51
|
Genomic organization of a novel victorivirus from the rice blast fungus Magnaporthe oryzae. Arch Virol 2015; 160:2907-10. [DOI: 10.1007/s00705-015-2562-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/02/2015] [Indexed: 10/23/2022]
|
52
|
Complete genome sequence of a novel dsRNA mycovirus isolated from the phytopathogenic fungus Fusarium oxysporum f. sp. dianthi. Arch Virol 2015; 160:2375-9. [PMID: 26138558 DOI: 10.1007/s00705-015-2509-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/21/2015] [Indexed: 10/23/2022]
Abstract
A novel double-stranded RNA (dsRNA) mycovirus, designated Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1), was isolated from a strain of the phytopathogenic fungus F. oxysporum f. sp. dianthi. The FodV1 genome had four dsRNA segments, designated, from the largest to the smallest one, dsRNA 1, 2 3, and 4. Each one of these segments contained a single open reading frame (ORF). dsRNA 1 (3555 bp) and dsRNA 3 (2794 bp) encoded a putative RNA-dependent RNA polymerase (RdRp) and a putative coat protein (CP), respectively. dsRNA 2 (2809 bp) and dsRNA 4 (2646 bp) contained ORFs encoding hypothetical proteins (named P2 and P4, respectively) with unknown functions. Analysis of its genomic structure, homology searches of the deduced amino acid sequences, and phylogenetic analysis all indicated that FodV1 is a new member of the family Chrysoviridae. This is the first report of the complete genomic characterization of a mycovirus identified in the plant pathogen Fusarium oxysporum.
Collapse
|
53
|
Liu L, Wang Q, Cheng J, Fu Y, Jiang D, Xie J. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front Microbiol 2015; 6:406. [PMID: 25999933 PMCID: PMC4422086 DOI: 10.3389/fmicb.2015.00406] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
A variety of mycoviruses have been found in Sclerotinia sclerotiorum. In this study, we report a novel mycovirus S. sclerotiorum botybirnavirus 1 (SsBRV1) that was originally isolated from the hypovirulent strain SCH941 of S. sclerotiorum. SsBRV1 has rigid spherical virions that are ∼38 nm in diameter, and three double-stranded RNA (dsRNA) segments (dsRNA1, 2, and 3 with lengths of 6.4, 6.0, and 1.7 kbp, respectively) were packaged in the virions. dsRNA1 encodes a cap-pol fusion protein, and dsRNA2 encodes a polyprotein with unknown functions but contributes to the formation of virus particles. The dsRNA3 is dispensable and may be a satellite-like RNA of SsBRV1. Although phylogenetic analysis of the RdRp domain demonstrated that SsBRV1 is related to Botrytis porri RNA virus 1 (BpRV1) and Ustilago maydis dsRNA virus-H1, the structure proteins of SsBRV1 do not have any significant sequence similarities with other known viral proteins with the exception of those of BpRV1. SsBRV1 carrying dsRNA3 seems to have no obvious effects on the colony morphology, but can significantly reduce the growth rate and virulence of S. sclerotiorum. These findings provide new insights into the virus taxonomy, virus evolution and the interactions between SsBRV1 and the fungal hosts.
Collapse
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Qihua Wang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
54
|
Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology 2015; 479-480:356-68. [PMID: 25771805 DOI: 10.1016/j.virol.2015.02.034] [Citation(s) in RCA: 510] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution.
Collapse
Affiliation(s)
- Said A Ghabrial
- Plant Pathology Department, University of Kentucky, Lexington, KY, USA.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Daohong Jiang
- State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
55
|
Zhang R, Liu S, Chiba S, Kondo H, Kanematsu S, Suzuki N. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses. Front Microbiol 2014; 5:360. [PMID: 25101066 PMCID: PMC4103508 DOI: 10.3389/fmicb.2014.00360] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 01/03/2023] Open
Abstract
Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10) of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1). A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A) tail. The genome possesses two non-overlapping open reading frames (ORFs): a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5′-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1). Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1 and FgV1.
