51
|
Dourado MN, Bogas AC, Pomini AM, Andreote FD, Quecine MC, Marsaioli AJ, Araújo WL. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 2014; 44:1331-9. [PMID: 24688531 PMCID: PMC3958207 DOI: 10.1590/s1517-83822013000400044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.
Collapse
Affiliation(s)
| | | | - Armando M Pomini
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Fernando Dini Andreote
- Departamento de Ciências do Solos, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Anita J Marsaioli
- Instituto de Química, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Welington Luiz Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
52
|
Ampomah OY, Jensen JB. The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp. World J Microbiol Biotechnol 2014; 30:1129-34. [DOI: 10.1007/s11274-013-1527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022]
|
53
|
Dohlich K, Zumsteg AB, Goosmann C, Kolbe M. A substrate-fusion protein is trapped inside the Type III Secretion System channel in Shigella flexneri. PLoS Pathog 2014; 10:e1003881. [PMID: 24453973 PMCID: PMC3894212 DOI: 10.1371/journal.ppat.1003881] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
The Type III Secretion System (T3SS) is a macromolecular complex used by Gram-negative bacteria to secrete effector proteins from the cytoplasm across the bacterial envelope in a single step. For many pathogens, the T3SS is an essential virulence factor that enables the bacteria to interact with and manipulate their respective host. A characteristic structural feature of the T3SS is the needle complex (NC). The NC resembles a syringe with a basal body spanning both bacterial membranes and a long needle-like structure that protrudes from the bacterium. Based on the paradigm of a syringe-like mechanism, it is generally assumed that effectors and translocators are unfolded and secreted from the bacterial cytoplasm through the basal body and needle channel. Despite extensive research on T3SS, this hypothesis lacks experimental evidence and the mechanism of secretion is not fully understood. In order to elucidate details of the T3SS secretion mechanism, we generated fusion proteins consisting of a T3SS substrate and a bulky protein containing a knotted motif. Because the knot cannot be unfolded, these fusions are accepted as T3SS substrates but remain inside the NC channel and obstruct the T3SS. To our knowledge, this is the first time substrate fusions have been visualized together with isolated NCs and we demonstrate that substrate proteins are secreted directly through the channel with their N-terminus first. The channel physically encloses the fusion protein and shields it from a protease and chemical modifications. Our results corroborate an elementary understanding of how the T3SS works and provide a powerful tool for in situ-structural investigations in the future. This approach might also be applicable to other protein secretion systems that require unfolding of their substrates prior to secretion. Type III Secretion Systems (T3SS) secrete bacterial effector proteins from the cytoplasm across the cell wall, but mechanistic details of this process remain mostly elusive. We locked the T3SS of Shigella flexneri in an actively secreting state by expression of substrate fusions that consist of a functional translocator and a stably-folded knotted protein. Although recognized as T3SS substrates, the fusions are not released from secreting Shigella and impede transport of other effector proteins by obstructing the T3SS channel. We localized the fusion at isolated channels and observed that the translocator is secreted with the N-terminus first. We further demonstrate that the channel physically encloses the partially transported substrate. Our analysis elucidates important steps of the T3SS mechanism. Furthermore, we developed fusion proteins useful for advanced structural investigations of one of the most complex bacterial virulence devices known and our approach may help to also understand other protein transport mechanisms.
Collapse
Affiliation(s)
- Kim Dohlich
- Structural Systems Biology Group, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Anna Brotcke Zumsteg
- Department of Cellular Microbiology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Christian Goosmann
- Microscopy Core Facility, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Michael Kolbe
- Structural Systems Biology Group, Max-Planck-Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
54
|
Tampakaki AP. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. FRONTIERS IN PLANT SCIENCE 2014; 5:114. [PMID: 24723933 PMCID: PMC3973906 DOI: 10.3389/fpls.2014.00114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/11/2014] [Indexed: 05/19/2023]
Abstract
Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts.
