51
|
Alavattam KG, Abe H, Sakashita A, Namekawa SH. Chromosome Spread Analyses of Meiotic Sex Chromosome Inactivation. Methods Mol Biol 2018; 1861:113-129. [PMID: 30218364 PMCID: PMC8243718 DOI: 10.1007/978-1-4939-8766-5_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A distinct form of X chromosome inactivation takes place during male meiosis, when the male sex chromosomes undergo a phenomenon known as meiotic sex chromosome inactivation (MSCI). MSCI is directed by DNA damage response signaling independent of Xist RNA to silence the transcriptional activity of the sex chromosomes, an essential event in male germ cell development. Here, we present protocols for the preparation and analyses of chromosome spread slides of mouse meiotic spermatocytes, thereby enabling a quick, inexpensive, and powerful cytological method to complement gene expression studies.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hironori Abe
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
52
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
53
|
Bose R, Sheng K, Moawad AR, Manku G, O'Flaherty C, Taketo T, Culty M, Fok KL, Wing SS. Ubiquitin Ligase Huwe1 Modulates Spermatogenesis by Regulating Spermatogonial Differentiation and Entry into Meiosis. Sci Rep 2017; 7:17759. [PMID: 29259204 PMCID: PMC5736635 DOI: 10.1038/s41598-017-17902-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 12/02/2022] Open
Abstract
Spermatogenesis consists of a series of highly regulated processes that include mitotic proliferation, meiosis and cellular remodeling. Although alterations in gene expression are well known to modulate spermatogenesis, posttranscriptional mechanisms are less well defined. The ubiquitin proteasome system plays a significant role in protein turnover and may be involved in these posttranscriptional mechanisms. We previously identified ubiquitin ligase Huwe1 in the testis and showed that it can ubiquitinate histones. Since modulation of histones is important at many steps in spermatogenesis, we performed a complete characterization of the functions of Huwe1 in this process by examining the effects of its inactivation in the differentiating spermatogonia, spermatocytes and spermatids. Inactivation of Huwe1 in differentiating spermatogonia led to their depletion and formation of fewer pre-leptotene spermatocytes. The cell degeneration was associated with an accumulation of DNA damage response protein γH2AX, impaired downstream signalling and apoptosis. Inactivation of Huwe1 in spermatocytes indicated that Huwe1 is not essential for meiosis and spermiogenesis, but can result in accumulation of γH2AX. Collectively, these results provide a comprehensive survey of the functions of Huwe1 in spermatogenesis and reveal Huwe1’s critical role as a modulator of the DNA damage response pathway in the earliest steps of spermatogonial differentiation.
Collapse
Affiliation(s)
- Rohini Bose
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Kai Sheng
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Adel R Moawad
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Surgery, McGill University, Montréal, Québec, Canada.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gurpreet Manku
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Surgery, McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Surgery, McGill University, Montréal, Québec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada.,Department of Biology, McGill University, Montréal, Québec, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Dept. of Pharmacology, University of Southern California, Los Angeles, California, USA
| | - Kin Lam Fok
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong - Shenzhen, Shenzhen, China
| | - Simon S Wing
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
54
|
Alavattam KG, Kato Y, Sin HS, Maezawa S, Kowalski IJ, Zhang F, Pang Q, Andreassen PR, Namekawa SH. Elucidation of the Fanconi Anemia Protein Network in Meiosis and Its Function in the Regulation of Histone Modifications. Cell Rep 2017; 17:1141-1157. [PMID: 27760317 PMCID: PMC5095620 DOI: 10.1016/j.celrep.2016.09.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023] Open
Abstract
Precise epigenetic regulation of the sex chromosomes is vital for the male germline. Here, we analyze meiosis in eight mouse models deficient for various DNA damage response (DDR) factors, including Fanconi anemia (FA) proteins. We reveal a network of FA and DDR proteins in which FA core factors FANCA, FANCB, and FANCC are essential for FANCD2 foci formation, whereas BRCA1 (FANCS), MDC1, and RNF8 are required for BRCA2 (FANCD1) and SLX4 (FANCP) accumulation on the sex chromosomes during meiosis. In addition, FA proteins modulate distinct histone marks on the sex chromosomes: FA core proteins and FANCD2 regulate H3K9 methylation, while FANCD2 and RNF8 function together to regulate H3K4 methylation independently of FA core proteins. Our data suggest that RNF8 integrates the FA-BRCA pathway. Taken together, our study reveals distinct functions for FA proteins and illuminates the male sex chromosomes as a model to dissect the function of the FA-BRCA pathway.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Yasuko Kato
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Ho-Su Sin
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - So Maezawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Ian J Kowalski
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49229, USA.