Collapse
Affiliation(s)
- Rui Zhang
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| | - Shengxue Liu
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| | - Sotaro Chiba
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| | - Hideki Kondo
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| | - Satoko Kanematsu
- Apple Research Division, National Institute of Fruit Tree Science, National Agricultural Research Organization (NARO) Morioka, Iwate, Japan
| | - Nobuhiro Suzuki
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| |
Collapse
|
56
|
Wang L, Jiang J, Wang Y, Hong N, Zhang F, Xu W, Wang G. Hypovirulence of the phytopathogenic fungus Botryosphaeria dothidea: association with a coinfecting chrysovirus and a partitivirus. J Virol 2014; 88:7517-27. [PMID: 24760881 PMCID: PMC4054428 DOI: 10.1128/jvi.00538-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Botryosphaeria dothidea is an important pathogenic fungus causing fruit rot, leaf and stem ring spots and dieback, stem canker, stem death or stool mortality, and decline of pear trees. Seven double-stranded RNAs (dsRNAs; dsRNAs 1 to 7 with sizes of 3,654, 2,773, 2,597, 2,574, 1,823, 1,623, and 511 bp, respectively) were identified in an isolate of B. dothidea exhibiting attenuated growth and virulence and a sectoring phenotype. Characterization of the dsRNAs revealed that they belong to two dsRNA mycoviruses. The four largest dsRNAs (dsRNAs 1 to 4) are the genomic components of a novel member of the family Chrysoviridae (tentatively designated Botryosphaeria dothidea chrysovirus 1 [BdCV1]), a view supported by the morphology of the virions and phylogenetic analysis of the putative RNA-dependent RNA polymerases (RdRps). Two other dsRNAs (dsRNAs 5 and 6) are the genomic components of a novel member of the family Partitiviridae (tentatively designated Botryosphaeria dothidea partitivirus 1 [BdPV1]), which is placed in a clade distinct from other established partitivirus genera on the basis of the phylogenetic analysis of its RdRp. The smallest dsRNA, dsRNA7, seems to be a noncoding satellite RNA of BdPV1 on the basis of the conservation of its terminal sequences in BdPV1 genomic segments and its cosegregation with BdPV1 after horizontal transmission. This is the first report of a chrysovirus and a partitivirus infecting B. dothidea and of a chrysovirus associated with the hypovirulence of a phytopathogenic fungus. IMPORTANCE Our studies identified and characterized two novel mycoviruses, Botryosphaeria dothidea chrysovirus 1 (BdCV1) and Botryosphaeria dothidea partitivirus 1 (BdPV1), associated with the hypovirulence of an important fungus pathogenic to fruit trees. This is the first report of a chrysovirus and a partitivirus infecting B. dothidea and of a chrysovirus associated with the hypovirulence of a phytopathogenic fungus. BdCV1 appears to be a good candidate for the biological control of the serious disease induced by B. dothidea. Additionally, BdPV1 is placed in a clade distinct from the established genera. The BdCV1 capsid has two major structural proteins, and the capsid is distinct from that made up by a single polypeptide of the typical chrysoviruses. BdPV1 is the second partitivirus in which the putative capsid protein shares no significant identity with any mycovirus protein. A small accompanying dsRNA that is presumed to be a noncoding satellite RNA of BdPV1 is the first of its kind reported for a partitivirus.