Collapse
Affiliation(s)
- Anastasia P. Tampakaki
- *Correspondence: Anastasia P. Tampakaki, Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece e-mail:
| |
Collapse
|
55
|
Kuykendall LD, Shao JY, Hartung JS. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interaction. PLoS One 2012; 7:e38725. [PMID: 22761700 PMCID: PMC3382624 DOI: 10.1371/journal.pone.0038725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/14/2012] [Indexed: 01/09/2023] Open
Abstract
Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential 'accessory' genes for nitrogen fixation (nif), nodulation and host specificity (nod). A related bacterium, psyllid-vectored 'Ca. Liberibacter asiaticus,' is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the 'Ca. Liberibacter asiaticus' genome. Only two 'Ca. Liberibacter asiaticus' proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na(+)/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea) and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and 'Ca. Liberibacter asiaticus' orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤ E-10) with 'Ca. Liberibacter asiaticus' proteins, often present as multiple orthologs of single 'Ca. Liberibacter asiaticus' proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational analysis and is consistent with the hypothesis that these proteins may be of particular importance in host/microbe interaction and their duplication likely facilitates their ongoing evolution.
Collapse
Affiliation(s)
- L. David Kuykendall
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Jonathan Y. Shao
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - John S. Hartung
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
56
|
Computer-based annotation of putative AraC/XylS-family transcription factors of known structure but unknown function. J Biomed Biotechnol 2012; 2012:103132. [PMID: 22505803 PMCID: PMC3312330 DOI: 10.1155/2012/103132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022] Open
Abstract
Currently, about 20 crystal structures per day are released and deposited in the Protein Data Bank. A significant fraction of these structures is produced by research groups associated with the structural genomics consortium. The biological function of many of these proteins is generally unknown or not validated by experiment. Therefore, a growing need for functional prediction of protein structures has emerged. Here we present an integrated bioinformatics method that combines sequence-based relationships and three-dimensional (3D) structural similarity of transcriptional regulators with computer prediction of their cognate DNA binding sequences. We applied this method to the AraC/XylS family of transcription factors, which is a large family of transcriptional regulators found in many bacteria controlling the expression of genes involved in diverse biological functions. Three putative new members of this family with known 3D structure but unknown function were identified for which a probable functional classification is provided. Our bioinformatics analyses suggest that they could be involved in plant cell wall degradation (Lin2118 protein from Listeria innocua, PDB code 3oou), symbiotic nitrogen fixation (protein from Chromobacterium violaceum, PDB code 3oio), and either metabolism of plant-derived biomass or nitrogen fixation (protein from Rhodopseudomonas palustris, PDB code 3mn2).
Collapse
|
57
|
Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, Thomas T. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS One 2011; 6:e27387. [PMID: 22162749 PMCID: PMC3230580 DOI: 10.1371/journal.pone.0027387] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/15/2011] [Indexed: 01/17/2023] Open
Abstract
Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS) dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised.
Collapse
Affiliation(s)
- Neil Fernandes
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca J. Case
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sharon R. Longford
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter D. Steinberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
58
|
Abstract
AbstractPlant-interacting bacteria can establish either mutualistic or pathogenic interactions that cause beneficial or detrimental effects respectively, to their hosts. In spite of the completely different outcomes, accumulating evidence indicates that similar molecular bases underlie the establishment of these two contrasting plant-bacteria associations. Recent findings observed in the mutualistic nitrogen-fixing Rhizobium-legume symbiosis add new elements to the increasing list of similarities. Amongst these, in this review we describe the role of plant resistance proteins in determining host specificity in the Rhizobium-legume symbiosis that resemble the gene-for-gene resistance of plant-pathogen interactions, and the production of antimicrobial peptides by certain legumes to control rhizobial proliferation within nodules. Amongst common bacterial strategies, cyclic diguanylate (c-di-GMP) appears to be a second messenger used by both pathogenic and mutualistic bacteria to regulate key features for interaction with their plant hosts.
