Herein we describe, for the first time, the development of a non-invasive luciferase-based reporter system for real-time tracking of Bifidobacterium species in vivo. Results The reporter vector pLuxMC1 is based on the recently described theta-type plasmid pBC1 from B. catenatulatum [1] and the luxABCDE operon from pPL2lux [2]. Derivatives of pLuxMC1, harbouring a bifidobacterial promoter (pLuxMC2) as well as a synthetically derived promoter (pLuxMC3) [3] placed upstream of luxABCDE, were constructed and found to stably replicate in B. breve UCC2003. The subsequent analysis of these strains allowed us to assess the functionality of pLuxMC1 both in vitro and in vivo. Conclusion Our results demonstrate the potential of pLuxMC1 as a real-time, non-invasive reporter system for Bifidobacterium. It has also allowed us, for the first time, to track the colonisation potential and persistence of this probiotic species in real time. An interesting and significant outcome of the study is the identification of the caecum as a niche environment for B. breve UCC2003 within the mouse gastrointestinal tract (GI) tract.
Collapse
Affiliation(s)
- Michelle Cronin
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland.
| | | | | | | | | |
Collapse
|
72
|
Sleator RD, Hill C. Designer probiotics: a potential therapeutic for Clostridium difficile? J Med Microbiol 2008; 57:793-794. [PMID: 18480340 DOI: 10.1099/jmm.0.47697-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Roy D Sleator
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
73
|
Considine KM, Kelly AL, Fitzgerald GF, Hill C, Sleator RD. High-pressure processing--effects on microbial food safety and food quality. FEMS Microbiol Lett 2008; 281:1-9. [PMID: 18279335 DOI: 10.1111/j.1574-6968.2008.01084.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
High-pressure processing (HPP) is a nonthermal process capable of inactivating and eliminating pathogenic and food spoilage microorganisms. This novel technology has enormous potential in the food industry, controlling food spoilage, improving food safety and extending product shelf life while retaining the characteristics of fresh, preservative-free, minimally processed foods. As with other food processing methods, such as thermal processing, HPP has somewhat limited applications as it cannot be universally applied to all food types, such as some dairy and animal products and shelf-stable low-acid foods. Herein, we discuss the effects of high-pressure processing on microbial food safety and, to a lesser degree, food quality.
Collapse
|
74
|
Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 2008; 190:3161-8. [PMID: 18223069 DOI: 10.1128/jb.01637-07] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus johnsonii strains NCC533 and ATCC 33200 (the type strain of this species) differed significantly in gut residence time (12 versus 5 days) after oral feeding to mice. Genes affecting the long gut residence time of the probiotic strain NCC533 were targeted for analysis. We hypothesized that genes specific for this strain, which are expressed during passage of the bacterium through the gut, affect the phenotype. When the DNA of the type strain was hybridized against a microarray of the sequenced NCC533 strain, we identified 233 genes that were specific for the long-gut-persistence isolate. Whole-genome transcription analysis of the NCC533 strain using the microarray format identified 174 genes that were strongly and consistently expressed in the jejunum of mice monocolonized with this strain. Fusion of the two microarray data sets identified three gene loci that were both expressed in vivo and specific to the long-gut-persistence isolate. The identified genes included LJ1027 and LJ1028, two glycosyltransferase genes in the exopolysaccharide synthesis operon; LJ1654 to LJ1656, encoding a sugar phosphotransferase system (PTS) transporter annotated as mannose PTS; and LJ1680, whose product shares 30% amino acid identity with immunoglobulin A proteases from pathogenic bacteria. Knockout mutants were tested in vivo. The experiments revealed that deletion of LJ1654 to LJ1656 and LJ1680 decreased the gut residence time, while a mutant with a deleted exopolysaccharide biosynthesis cluster had a slightly increased residence time.
Collapse
|
75
|
Abstract
The increasing incidence of antibiotic resistance, coupled with a growing prevalence of cancer and allergic conditions in an aging population, has forced clinical research to explore alternative therapeutic and prophylactic avenues. One such approach involves the use of probiotics: beneficial bacterial cultures, which, when administered as a part of the daily dietary intake, reduce the incidence and severity of acute and chronic infection, facilitate prevention and reduced recurrence of certain cancers and lower the incidence of several atopic conditions. Herein, we review the most recent advances in the emerging area of patho-biotechnology in the context of improving probiotic production, delivery and clinical efficacy, in addition to the emerging area of 'designer probiotics'- strains specifically tailored to target certain pathogens and/or toxins in vivo.
Collapse
Affiliation(s)
- R D Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | |
Collapse
|