| |
Collapse
|
55
|
DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proc Natl Acad Sci U S A 2017; 114:12536-12541. [PMID: 29114052 DOI: 10.1073/pnas.1712530114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Meiotic synapsis and recombination between homologs permits the formation of cross-overs that are essential for generating chromosomally balanced sperm and eggs. In mammals, surveillance mechanisms eliminate meiotic cells with defective synapsis, thereby minimizing transmission of aneuploidy. One such surveillance mechanism is meiotic silencing, the inactivation of genes located on asynapsed chromosomes, via ATR-dependent serine-139 phosphorylation of histone H2AFX (γH2AFX). Stimulation of ATR activity requires direct interaction with an ATR activation domain (AAD)-containing partner. However, which partner facilitates the meiotic silencing properties of ATR is unknown. Focusing on the best-characterized example of meiotic silencing, meiotic sex chromosome inactivation, we reveal this AAD-containing partner to be the DNA damage and checkpoint protein TOPBP1. Conditional TOPBP1 deletion during pachynema causes germ cell elimination associated with defective X chromosome gene silencing and sex chromosome condensation. TOPBP1 is essential for localization to the X chromosome of silencing "sensors," including BRCA1, and effectors, including ATR, γH2AFX, and canonical repressive histone marks. We present evidence that persistent DNA double-strand breaks act as silencing initiation sites. Our study identifies TOPBP1 as a critical factor in meiotic sex chromosome silencing.
Collapse
|
56
|
Meyer RG, Ketchum CC, Meyer-Ficca ML. Heritable sperm chromatin epigenetics: a break to remember†. Biol Reprod 2017; 97:784-797. [DOI: 10.1093/biolre/iox137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
|
57
|
Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, Mulas C, Chandra T, Voet T, Dean W, Nichols J, Marioni JC, Reik W. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. Cell Rep 2017; 20:1215-1228. [PMID: 28768204 PMCID: PMC5554778 DOI: 10.1016/j.celrep.2017.07.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
The mouse inner cell mass (ICM) segregates into the epiblast and primitive endoderm (PrE) lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq) of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.
Collapse
Affiliation(s)
- Hisham Mohammed
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aurora Savino
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Iain Macaulay
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Tamir Chandra
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Thierry Voet
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Department of Human Genetics, Human Genome Laboratory, KU Leuven, 3000 Leuven, Belgium
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK.
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
58
|
Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, Tang Z, Buchou T, Vitte AL, He T, Cheng Z, Montellier E, Gaucher J, Curtet S, Debernardi A, Charbonnier G, Puthier D, Petosa C, Panne D, Rousseaux S, Roeder RG, Zhao Y, Khochbin S. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters. Mol Cell 2017; 62:169-180. [PMID: 27105113 PMCID: PMC4850424 DOI: 10.1016/j.molcel.2016.03.014] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 12/01/2022]
Abstract
Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. Active gene TSSs are marked by competing H4 K5K8 acetylation and butyrylation Histone butyrylation directly stimulates transcription H4K5 butyrylation prevents binding of the testis specific gene expression-driver Brdt H4K5K8 butyrylation is associated with delayed histone removal in spermatogenic cells
Collapse
Affiliation(s)
- Afsaneh Goudarzi
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Di Zhang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Sophie Barral
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Oh Kwang Kwon
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shankang Qi
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Thierry Buchou
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Anne-Laure Vitte
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Tieming He
- Jingjie PTM Biolab (Hangzhou) Co., Ltd., Hangzhou 310018, China
| | - Zhongyi Cheng
- Jingjie PTM Biolab (Hangzhou) Co., Ltd., Hangzhou 310018, China
| | - Emilie Montellier
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Jonathan Gaucher
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France; EMBL Grenoble, BP 181, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Sandrine Curtet
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Alexandra Debernardi
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Guillaume Charbonnier
- TAGC, UMR, S 1090 INSERM Aix-Marseille Université, U928 Parc Scientifique de Luminy case 928 163, Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Denis Puthier
- TAGC, UMR, S 1090 INSERM Aix-Marseille Université, U928 Parc Scientifique de Luminy case 928 163, Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Carlo Petosa
- Université Grenoble Alpes/CEA/CNRS, Institut de Biologie Structurale, 38027 Grenoble, France
| | - Daniel Panne
- EMBL Grenoble, BP 181, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Sophie Rousseaux
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| | - Saadi Khochbin
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France.