Collapse
|
59
|
Jeon JM, Lee HI, Donati AJ, So JS, Emerich DW, Chang WS. Whole-genome expression profiling of Bradyrhizobium japonicum in response to hydrogen peroxide. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1472-81. [PMID: 21864047 DOI: 10.1094/mpmi-03-11-0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bradyrhizobium japonicum, a nitrogen-fixing bacterium in soil, establishes a symbiotic relationship with the leguminous soybean plant. Despite a mutualistic association between the two partners, the host plant produces an oxidative burst to protect itself from the invasion of rhizobial cells. We investigated the effects of H(2)O(2)-mediated oxidative stress on B. japonicum gene expression in both prolonged exposure (PE) and fulminant shock (FS) conditions. In total, 439 and 650 genes were differentially expressed for the PE and FS conditions, respectively, at a twofold cut-off with q < 0.05. A number of genes within the transport and binding proteins category were upregulated during PE and a majority of those genes are involved in ABC transporter systems. Many genes encoding ? factors, global stress response proteins, the FixK(2) transcription factor, and its regulatory targets were found to be upregulated in the FS condition. Surprisingly, catalase and peroxidase genes which are typically expressed in other bacteria under oxidative stress were not differentially expressed in either condition. The isocitrate lyase gene (aceA) was induced by fulminant H(2)O(2) shock, as was evident at both the transcriptional and translational levels. Interestingly, there was no significant effect of H(2)O(2) on exopolysaccharide production at the given experimental conditions.
Collapse
Affiliation(s)
- Jeong-Min Jeon
- Department of Biology, University of Texas, Arlington, TX, USA
| | | | | | | | | | | |
Collapse
|
60
|
Fones H, Preston GM. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiol Lett 2011; 327:1-8. [PMID: 22092667 DOI: 10.1111/j.1574-6968.2011.02449.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/22/2011] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) are a key feature of plant (and animal) defences against invading pathogens. As a result, plant pathogens must be able to either prevent their production or tolerate high concentrations of these highly reactive chemicals. In this review, we focus on plant pathogenic bacteria of the genus Pseudomonas and the ways in which they overcome the challenges posed by ROS. We also explore the ways in which pseudomonads may exploit plant ROS generation for their own purposes and even produce ROS directly as part of their infection mechanisms.
Collapse
Affiliation(s)
- Helen Fones
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
61
|
El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. THE PLANT CELL 2011; 23:2405-21. [PMID: 21665999 PMCID: PMC3160041 DOI: 10.1105/tpc.111.083394] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/11/2011] [Accepted: 05/26/2011] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant's defense system and to spread within the host.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Taha Abd El Rahman
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Luciano Rigano
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468-C1440FFX, Ciudad de Buenos Aires, Argentina
| | | | - María Cecilia Rodriguez
- Departamento de Biodiversidad y Biología Experimental and Centro de Investigaciones en Hidratos de Carbono (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Adrian Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468-C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Kamal Bouarab
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
62
|
Turska-Szewczuk A, Russa R. Structural studies of the O-specific polysaccharide from the lipopolysaccharide of Mesorhizobium huakuii strain S-52, the symbiotic partner of Astragalus sinicus. Carbohydr Res 2011; 346:1065-9. [PMID: 21486667 DOI: 10.1016/j.carres.2011.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/30/2022]
Abstract
The O-specific polysaccharide (OPS) obtained by mild-acid degradation of the lipopolysaccharide isolated from Mesorhizobium huakuii strain S-52 was studied by sugar and ethylation analyses along with (1)H and (13)C NMR spectroscopy. It was concluded that the OPS was composed of trisaccharide repeating units containing two residues of 6-deoxy-l-talose (6dTal) and one l-rhamnose (Rha), whose sequence in the OPS was determined by NOESY and HMBC experiments. The minor 3-O-acetylation (about 10%) of 6-deoxytalose glycosidically substituted at position-2 was judged by relative signal intensities of corresponding O-acetylated and non-acetylated 6dTal residues. Moreover, it was found that the non-reducing end of the OPS repeating unit was occupied by 3-O-methyl-d-fucose, which terminated the O-chain as a cap-residue. These data defined the structure of the OPS as: α-3-OMe-d-Fucp-(1→[2)-α-l-6dTalp-(1→3)-α-l-6dTalp-(1→2)-α-l-Rhap-(1→](n).
