51
|
Junglen S, Drosten C. Virus discovery and recent insights into virus diversity in arthropods. Curr Opin Microbiol 2013; 16:507-13. [PMID: 23850098 PMCID: PMC7108301 DOI: 10.1016/j.mib.2013.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/29/2022]
Abstract
Overview on arthropod-associated virus discovery. Description of newly characterized virus species. Projections for further research.
Recent studies on virus discovery have focused mainly on mammalian and avian viruses. Arbovirology with its long tradition of ecologically oriented investigation is now catching up, with important novel insights into the diversity of arthropod-associated viruses. Recent discoveries include taxonomically outlying viruses within the families Flaviviridae, Togaviridae, and Bunyaviridae, and even novel virus families within the order Nidovirales. However, the current focusing of studies on blood-feeding arthropods has restricted the range of arthropod hosts analyzed for viruses so far. Future investigations should include species from other arthropod taxa than Ixodita, Culicidae and Phlebotominae in order to shed light on the true diversity of arthropod viruses.
Collapse
Affiliation(s)
- Sandra Junglen
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany.
| | | |
Collapse
|
52
|
Cantu-Iris M, Harmon PF, Londoño A, Polston JE. A variant of blueberry necrotic ring blotch virus associated with red lesions in blueberry. Arch Virol 2013; 158:2197-200. [PMID: 23649174 DOI: 10.1007/s00705-013-1653-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 01/30/2013] [Indexed: 10/26/2022]
Abstract
The complete genome of a variant of the multi-segmented (+) RNA virus blueberry necrotic ring blotch virus (BNRBV), which has not been assigned to a genus, was obtained from foliar red lesions on southern highbush blueberries grown in Alachua Co., Florida. The genome organization of this variant, BNRBV-RL, is the same as that of BNRBV: four genomic segments and seven ORFs (one ORF on each of RNA 1, RNA 2, and RNA 4 and as many as four ORFs on RNA 3). BLAST analysis revealed nucleic acid sequence identities of 89 %, 90 %, 90 % and 86 % to BNRBV RNA 1, RNA 2, RNA 3 and RNA 4, respectively. Phylogenetic analysis of the amino acid sequence of the putative RdRp domain indicated that BNRBV-RL was closely related to BNRBV and less related to citrus leprosis virus type C and three other mite-transmitted viruses. The nucleotide and amino acid sequence differences between BNRBV-RL and BNRBV combined with differences in symptom expression in blueberry would suggest that BNRBV-RL is a strain of BNRBV.
Collapse
Affiliation(s)
- M Cantu-Iris
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
53
|
Roy A, Choudhary N, Guillermo LM, Shao J, Govindarajulu A, Achor D, Wei G, Picton DD, Levy L, Nakhla MK, Hartung JS, Brlansky RH. A novel virus of the genus Cilevirus causing symptoms similar to citrus leprosis. PHYTOPATHOLOGY 2013; 103:488-500. [PMID: 23268581 DOI: 10.1094/phyto-07-12-0177-r] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Citrus leprosis in Colombia was previously shown to be caused by cytoplasmic Citrus leprosis virus (CiLV-C). In 2011, enzyme-linked immunosorbent assay and reverse-transcription polymerase chain reaction (RT-PCR)-based diagnostic methods failed to identify CiLV-C from citrus samples with symptoms similar to citrus leprosis; however, virions similar to CiLV-C were observed in the cytoplasm of the symptomatic leaves by transmission electron microscopy. Furthermore, the causal organism was transmitted by the false spider mite, Brevipalpus phoenicis, to healthy citrus seedlings. A library of small RNAs was constructed from symptomatic leaves and used as the template for Illumina high-throughput parallel sequencing. The complete genome sequence and structure of a new bipartite RNA virus was determined. RNA1 (8,717 nucleotides [nt]) contained two open reading frames (ORFs). ORF1 encoded the replication module, consisting of five domains: namely, methyltransferase (MTR), cysteine protease-like, FtsJ-MTR, helicase (Hel), and RNA-dependent RNA polymerase (RdRp); whereas ORF2 encoded the putative coat protein. RNA2 (4,989 nt) contained five ORFs that encode the movement protein (MP) and four hypothetical proteins (p7, p15, p24, and p61). The structure of this virus genome resembled that of CiLV-C except that it contained a long 3' untranslated terminal region and an extra ORF (p7) in RNA2. Both the RNA1 and RNA2 of the new virus had only 58 and 50% nucleotide identities, respectively, with known CiLV-C sequences and, thus, it appears to be a novel virus infecting citrus. Phylogenetic analyses of the MTR, Hel, RdRp, and MP domains also indicated that the new virus was closely related to CiLV-C. We suggest that the virus be called Citrus leprosis virus cytoplasmic type 2 (CiLV-C2) and it should be unambiguously classified as a definitive member of the genus Cilevirus. A pair of CiLV-C2 genome-specific RT-PCR primers was designed and validated to detect its presence in citrus leprosis samples collected from the Casanare and Meta states in Colombia.