Collapse
Affiliation(s)
- LiPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - JingJing Jiang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - YanFen Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Fangpeng Zhang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - WenXing Xu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - GuoPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
57
|
Urayama SI, Fukuhara T, Moriyama H, Toh-E A, Kawamoto S. Heterologous expression of a gene ofMagnaporthe oryzaechrysovirus 1 strain A disrupts growth of the human pathogenic fungusCryptococcusneoformans. Microbiol Immunol 2014; 58:294-302. [DOI: 10.1111/1348-0421.12148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Syun-Ichi Urayama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture; Tokyo University of Agriculture and Technology; 3-5-8 Saiwaicho Fuchu Tokyo 183-8509
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture; Tokyo University of Agriculture and Technology; 3-5-8 Saiwaicho Fuchu Tokyo 183-8509
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture; Tokyo University of Agriculture and Technology; 3-5-8 Saiwaicho Fuchu Tokyo 183-8509
| | - Akio Toh-E
- Division of Molecular Biology, Medical Mycology Research Center; Chiba University; Chiba 260-8673 Japan
| | - Susumu Kawamoto
- Division of Molecular Biology, Medical Mycology Research Center; Chiba University; Chiba 260-8673 Japan
| |
Collapse
|
58
|
Suzuki N. [Cryphonectria parasitica as a host of fungal viruses: a tool useful to unravel the mycovirus world]. Uirusu 2014; 64:11-24. [PMID: 25765976 DOI: 10.2222/jsv.64.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There appear to be over a million of fungal species including those that have been unidentified and unreported, where a variety of viruses make a world as well. Studies on a very small number of them conducted during the last two decades demonstrated the infectivity of fungal viruses that had previously been assumed to be inheritable, indigenus and non-infectious. Also, great technical advances were achieved. The chest blight fungus (Cryphonectria parasitica), a phytopathogenic ascomycetous fungus, has emerged as a model filamentous fungus for fungal virology. The genome sequence with annotations, albeit not thorough, many useful research tools, and gene manipulation technologies are available for this fungus. Importantly, C. parasitica can support replication of homologous viruses naturally infecting it, in addition to heterologous viruses infecting another plant pathogenic fungus, Rosellinia necatrix taxonomically belonging to a different order. In this article, I overview general properties of fungal viruses and advantages of the chestnut blight fungus as a mycovirus host. Furthermore, I introduce two recent studies carried out using this fungal host:''Defective interfering RNA and RNA silencing that regulate the replication of a partitivirus'' and'' RNA silencing and RNA recombination''.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Agrivirology Laboratory, Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University
| |
Collapse
|
59
|
A dsRNA mycovirus, Magnaporthe oryzae chrysovirus 1-B, suppresses vegetative growth and development of the rice blast fungus. Virology 2014; 448:265-73. [DOI: 10.1016/j.virol.2013.10.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/26/2013] [Accepted: 10/15/2013] [Indexed: 11/20/2022]
|
60
|
Abstract
Most of reported fungal viruses (mycoviruses) have double-stranded RNA (dsRNA) genomes. This may reflect the simple, easy method for mycovirus hunting that entails detection of dsRNAs as a sign of viral infections. There are an increasing number of screens of various fungi, particularly phytopathogenic fungi for viruses pathogenic to host fungi or able to confer hypovirulence to them. This bases on an attractive research field of biological control of fungal plant diseases using viruses (virocontrol), mainly targeting important phytopathogenic fungi. While isolated viruses usually induce asymptomatic symptoms, they show a considerably high level of diversity. As of 2014, fungal dsRNA viruses are classified into six families: Reoviridae, Totiviridae, Chrysoviridae, Partitiviridae, Megabirnaviridae and Quadriviridae. These exclude unassigned mycoviruses which will definitely be placed into distinct families and/or genera. In this review article, dsRNA viruses isolated from the kingdom Fungi including as-yet-unclassified taxa are overviewed. Some recent achievements in the related field are briefly introduced as well.
Collapse
|
61
|
Xie J, Jiang D. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:45-68. [PMID: 25001452 DOI: 10.1146/annurev-phyto-102313-050222] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mycoviruses are viruses that infect fungi. A growing number of novel mycoviruses have expanded our knowledge of virology, particularly in taxonomy, ecology, and evolution. Recent progress in the study of mycoviruses has comprehensively improved our understanding of the properties of mycoviruses and has strengthened our confidence to explore hypovirulence-associated mycoviruses that control crop diseases. In this review, the advantages of using hypovirulence-associated mycoviruses to control crop diseases are discussed, and, as an example, the potential for Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) to control the stem rot of rapeseed (Brassica napus) is also introduced. Fungal vegetative incompatibility is likely to be the key factor that limits the wide utilization of mycoviruses to control crop diseases; however, there are suggested strategies for resolving this problem.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China;
| | | |
Collapse
|
62
|
Abstract
Most of the major fungal families including plant-pathogenic fungi, yeasts, and mushrooms are infected by mycoviruses, and many double-stranded RNA (dsRNA) mycoviruses have been recently identified from diverse plant-pathogenic Fusarium species. The frequency of occurrence of dsRNAs is high in Fusarium poae but low in other Fusarium species. Most Fusarium mycoviruses do not cause any morphological changes in the host but some mycoviruses like Fusarium graminearum virus 1 (FgV1) cause hypovirulence. Available genomic data for seven of the dsRNA mycoviruses infecting Fusarium species indicate that these mycoviruses exist as complexes of one to five dsRNAs. According to phylogenetic analysis, the Fusarium mycoviruses identified to date belong to four families: Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae. Proteome and transcriptome analysis have revealed that FgV1 infection of Fusarium causes changes in host transcriptional and translational machineries. Successful transmission of FgV1 via protoplast fusion suggests the possibility that, as biological control agents, mycoviruses could be introduced into diverse species of fungal plant pathogens. Research is now needed on the molecular biology of mycovirus life cycles and mycovirus-host interactions. This research will be facilitated by the further development of omics technologies.