Collapse
Affiliation(s)
- Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland.
| | | |
Collapse
|
63
|
Meneses N, Mendoza-Hernández G, Encarnación S. The extracellular proteome of Rhizobium etli CE3 in exponential and stationary growth phase. Proteome Sci 2010; 8:51. [PMID: 20942974 PMCID: PMC2964644 DOI: 10.1186/1477-5956-8-51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/14/2010] [Indexed: 02/06/2023] Open
Abstract
Background The extracellular proteome or secretome of symbiotic bacteria like Rhizobium etli is presumed to be a key element of their infection strategy and survival. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. To find out the possible role of secreted proteins we analyzed the extracellular proteome of R. etli CE3 in the exponential and stationary growth phases in minimal medium, supplemented with succinate-ammonium. Results The extracellular proteins were obtained by phenol extraction and identified by LC-ESI MS/MS. We identified 192 and 191 proteins for the exponential and stationary phases respectively. Using the software Signal P, we predicted signal peptides for 12.95% and 35.60% of the proteins identified in the exponential and stationary phases, respectively, which could therefore be secreted by the Sec pathway. For the exponential growth phase, we found in abundance proteins like the ribosomal proteins, toxins and proteins belonging to the group "defence mechanisms". For the stationary growth phase, we found that the most abundant proteins were those with unknown function, and in many of these we identified characteristic domains of proteases and peptidases. Conclusions Our study provided the first dataset of the secretome of R. etli and its modifications, which may lead to novel insights into the adaptive response of different stages of growth. In addition, we found a high number of proteins with unknown function; these proteins could be analyzed in future research to elucidate their role in the extracellular proteome of R. etli.
Collapse
Affiliation(s)
- Niurka Meneses
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo, Postal 565-A, Cuernavaca, Morelos, CP 62210, México.
| | | | | |
Collapse
|
64
|
Urate Is a Ligand for the Transcriptional Regulator PecS. J Mol Biol 2010; 402:539-51. [DOI: 10.1016/j.jmb.2010.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/17/2010] [Accepted: 07/26/2010] [Indexed: 11/22/2022]
|
65
|
Glyan’ko AK, Vasil’eva GG, Ischenko AA, Mironova NV, Alekseenko AL. The NADPH oxidase activity of pea seedling roots in rhizobial infection depending on abiotic and biotic factors. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810040137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
66
|
Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB. Plants versus pathogens: an evolutionary arms race. FUNCTIONAL PLANT BIOLOGY : FPB 2010; 37:499-512. [PMID: 21743794 PMCID: PMC3131095 DOI: 10.1071/fp09304] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The analysis of plant-pathogen interactions is a rapidly moving research field and one that is very important for productive agricultural systems. The focus of this review is on the evolution of plant defence responses and the coevolution of their pathogens, primarily from a molecular-genetic perspective. It explores the evolution of the major types of plant defence responses including pathogen associated molecular patterns and effector triggered immunity as well as the forces driving pathogen evolution, such as the mechanisms by which pathogen lineages and species evolve. Advances in our understanding of plant defence signalling, stomatal regulation, R gene-effector interactions and host specific toxins are used to highlight recent insights into the coevolutionary arms race between pathogens and plants. Finally, the review considers the intriguing question of how plants have evolved the ability to distinguish friends such as rhizobia and mycorrhiza from their many foes.
Collapse
Affiliation(s)
- Jonathan P. Anderson
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag #5, Wembley, WA 6913, Australia
| | - Cynthia A. Gleason
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag #5, Wembley, WA 6913, Australia
| | - Rhonda C. Foley
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag #5, Wembley, WA 6913, Australia
| | - Peter H. Thrall
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Jeremy B. Burdon
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Karam B. Singh
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag #5, Wembley, WA 6913, Australia
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
67
|
Wei M, Takeshima K, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Omori H, Tajima S, Uchiumi T, Abe M, Ishii S, Ohwada T. Temperature-dependent expression of type III secretion system genes and its regulation in Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:628-637. [PMID: 20367471 DOI: 10.1094/mpmi-23-5-0628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The genome-wide expression profiles of Bradyrhizobium japonicum in response to soybean (Glycine max (L.) Merr.) seed extract (SSE) and genistein were monitored with time at a low temperature (15 degrees C). A comparison with the expression profiles of the B. japonicum genome previously captured at the common growth temperature (30 degrees C) revealed that the expression of SSE preferentially induced genomic loci, including a large gene cluster encoding the type III secretion system (T3SS), were considerably delayed at 15 degrees C, whereas most nodulation (nod) gene loci, including nodD1 and nodW, were rapidly and strongly induced by both SSE and genistein. Induction of the T3SS genes was progressively activated upon the elevation of temperature to 30 degrees C and positively responded to culture population density. In addition, genes nolA and nodD2 were dramatically induced by SSE, concomitantly with the expression of T3SS genes. However, the deletion mutation of nodD2 but not nolA led to elimination of the T3SS genes expression. These results indicate that the expression of the T3SS gene cluster is tightly regulated with integration of environmental cues such as temperature and that NodD2 may be involved in its efficient induction in B. japonicum.