Collapse
|
54
|
Quito-Avila DF, Brannen PM, Cline WO, Harmon PF, Martin RR. Genetic characterization of Blueberry necrotic ring blotch virus, a novel RNA virus with unique genetic features. J Gen Virol 2013; 94:1426-1434. [PMID: 23486668 DOI: 10.1099/vir.0.050393-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new disorder was observed on southern highbush blueberries in several south-eastern states in the USA. Symptoms included irregularly shaped circular spots or blotches with green centres on the upper and lower surfaces of leaves. Double-stranded RNA was extracted from symptomatic leaves suggesting the presence of virus(es) possibly involved in the disease. Sequencing revealed the presence of a novel RNA virus with a ~14 kb genome divided into four RNA segments. Sequence analyses showed that the virus, for which we propose the name Blueberry necrotic ring blotch virus (BNRBV), possesses protein domains conserved across RNA viruses in the alpha-virus-like supergroup. Phylogenetic inferences using different genes placed BNRBV in a clade that includes the Bromoviridae, the genus Cilevirus (CiLV) and the recently characterized Hibiscus green spot virus (HGSV). Despite the strong genetic relationships found among BNRBV, Cilevirus and HGSV, the genome of BNRBV contains three features that distinguish it significantly from its closest relatives: (i) the presence of two helicase domains with different evolutionary pathways, (ii) the existence of three conserved nucleotide stretches located at the 3' non-coding regions of each RNA segment and (iii) the conservation of terminal nucleotide motifs across each segment. Furthermore, CiLV and HGSV possess poly(A)-tailed bipartite and tripartite genomes, respectively, whereas BNRBV has a quadra-partite genome lacking a poly(A) tail. Based on these genetic features a new genus is proposed for the classification of BNRBV.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, Guayas EC090150, Ecuador
| | - Philip M Brannen
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - William O Cline
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27607, USA
| | - Philip F Harmon
- Department of Plant Pathology, University of Florida, Gainesville, FL 32605, USA
| | - Robert R Martin
- USDA-ARS, Horticultural Crops Research Unit, Corvallis OR 97331, USA
| |
Collapse
|
55
|
[Plant rhabdoviruses with bipartite genomes]. Uirusu 2013; 63:143-54. [PMID: 25366049 DOI: 10.2222/jsv.63.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Members of the family Rhabdoviridae (order Mononegavirales) have a broad range of hosts, including humans, livestock, fish, plants, and invertebrates. They have a nonsegmented negative-sense RNA as the genome. Orchid fleck virus (OFV) is distributed world-wide on several orchid plants and transmitted by the false spider mite, Brevipalpus californicus. Based on its virions morphology and cytopathic effects in the infected cells, OFV was tentatively placed as unassigned plant rhabdoviruses in the sixth ICTV Report. However, the molecular studies reveled that OFV has a unique two-segmented negative-sense RNA genome that resembles monopartite genomes of plant nucleorhabdoviruses. In this review, we describe the current knowledge on the genome structure and gene expression strategy of OFV, the possible mechanism of nuclear viroplasm formation, and the taxonomical consideration of the virus as well.
Collapse
|
56
|
Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol 2012; 87:2475-88. [PMID: 23255793 DOI: 10.1128/jvi.00776-12] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six novel insect-specific viruses, isolated from mosquitoes and phlebotomine sand flies collected in Brazil, Peru, the United States, Ivory Coast, Israel, and Indonesia, are described. Their genomes consist of single-stranded, positive-sense RNAs with poly(A) tails. By electron microscopy, the virions appear as spherical particles with diameters of ∼45 to 55 nm. Based on their genome organization and phylogenetic relationship, the six viruses, designated Negev, Ngewotan, Piura, Loreto, Dezidougou, and Santana, appear to form a new taxon, tentatively designated Negevirus. Their closest but still distant relatives are citrus leposis virus C (CiLV-C) and viruses in the genus Cilevirus, which are mite-transmitted plant viruses. The negeviruses replicate rapidly and to high titer (up to 10(10) PFU/ml) in mosquito cells, producing extensive cytopathic effect and plaques, but they do not appear to replicate in mammalian cells or mice. A discussion follows on their possible biological significance and effect on mosquito vector competence for arboviruses.