Collapse
Affiliation(s)
- Won Kyong Cho
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
63
|
Abstract
Botrytis cinerea (gray mold) is one of the most widespread and destructive fungal diseases of horticultural crops. Propagation and dispersal is usually by asexual conidia but the sexual stage (Botryotinia fuckeliana (de Bary) Whetzel) also occurs in nature. DsRNAs, indicative of virus infection, are common in B. cinerea, but only four viruses (Botrytis virus F (BVF), Botrytis virus X (BVX), Botrytis cinerea mitovirus 1 (BcMV1), and Botrytis porri RNA virus) have been sequenced. BVF and BVX are unusual mycoviruses being ssRNA flexous rods and have been designated the type species of the genera Mycoflexivirus and Botrexvirus (family Betaflexivirdae), respectively. The reported effects of viruses on Botrytis range from negligible to severe, with Botrytis cinerea mitovirus 1 causing hypovirulence. Little is currently known about the effects of viruses on Botrytis metabolism but recent complete sequencing of the B. cinerea genome now provides an opportunity to investigate the host-pathogen interactions at the molecular level. There is interest in the possible use of mycoviruses as biological controls for Botrytis because of the common problem of fungicide resistance. Unfortunately, hyphal anastomosis is the only known mechanism of horizontal virus transmission and the large number of vegetative incompatibility groups in Botrytis is a potential constraint on the spread of an introduced virus. Although some Botrytis viruses, such as BVF and BVX, are known to have international distribution, there is a distinct lack of epidemiological data and the means of spread are unknown.
Collapse
Affiliation(s)
- Michael N Pearson
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
64
|
Li L, Liu J, Xu A, Wang T, Chen J, Zhu X. Molecular characterization of a trisegmented chrysovirus isolated from the radish Raphanus sativus. Virus Res 2013; 176:169-78. [PMID: 23850842 DOI: 10.1016/j.virusres.2013.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 12/24/2022]
Abstract
Radish (Raphanus sativus L.) is cultivated worldwide and is of agronomic importance. dsRNAs associated with partitiviruses were previously found in many R. sativus varieties. In this study, three large dsRNAs from radish were cloned using a modified single primer amplification technique. These three dsRNAs-of lengths 3638, 3517 and 3299 bp-shared conserved untranslated terminal regions, and each contained a major open reading frame putatively encoding the chrysoviral replicase, capsid protein and protease respectively. Isometric virus-like particles (VLP), approximately 45nm in diameter, were isolated from the infected radish plants. Northern blotting indicated that these dsRNAs were encapsidated in the VLP. The virus containing these dsRNA genome segments was named Raphanus sativus chrysovirus 1 (RasCV1). Phylogenetic analysis revealed that RasCV1 is a new species of the Chrysoviridae family and forms a plant taxon with another putative plant chrysovirus, Anthurium mosaic-associated virus (AmaCV). Furthermore, no fungal mycelia were observed in radish leaf tissues stained with trypan blue. These results indicated that RasCV1 is most likely a plant chrysovirus rather than a chrysovirus in symbiotic fungi. An exhaustive BLAST analysis of RasCV1 and AmaCV revealed that chrysovirus-like viruses might widely exist in eudicot and monocot plants and that endogenization of chrysovirus segments into plant genome might have ever happened.