Collapse
Affiliation(s)
- Min Wei
- Department of Food Sciences, Obihiro University of Agiculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Nogales J, Domínguez-Ferreras A, Amaya-Gómez CV, van Dillewijn P, Cuéllar V, Sanjuán J, Olivares J, Soto MJ. Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics 2010; 11:157. [PMID: 20210991 PMCID: PMC2848241 DOI: 10.1186/1471-2164-11-157] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swarming is a multicellular phenomenom characterized by the coordinated and rapid movement of bacteria across semisolid surfaces. In Sinorhizobium meliloti this type of motility has been described in a fadD mutant. To gain insights into the mechanisms underlying the process of swarming in rhizobia, we compared the transcriptome of a S. meliloti fadD mutant grown under swarming inducing conditions (semisolid medium) to those of cells grown under non-swarming conditions (broth and solid medium). RESULTS More than a thousand genes were identified as differentially expressed in response to growth on agar surfaces including genes for several metabolic activities, iron uptake, chemotaxis, motility and stress-related genes. Under swarming-specific conditions, the most remarkable response was the up-regulation of iron-related genes. We demonstrate that the pSymA plasmid and specifically genes required for the biosynthesis of the siderophore rhizobactin 1021 are essential for swarming of a S. meliloti wild-type strain but not in a fadD mutant. Moreover, high iron conditions inhibit swarming of the wild-type strain but not in mutants lacking either the iron limitation response regulator RirA or FadD. CONCLUSIONS The present work represents the first transcriptomic study of rhizobium growth on surfaces including swarming inducing conditions. The results have revealed major changes in the physiology of S. meliloti cells grown on a surface relative to liquid cultures. Moreover, analysis of genes responding to swarming inducing conditions led to the demonstration that iron and genes involved in rhizobactin 1021 synthesis play a role in the surface motility shown by S. meliloti which can be circumvented in a fadD mutant. This work opens a way to the identification of new traits and regulatory networks involved in swarming by rhizobia.
Collapse
Affiliation(s)
- Joaquina Nogales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Glyan’ko AK, Vasil’eva GG. Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: A review. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Hallack LF, Passos DS, Mattos KA, Agrellos OA, Jones C, Mendonca-Previato L, Previato JO, Todeschini AR. Structural elucidation of the repeat unit in highly branched acidic exopolysaccharides produced by nitrogen fixing Burkholderia. Glycobiology 2009; 20:338-47. [DOI: 10.1093/glycob/cwp181] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
71
|
Zdorovenko EL, Valueva OA, Kachala VV, Shashkov AS, Kocharova NA, Knirel YA, Kutkowska J, Turska-Szewczuk A, Urbanik-Sypniewska T, Choma A, Russa R. Structure of the O-polysaccharides of the lipopolysaccharides of Mesorhizobium loti HAMBI 1148 and Mesorhizobium amorphae ATCC 19655 containing two O-methylated monosaccharides. Carbohydr Res 2009; 344:2519-27. [PMID: 19850286 DOI: 10.1016/j.carres.2009.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/27/2009] [Accepted: 08/30/2009] [Indexed: 11/29/2022]
Abstract
The O-polysaccharide of Mesorhizobium loti HAMBI 1148 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses, Smith degradation, and (1)H and (13)C NMR spectroscopies, including 2D (1)H/(1)H COSY, TOCSY, ROESY, and H-detected (1)H/(13)C HSQC experiments. The O-polysaccharide was found to have a branched hexasaccharide-repeating unit of the following structure: [Formula: see text] where 2-acetamido-2-deoxy-4-O-methyl-D-glucose (D-GlcNAc4Me) and methyl group on 2-substituted D-rhamnose (Me) shown in italics are present in approximately 80% and approximately 40% repeating units, respectively. Similar studies of the O-polysaccharide from Mesorhizobium amorphae ATCC 19655 by sugar analysis and NMR spectroscopy revealed essentially the same structure but a higher content of 3-O-methyl-D-rhamnose ( approximately 70%).