Collapse
|
57
|
Peng DW, Zheng GH, Zheng ZZ, Tong QX, Ming YL. Orchid fleck virus: an unclassified bipartite, negative-sense RNA plant virus. Arch Virol 2012; 158:313-23. [DOI: 10.1007/s00705-012-1506-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/02/2012] [Indexed: 12/27/2022]
|
58
|
Nunes MA, de Oliveira CAL, de Oliveira ML, Kitajima EW, Hilf ME, Gottwald TR, Freitas-Astúa J. Transmission of Citrus leprosis virus C by Brevipalpus phoenicis (Geijskes) to Alternative Host Plants Found in Citrus Orchards. PLANT DISEASE 2012; 96:968-972. [PMID: 30727203 DOI: 10.1094/pdis-06-11-0538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The equivalent of US$75 million is spent each year in Brazil to control Brevipalpus phoenicis, a mite vector of Citrus leprosis virus C (CiLV-C). In this study, we investigated the possibility that hedgerows and windbreaks normally found in citrus orchards could host CiLV-C. Mites confined by an adhesive barrier were reared on sweet orange fruit with leprosis symptoms then were transferred to leaves of Hibiscus rosa-sinensis, Malvaviscus arboreus, Grevilea robusta, Bixa orellana, and Citrus sinensis. Ninety days post infestation, the descendant mites were transferred to Pera sweet orange plants to verify the transmissibility of the virus back to citrus. Nonviruliferous mites which had no feeding access to diseased tissue were used as controls. Local chlorotic or necrotic spots and ringspots, symptoms of leprosis disease, appeared in most plants tested. Results generated by reversetranscription polymerase chain reaction with primers specific for CiLV-C and by electron microscope analyses confirmed the susceptibility of these plants to CiLV-C.
Collapse
Affiliation(s)
- M A Nunes
- Centro APTA Citros Sylvio Moreira-IAC, CP 4, 13490-970, Cordeirópolis, SP, Brazil
| | - C A L de Oliveira
- Depto. Fitossanidade, FCAV/UNESP, Via de acesso Paulo Castellane, s/n, 14884-900, Jaboticabal-SP, Brazil
| | - M L de Oliveira
- Depto. Fitossanidade, FCAV/UNESP, Via de acesso Paulo Castellane, s/n, 14884-900, Jaboticabal-SP, Brazil
| | - E W Kitajima
- Depto. Fitopatologia e Nematologia, ESALQ, CP 9, 13418-900, Piracicaba-SP, Brazil
| | - M E Hilf
- United States Department of Agriculture-Agricultural Research Service USHRL, Ft. Pierce FL
| | - T R Gottwald
- United States Department of Agriculture-Agricultural Research Service USHRL, Ft. Pierce FL
| | - J Freitas-Astúa
- Embrapa Cassava and Fruits/Centro APTA Citros Sylvio Moreira-IAC, CP 4, 13490-970, Cordeirópolis, SP, Brazil
| |
Collapse
|
59
|
Melzer MJ, Sether DM, Borth WB, Hu JS. Characterization of a virus infecting Citrus volkameriana with citrus leprosis-like symptoms. PHYTOPATHOLOGY 2012; 102:122-7. [PMID: 21916557 DOI: 10.1094/phyto-01-11-0013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A Citrus volkameriana tree displaying symptoms similar to citrus leprosis on its leaves and bark was found in Hawaii. Citrus leprosis virus C (CiLV-C)-specific detection assays, however, were negative for all tissues tested. Short, bacilliform virus-like particles were observed by transmission electron microscopy in the cytoplasm of symptomatic leaves but not in healthy controls. Double-stranded (ds) RNAs ≈8 and 3 kbp in size were present in symptomatic leaf tissue but not in healthy controls. Excluding poly(A) tails, the largest molecule, RNA1, was 8,354 bp in length. The ≈3 kbp dsRNA band was found to be composed of two distinct molecules, RNA2 and RNA3, which were 3,169 and 3,113 bp, respectively. Phylogenetic analyses indicated that the RNA-dependent RNA polymerase (RdRp) domain located in RNA1 was most closely related to the RdRp domain of CiLV-C. A reverse-transcription polymerase chain reaction assay developed for the detection of this virus was used to screen nearby citrus trees as well as Hibiscus arnottianus plants with symptoms of hibiscus green spot, a disease associated with infection by Hibiscus green spot virus (HGSV). All nearby citrus trees tested negative with the assay; however, symptomatic H. arnottianus plants were positive. All three RNAs were present in symptomatic H. arnottianus and were >98% identical to the RNAs isolated from C. volkameriana. We contend that the virus described in this study is HGSV, and propose that it be the type member of a new virus genus, Higrevirus.