Collapse
Affiliation(s)
- Liqiang Li
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
65
|
Lin YH, Hisano S, Yaegashi H, Kanematsu S, Suzuki N. A second quadrivirus strain from the phytopathogenic filamentous fungus Rosellinia necatrix. Arch Virol 2013; 158:1093-8. [DOI: 10.1007/s00705-012-1580-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/15/2012] [Indexed: 11/24/2022]
|
66
|
Abstract
Rosellinia necatrix is a filamentous ascomycete that is pathogenic to a wide range of perennial plants worldwide. An extensive search for double-stranded RNA of a large collection of field isolates led to the detection of a variety of viruses. Since the first identification of a reovirus in this fungus in 2002, several novel viruses have been molecularly characterized that include members of at least five virus families. While some cause phenotypic alterations, many others show latent infections. Viruses attenuating the virulence of a host fungus to its plant hosts attract much attention as agents for virocontrol (biological control using viruses) of the fungus, one of which is currently being tested in experimental fields. Like the Cryphonectria parasitica/viruses, the R. necatrix/viruses have emerged as an amenable system for studying virus/host and virus/virus interactions. Several techniques have recently been developed that enhance the investigation of virus etiology, replication, and symptom induction in this mycovirus/fungal host system.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Chuou, Kurashiki, Okayama, Japan
| | | | | |
Collapse
|
67
|
Hafez EE, Aseel DG, Mostafa S. Two Novel Mycoviruses Related to Geminivirus Isolated from the Soil-Borne Fungi Macrophomina Phaseolina(Tassi) Goid. and Mucor RacemosusBull. BIOTECHNOL BIOTEC EQ 2013. [DOI: 10.5504/bbeq.2013.0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
68
|
Boine B, Kingston RL, Pearson MN. Recombinant expression of the coat protein of Botrytis virus X and development of an immunofluorescence detection method to study its intracellular distribution in Botrytis cinerea. J Gen Virol 2012; 93:2502-2511. [PMID: 22855784 DOI: 10.1099/vir.0.043869-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Botrytis cinerea is infected by many mycoviruses with varying phenotypical effects on the fungal host, including Botrytis virus X (BVX), a mycovirus that has been found in several B. cinerea isolates worldwide with no obvious effects on growth. Here we present results from serological and immunofluorescence microscopy (IFM) studies using antiserum raised against the coat protein of BVX expressed in Escherichia coli fused to maltose-binding protein. Due to the high yield of recombinant protein it was possible to raise antibodies that recognized BVX particles. An indirect ELISA, using BVX antibodies, detected BVX in partially purified virus preparations from fungal isolates containing BVX alone and in mixed infection with Botrytis virus F. The BVX antiserum also proved suitable for IFM studies. Intensely fluorescing spots (presumed to be virus aggregates) were found to be localized in hyphal cell compartments and spores of natural and experimentally infected B. cinerea isolates using IFM. Immunofluorescently labelled sections through fungal tissue, as well as fixed mycelia grown on glass slides, showed aggregations of virions closely associated with fungal cell membranes and walls, next to septal pores, and in hyphal tips. Also, calcofluor white staining of mature cell walls of virus-transfected Botrytis clones revealed numerous cell wall areas with increased amounts of chitin/glycoproteins. Our results indicate that some BVX aggregates are closely associated with the fungal cell wall and raise the question of whether mycoviruses may be able to move through the wall and therefore not be totally dependent on intracellular routes of transmission.
Collapse
Affiliation(s)
- Barbara Boine
- Plant and Fungal Virology, School of Biological Sciences, The University of Auckland, New Zealand
| | - Richard L Kingston
- Structural Biology, School of Biological Sciences, The University of Auckland, New Zealand
| | - Michael N Pearson
- Plant and Fungal Virology, School of Biological Sciences, The University of Auckland, New Zealand
| |
Collapse
|
69
|
Wu M, Jin F, Zhang J, Yang L, Jiang D, Li G. Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the phytopathogenic fungus Botrytis porri. J Virol 2012; 86:6605-19. [PMID: 22496220 PMCID: PMC3393542 DOI: 10.1128/jvi.00292-12] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/02/2012] [Indexed: 11/20/2022] Open
Abstract
The ascomycete Botrytis porri causes clove rot and leaf blight of garlic worldwide. We report here the biological and molecular features of a novel bipartite double-stranded RNA (dsRNA) mycovirus named Botrytis porri RNA virus 1 (BpRV1) from the hypovirulent strain GarlicBc-72 of B. porri. The BpRV1 genome comprises two dsRNAs, dsRNA-1 (6,215 bp) and dsRNA-2 (5,879 bp), which share sequence identities of 62 and 95% at the 3'- and 5'-terminal regions, respectively. Two open reading frames (ORFs), ORF I (dsRNA-1) and ORF II (dsRNA-2), were detected. The protein encoded by the 3'-proximal coding region of ORF I shows sequence identities of 19 to 23% with RNA-dependent RNA polymerases encoded by viruses in the families Totiviridae, Chrysoviridae, and Megabirnaviridae. However, the proteins encoded by the 5'-proximal coding region of ORF I and by the entire ORF II lack sequence similarities to any reported virus proteins. Phylogenetic analysis showed that BpRV1 belongs to a separate clade distinct from those of other known RNA mycoviruses. Purified virions of ~35 nm in diameter encompass dsRNA-1 and dsRNA-2, and three structural proteins (SPs) of 70, 80, and 85 kDa, respectively. Peptide mass fingerprinting analysis revealed that the 80- and 85-kDa SPs are encoded by ORF I, while the 70-kDa SP is encoded by ORF II. Introducing BpRV1 purified virions into the virulent strain GarlicBc-38 of B. porri caused derivative 38T reduced mycelial growth and hypovirulence. These combined results suggest that BpRV1 is a novel bipartite dsRNA virus that possibly belongs to a new virus family.