Collapse
Affiliation(s)
- Evelina L Zdorovenko
- ND Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Glyan’ko AK, Vasil’eva GG, Mitanova NB, Ishchenko AA. The influence of mineral nitrogen on legume-rhizobium symbiosis. BIOL BULL+ 2009. [DOI: 10.1134/s1062359009030054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J. Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 2009; 11:381-8. [PMID: 19134114 DOI: 10.1111/j.1462-5822.2009.01282.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogenic bacteria and mutualistic rhizobia are able to invade and establish chronic infections within their host plants. The success of these plant-bacteria interactions requires evasion of the plant innate immunity by either avoiding recognition or by suppressing host defences. The primary plant innate immunity is triggered upon recognition of common microbe-associated molecular patterns. Different studies reveal striking similarities between the molecular bases underlying the perception of rhizobial nodulation factors and microbe-associated molecular patterns from plant pathogens. However, in contrast to general elicitors, nodulation factors can control plant defences when recognized by their cognate legumes. Nevertheless, in response to rhizobial infection, legumes show transient or local defence-like responses suggesting that Rhizobium is perceived as an intruder although the plant immunity is controlled. Whether these responses are involved in limiting the number of infections or whether they are required for the progression of the interaction is not yet clear. Further similarities in both plant-pathogen and Rhizobium-legume associations are factors such as surface polysaccharides, quorum sensing signals and secreted proteins, which play important roles in modulating plant defence responses and determining the outcome of the interactions.
Collapse
Affiliation(s)
- María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | | | | | |
Collapse
|
74
|
Sánchez C, Iannino F, Deakin WJ, Ugalde RA, Lepek VC. Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:519-28. [PMID: 19348570 DOI: 10.1094/mpmi-22-5-0519] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type III secretion systems (T3SS) have been found in several species of rhizobia. Proteins (termed effectors) secreted by this system are involved in host-range determination and influence nodulation efficiency. Mesorhizobium loti MAFF303099 possesses a functional T3SS in its symbiotic island whose expression is induced by flavonoids. As in other rhizobia, conserved cis-elements (tts box) were found in the promoter regions of genes or operons encoding T3SS components. Using a bioinformatics approach, we searched for other tts-box-controlled genes, and confirmed this transcriptional regulation for some of them using lacZ fusions to the predicted promoter regions. Translational fusions to a reporter peptide were created to demonstrate T3SS-mediated secretion of two new MAFF303099 effectors. Finally, we showed that mutation of the M. loti MAFF303099 T3SS affects its competitiveness on Lotus glaber and investigated, at the molecular level, responses of the model legume L. japonicus to the T3SS.
Collapse
Affiliation(s)
- Cintia Sánchez
- Instituto de Investigaciones Biotecnológicas, INTECH, Universidad Nacional de General San Martín, CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
75
|
van Dillewijn P, Sanjuán J, Olivares J, Soto MJ. The tep1 gene of Sinorhizobium meliloti coding for a putative transmembrane efflux protein and N-acetyl glucosamine affect nod gene expression and nodulation of alfalfa plants. BMC Microbiol 2009; 9:17. [PMID: 19173735 PMCID: PMC2637885 DOI: 10.1186/1471-2180-9-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 01/27/2009] [Indexed: 11/24/2022] Open
Abstract
Background Soil bacteria collectively known as Rhizobium, characterized by their ability to establish beneficial symbiosis with legumes, share several common characteristics with pathogenic bacteria when infecting the host plant. Recently, it was demonstrated that a fadD mutant of Sinorhizobium meliloti is altered in the control of swarming, a type of co-ordinated movement previously associated with pathogenicity, and is also impaired in nodulation efficiency on alfalfa roots. In the phytopathogen Xanthomonas campestris, a fadD homolog (rpfB) forms part of a cluster of genes involved in the regulation of pathogenicity factors. In this work, we have investigated the role in swarming and symbiosis of SMc02161, a S. meliloti fadD-linked gene. Results The SMc02161 locus in S. meliloti shows similarities with members of the Major Facilitator Superfamily (MFS) of transporters. A S. meliloti null-mutant shows increased sensitivity to chloramphenicol. This indication led us to rename the locus tep1 for transmembrane efflux protein. The lack of tep1 does not affect the appearance of swarming motility. Interestingly, nodule formation efficiency on alfalfa plants is improved in the tep1 mutant during the first days of the interaction though nod gene expression is lower than in the wild type strain. Curiously, a nodC mutation or the addition of N-acetyl glucosamine to the wild type strain lead to similar reductions in nod gene expression as in the tep1 mutant. Moreover, aminosugar precursors of Nod factors inhibit nodulation. Conclusion tep1 putatively encodes a transmembrane protein which can confer chloramphenicol resistance in S. meliloti by expelling the antibiotic outside the bacteria. The improved nodulation of alfalfa but reduced nod gene expression observed in the tep1 mutant suggests that Tep1 transports compounds which influence nodulation. In contrast to Bradyrhizobium japonicum, we show that in S. meliloti there is no feedback regulation of nodulation genes. Moreover, the Nod factor precursor, N-acetyl glucosamine reduces nod gene expression and nodulation efficiency when present at millimolar concentrations. A role for Tep1 in the efflux of Nod factor precursors could explain the phenotypes associated with tep1 inactivation.