Collapse
|
60
|
Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 2011; 162:184-202. [PMID: 21963660 DOI: 10.1016/j.virusres.2011.09.028] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes.
Collapse
|
61
|
Desbiez C, Moury B, Lecoq H. The hallmarks of "green" viruses: do plant viruses evolve differently from the others? INFECTION GENETICS AND EVOLUTION 2011; 11:812-24. [PMID: 21382520 DOI: 10.1016/j.meegid.2011.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
All viruses are obligatory parasites that must develop tight interactions with their hosts to complete their infectious cycle. Viruses infecting plants share many structural and functional similarities with those infecting other organisms, particularly animals and fungi. Quantitative data regarding their evolutionary mechanisms--generation of variability by mutation and recombination, changes in populations by selection and genetic drift have been obtained only recently, and appear rather similar to those measured for animal viruses.This review presents an update of our knowledge of the phylogenetic and evolutionary characteristics of plant viruses and their relation to their plant hosts, in comparison with viruses infecting other organisms.
Collapse
Affiliation(s)
- C Desbiez
- INRA, Unité de Pathologie Végétale UR407, F-84140 Montfavet, France.
| | | | | |
Collapse
|
62
|
Marques JP, Kitajima EW, Freitas-Astúa J, Appezzato-da-Glória B. Comparative morpho-anatomical studies of the lesions caused by citrus leprosis virus on sweet orange. AN ACAD BRAS CIENC 2010; 82:501-11. [DOI: 10.1590/s0001-37652010000200025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 08/27/2009] [Indexed: 11/22/2022] Open
Abstract
The leprosis disease shows a viral etiology and the citrus leprosis virus is considered its etiologic agent. The disease may show two types of cytopatologic symptom caused by two virus: nuclear (CiLV-N) and cytoplasmic (CiLV-C) types. The aim of this study was to compare the morpho-anatomical differences in the lesions caused by leprosis virus-cytoplasmic and nuclear types in Citrus sinensis (L.) Osbeck 'Pêra'. Leaf and fruit lesions were collected in Piracicaba/São Paulo (cytoplasmic type) and Monte Alegre do Sul/São Paulo and Amparo/São Paulo (nuclear type). The lesions were photographed and then fixed in Karnovsky solution, dehydrated in a graded ethylic series, embedded in hydroxy-ethyl methacrylate resin (Leica Historesin), sectioned (5 μm thick), stained and mounted in synthetic resin. The digital images were acquired in a microscope with digital video camera. Leaf and fruit lesions caused by the two viruses were morphologically distinct. Only the lesion caused by CiLV-N virus presented three well-defined regions. In both lesions there was the accumulation of lipidic substances in necrotic areas that were surrounded by cells with amorphous or droplets protein. Only leaf and fruit lesions caused by CiLV-N virus exhibited traumatic gum ducts in the vascular bundles.
Collapse
|
63
|
Bastianel M, Novelli VM, Kitajima EW, Kubo KS, Bassanezi RB, Machado MA, Freitas-Astúa J. Citrus Leprosis: Centennial of an Unusual Mite-Virus Pathosystem. PLANT DISEASE 2010; 94:284-292. [PMID: 30754248 DOI: 10.1094/pdis-94-3-0284] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Marinês Bastianel
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Valdenice M Novelli
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | | | - Karen S Kubo
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | | | - Marcos A Machado
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Juliana Freitas-Astúa
- Embrapa Cassava and Tropical Fruits, Cruz das Almas, BA, Brazil and Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| |
Collapse
|
64
|
European Food Safety Authority (EFSA). Pest risk assessment made by France on Brevipalpus californicus, Brevipalpus phoenicis and Brevipalpus obovatus (Acari: Tenuipalpidae) considered by France as harmful in the French overseas departments of Guadeloupe and Martinique - Scientific Opinion of. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
65
|
Freitas-Astúa J, Bastianel M, Locali-Fabris EC, Novelli VM, Silva-Pinhati AC, Basílio-Palmieri AC, Targon MLP, Machado MA. Differentially expressed stress-related genes in the compatible citrus-Citrus leprosis virus interaction. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Juliana Freitas-Astúa
- Instituto Agronômico de Campinas, Brazil; Embrapa Mandioca e Fruticultura Tropical, Brazil
| | | | | | | | | | | | | | | |
Collapse
|