Collapse
Affiliation(s)
- Mingde Wu
- The State Key Laboratory of Agricultural Microbiology and The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
70
|
Characterization of Magnaporthe oryzae chrysovirus 1 structural proteins and their expression in Saccharomyces cerevisiae. J Virol 2012; 86:8287-95. [PMID: 22623797 DOI: 10.1128/jvi.00871-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnaporthe oryzae chrysovirus 1 (MoCV1), which is associated with an impaired growth phenotype of its host fungus, harbors four major proteins: P130 (130 kDa), P70 (70 kDa), P65 (65 kDa), and P58 (58 kDa). N-terminal sequence analysis of each protein revealed that P130 was encoded by double-stranded RNA1 (dsRNA1) (open reading frame 1 [ORF1] 1,127 amino acids [aa]), P70 by dsRNA4 (ORF4; 812 aa), and P58 by dsRNA3 (ORF3; 799 aa), although the molecular masses of P58 and P70 were significantly smaller than those deduced for ORF3 and ORF4, respectively. P65 was a degraded form of P70. Full-size proteins of ORF3 (84 kDa) and ORF4 (85 kDa) were produced in Escherichia coli. Antisera against these recombinant proteins detected full-size proteins encoded by ORF3 and ORF4 in mycelia cultured for 9, 15, and 28 days, and the antisera also detected smaller degraded proteins, namely, P58, P70, and P65, in mycelia cultured for 28 days. These full-size proteins and P58 and P70 were also components of viral particles, indicating that MoCV1 particles might have at least two forms during vegetative growth of the host fungus. Expression of the ORF4 protein in Saccharomyces cerevisiae resulted in cytological changes, with a large central vacuole associated with these growth defects. MoCV1 has five dsRNA segments, as do two Fusarium graminearum viruses (FgV-ch9 and FgV2), and forms a separate clade with FgV-ch9, FgV2, Aspergillus mycovirus 1816 (AsV1816), and Agaricus bisporus virus 1 (AbV1) in the Chrysoviridae family on the basis of their RdRp protein sequences.
Collapse
|
71
|
Lin YH, Chiba S, Tani A, Kondo H, Sasaki A, Kanematsu S, Suzuki N. A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. Virology 2012; 426:42-50. [DOI: 10.1016/j.virol.2012.01.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/05/2011] [Accepted: 01/14/2012] [Indexed: 01/26/2023]
|
72
|
Nunes CC, Sailsbery JK, Dean RA. Characterization and application of small RNAs and RNA silencing mechanisms in fungi. FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
73
|
Mycoviruses infecting the endophytic and entomopathogenic fungus Tolypocladium cylindrosporum. Virus Res 2011; 160:409-13. [DOI: 10.1016/j.virusres.2011.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022]
|
74
|
Bhatti MF, Jamal A, Petrou MA, Cairns TC, Bignell EM, Coutts RHA. The effects of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus. Fungal Genet Biol 2011; 48:1071-5. [PMID: 21840413 DOI: 10.1016/j.fgb.2011.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Some isolates of the opportunistic human pathogenic fungus Aspergillus fumigatus are known to be infected with mycoviruses. The dsRNA genomes of two of these mycoviruses, which include a chrysovirus and a partitivirus, have been completely sequenced and an RT-PCR assay for the viruses has been developed. Through curing virus-infected A. fumigatus isolates by cycloheximide treatment and transfecting virus-free isolates with purified virus, as checked by RT-PCR, isogenic virus-free and virus-infected lines of the fungus were generated whose phenotypes and growth have been directly compared. Mycovirus infection of A. fumigatus with either the chrysovirus or the partitivirus resulted in significant aberrant phenotypic alterations and attenuation of growth of the fungus but had no effect on susceptibility to common antifungals. Chrysovirus infection of A. fumigatus caused no significant alterations to murine pathogenicity.