Collapse
Affiliation(s)
- Pieter van Dillewijn
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | | | |
Collapse
|
76
|
Abstract
This review describes secondary metabolites that have been shown to be synthesized by symbiotic bacteria, or for which this possibility has been discussed. It includes 365 references.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
77
|
Reinhardt EL, Ramos PL, Manfio GP, Barbosa HR, Pavan C, Moreira-Filho CA. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state. Braz J Microbiol 2008; 39:414-22. [PMID: 24031239 PMCID: PMC3768443 DOI: 10.1590/s1517-83822008000300002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 10/21/2007] [Accepted: 07/24/2008] [Indexed: 11/22/2022] Open
Abstract
Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data.
Collapse
|
78
|
Ampomah OY, Jensen JB, Bhuvaneswari TV. Lack of trehalose catabolism in Sinorhizobium species increases their nodulation competitiveness on certain host genotypes. THE NEW PHYTOLOGIST 2008; 179:495-504. [PMID: 19086182 DOI: 10.1111/j.1469-8137.2008.02460.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The role of host and bacterial genotypes in determining the competitiveness of trehalose utilization mutants of Sinorhizobium meliloti and Sinorhizobium medicae was investigated here. Trehalose utilization mutants of S. meliloti and S. medicae were obtained by mutagenesis of their trehalose utilization gene thuB. The mutant strains and the wild type were coinoculated on three cultivars of alfalfa (Medicago sativa) and two cultivars of Medicago truncatula and assessed for competitiveness in root colonization, and nodule occupancy. The thuB mutants formed more nodules than their parent strains on two of the three alfalfa lines tested and on one of the two M. truncatula lines tested. They were not more competitive on the other alfalfa and M. truncatula lines. Their competitiveness for nodule occupancy did not correlate positively with their ability to colonize these roots but correlated with the extent of thuB induction in the infection threads. Induction of thuB was shown to be dependent on the concentration of trehalose in the environment. These results suggest a direct role for host trehalose metabolism in early plant-symbiont interactions and show that the ability to manage host-induced stresses during infection, rather than the ability to colonize the root, is critical for competitive nodulation.
Collapse
Affiliation(s)
- Osei Yaw Ampomah
- Department of Biology, Faculty of Science, University of Tromsø, N-9037, Norway
| | - John Beck Jensen
- Department of Biology, Faculty of Science, University of Tromsø, N-9037, Norway
| | - T V Bhuvaneswari
- Department of Biology, Faculty of Science, University of Tromsø, N-9037, Norway
| |
Collapse
|
79
|
|
80
|
Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC, Broughton WJ, Deakin WJ. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 2008; 68:736-48. [PMID: 18363648 DOI: 10.1111/j.1365-2958.2008.06187.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infection of legumes by Rhizobium sp. NGR234 and subsequent development of nitrogen-fixing nodules are dependent on the coordinated actions of Nod factors, proteins secreted by a type III secretion system (T3SS) and modifications to surface polysaccharides. The production of these signal molecules is dependent on plant flavonoids which trigger a regulatory cascade controlled by the transcriptional activators NodD1, NodD2, SyrM2 and TtsI. TtsI is known to control the genes responsible for T3SS function and synthesis of a symbiotically important rhamnose-rich lipo-polysaccharide, most probably by binding to cis elements termed tts boxes. Eleven tts boxes were identified in the promoter regions of target genes on the symbiotic plasmid of NGR234. Expression profiles of lacZ fusions to these tts boxes showed that they are part of a TtsI-dependent regulon induced by plant-derived flavonoids. TtsI was purified and demonstrated to bind directly to two of these tts boxes. DNase I footprinting revealed that TtsI occupied not only the tts box consensus sequence, but also upstream and downstream regions in a concentration-dependent manner. Highly conserved bases of the consensus tts box were mutated and, although TtsI binding was still observed in vitro, gfp fusions were no longer transcribed in vivo. Random mutagenesis of a tts box-containing promoter revealed more nucleotides critical for transcriptional activity outside of the consensus.
Collapse
Affiliation(s)
- Roseli Wassem
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Rhizobial bacteria colonize legume roots for the purpose of biological nitrogen fixation. A complex series of events, coordinated by host and bacterial signal molecules, underlie the development of this symbiotic interaction. Rhizobia elicit de novo formation of a novel root organ within which they establish a chronic intracellular infection. Legumes permit rhizobia to invade these root tissues while exerting control over the infection process. Once rhizobia gain intracellular access to their host, legumes also strongly influence the process of bacterial differentiation that is required for nitrogen fixation. Even so, symbiotic rhizobia play an active role in promoting their goal of host invasion and chronic persistence by producing a variety of signal molecules that elicit changes in host gene expression. In particular, rhizobia appear to advocate for their access to the host by producing a variety of signal molecules capable of suppressing a general pathogen defense response.
Collapse
Affiliation(s)
- Katherine E. Gibson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
82
|
Growth, denitrification and nitrate ammonification of the rhizobial strain TNAU 14 in presence and absence of C2H4 and C2H2. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
83
|
Glenn SA, Gurich N, Feeney MA, González JE. The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti. J Bacteriol 2007; 189:7077-88. [PMID: 17644606 PMCID: PMC2045190 DOI: 10.1128/jb.00906-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a gram-negative soil bacterium capable of forming a symbiotic nitrogen-fixing relationship with its plant host, Medicago sativa. Various bacterially produced factors are essential for successful nodulation. For example, at least one of two exopolysaccharides produced by S. meliloti (succinoglycan or EPS II) is required for nodule invasion. Both of these polymers are produced in high- and low-molecular-weight (HMW and LMW, respectively) fractions; however, only the LMW forms of either succinoglycan or EPS II are active in nodule invasion. The production of LMW succinoglycan can be generated by direct synthesis or through the depolymerization of HMW products by the action of two specific endoglycanases, ExsH and ExoK. Here, we show that the ExpR/Sin quorum-sensing system in S. meliloti is involved in the regulation of genes responsible for succinoglycan biosynthesis as well as in the production of LMW succinoglycan. Therefore, quorum sensing, which has been shown to regulate the production of EPS II, also plays an important role in succinoglycan biosynthesis.
Collapse
Affiliation(s)
- Sarah A Glenn
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
84
|
Mercado-Blanco J, Bakker PAHM. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 2007; 92:367-89. [PMID: 17588129 DOI: 10.1007/s10482-007-9167-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/12/2007] [Indexed: 11/29/2022]
Abstract
Specific strains of fluorescent Pseudomonas spp. inhabit the environment surrounding plant roots and some even the root interior. Introducing such bacterial strains to plant roots can lead to increased plant growth, usually due to suppression of plant pathogenic microorganisms. We review the modes of action and traits of these beneficial Pseudomonas bacteria involved in disease suppression. The complex regulation of biological control traits in relation to the functioning in the root environment is discussed. Understanding the complexity of the interactions is instrumental in the exploitation of beneficial Pseudomonas spp. in controlling plant diseases.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Apartado 4084, 14080 Cordoba, Spain.
| | | |
Collapse
|
85
|
Cooper J. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 2007; 103:1355-65. [DOI: 10.1111/j.1365-2672.2007.03366.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|