Collapse
Affiliation(s)
- Muhammad F Bhatti
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
Viruses are widespread in all major groups of fungi. The transmission of fungal viruses occurs intracellularly during cell division, sporogenesis, and cell fusion. They apparently lack an extracellular route for infection. Recent searches of the collections of field fungal isolates have detected an increasing number of novel viruses and lead to discoveries of novel genome organizations, expression strategies and virion structures. Those findings enhanced our understanding of virus diversity and evolution. The majority of fungal viruses have dsRNA genomes packaged in spherical particles, while ssRNA mycoviruses, possessing or lacking the ability to form particles, have increasingly been reported. This review article discusses the current status of mycovirus studies and virocontrol (biocontrol) of phytopathogenic fungi using viruses that infect them and reduce their virulence. Selected examples of virocontrol-associated systems include the chestnut/chestnut blight/hypovirus and fruit trees/white root rot fungus/mycoviruses. Natural dissemination and artificial introduction of hypovirulent fungal strains efficiently contributed to virocontrol of chestnut blight in European forests. Attempts to control white root rot with hypovirulence-conferring mycoviruses are now being made in Japan.
Collapse
|
76
|
Xie J, Xiao X, Fu Y, Liu H, Cheng J, Ghabrial SA, Li G, Jiang D. A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology 2011; 418:49-56. [PMID: 21813149 DOI: 10.1016/j.virol.2011.07.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/01/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Three dsRNA segments, two similarly sized at 9.5kbp and a third one of approximately 3.6kbp, were extracted from a hypovirulent strain SZ-150 of Sclerotinia sclerotiorum. The complete cDNA sequence of one of the two large dsRNA segment (10398bp, excluding the poly (A) tail) reveals a single ORF that encodes a polyprotein with conserved domains of putative papain-like protease, UDP glucose/sterol glycosyltransferase, RNA-dependent RNA polymerase and viral RNA Helicase. This virus is closely related to Cryphonectria hypovirus (CHV) 3/GH2 and CHV4/SR2 in the family Hypoviridae and designated as Sclerotinia sclerotiorum hypovirus 1 (SsHV1/SZ-150). The satellite-like 3.6kbp dsRNA segment (S-dsRNA) shares high sequence identity with the 5'-UTR of SsHV1/SZ-150. SsHV1/SZ-150 alone is not the primary causal agent for hypovirulence of strain SZ-150 since strains without the S-dsRNA show normal phenotype. This is the first report of a naturally occurring hypovirus that infects a fungus other than Cryphonectria parasitica.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch Virol 2010; 156:397-403. [PMID: 21140178 PMCID: PMC3044836 DOI: 10.1007/s00705-010-0869-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/18/2010] [Indexed: 11/26/2022]
Abstract
We have characterized the virome in single grapevines by 454 high-throughput sequencing of double-stranded RNA recovered from the vine stem. The analysis revealed a substantial set of sequences similar to those of fungal viruses. Twenty-six putative fungal virus groups were identified from a single plant source. These represented half of all known mycoviral families including the Chrysoviridae, Hypoviridae, Narnaviridae, Partitiviridae, and Totiviridae. Three of the mycoviruses were associated with Botrytis cinerea, a common fungal pathogen of grapes. Most of the rest appeared to be undescribed. The presence of viral sequences identified by BLAST analysis was confirmed by sequencing PCR products generated from the starting material using primers designed from the genomic sequences of putative mycoviruses. To further characterize these sequences as fungal viruses, fungi from the grapevine tissue were cultured and screened with the same PCR probes. Five of the mycoviruses identified in the total grapevine extract were identified again in extracts of the fungal cultures.
Collapse
|