| |
Collapse
|
59
|
Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li D, Fu XD, Li J, Shi HJ, Liu MF. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell 2017; 169:1090-1104.e13. [PMID: 28552346 DOI: 10.1016/j.cell.2017.04.034] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/07/2016] [Accepted: 04/03/2017] [Indexed: 11/25/2022]
Abstract
Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jun-Yan Kang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Dai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuang Zhao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Man Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China
| | - Yi Lu
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China
| | - Yong Zhu
- Department of Andrology and PFD, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zheng Li
- Department of Andrology and PFD, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hong Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Gang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hui-Juan Shi
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
60
|
Nie L, Shuai L, Zhu M, Liu P, Xie ZF, Jiang S, Jiang HW, Li J, Zhao Y, Li JY, Tan M. The Landscape of Histone Modifications in a High-Fat Diet-Induced Obese (DIO) Mouse Model. Mol Cell Proteomics 2017; 16:1324-1334. [PMID: 28450421 DOI: 10.1074/mcp.m117.067553] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/20/2017] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes (T2D) is a major chronic healthcare concern worldwide. Emerging evidence suggests that a histone-modification-mediated epigenetic mechanism underlies T2D. Nevertheless, the dynamics of histone marks in T2D have not yet been carefully analyzed. Using a mass spectrometry-based label-free and chemical stable isotope labeling quantitative proteomic approach, we systematically profiled liver histone post-translational modifications (PTMs) in a prediabetic high-fat diet-induced obese (DIO) mouse model. We identified 170 histone marks, 30 of which were previously unknown. Interestingly, about 30% of the histone marks identified in DIO mouse liver belonged to a set of recently reported lysine acylation modifications, including propionylation, butyrylation, malonylation, and succinylation, suggesting possible roles of these newly identified histone acylations in diabetes and obesity. These histone marks were detected without prior affinity enrichment with an antibody, demonstrating that the histone acylation marks are present at reasonably high stoichiometry. Fifteen histone marks differed in abundance in DIO mouse liver compared with liver from chow-fed mice in label-free quantification, and six histone marks in stable isotope labeling quantification. Analysis of hepatic histone modifications from metformin-treated DIO mice revealed that metformin, a drug widely used for T2D, could reverse DIO-stimulated histone H3K36me2 in prediabetes, suggesting that this mark is likely associated with T2D development. Our study thus offers a comprehensive landscape of histone marks in a prediabetic mouse model, provides a resource for studying epigenetic functions of histone modifications in obesity and T2D, and suggest a new epigenetic mechanism for the physiological function of metformin.
Collapse
Affiliation(s)
- Litong Nie
- From the ‡The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,§State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,¶University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Shuai
- §State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,¶University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingrui Zhu
- From the ‡The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,§State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,¶University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ping Liu
- From the ‡The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,§State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203
| | - Zhi-Fu Xie
- §State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,¶University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shangwen Jiang
- From the ‡The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,§State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203
| | - Hao-Wen Jiang
- ‖College of Chemistry and Molecular Engineering, East China Normal University, China, 200062
| | - Jia Li
- §State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203
| | - Yingming Zhao
- From the ‡The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,§State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203.,**Ben May Department for Cancer Research, University of Chicago, Chicago, IL
| | - Jing-Ya Li
- §State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203;
| | - Minjia Tan
- From the ‡The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203; .,§State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China, 201203
| |
Collapse
|
61
|
Lestari SW, Rizki MD. Epigenetic: A new approach to etiology of infertility. MEDICAL JOURNAL OF INDONESIA 2017. [DOI: 10.13181/mji.v25i4.1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Infertility is a complex disease which could be caused by male and female factors. The etiology from both factors needs further study. There are some approaches to understanding the etiology of infertility, one of them is epigenetic. Epigenetic modifications consist of DNA methylation, histone modifications, and chromatin remodelling. Male and female germinal cells undergo epigenetic modifications dynamically during differentiation into matured sperm and oocyte cells. In a male, the alteration of DNA methylation in spermatogenesis will cause oligo/asthenozoospermia. In addition, the histone methylation, acetylation, or other histone modification may lead sperm lose its ability to fertilize oocyte. Similarly, in a female, the alteration of DNA methylation and histone modification affects oogenesis, created aneuploidy in fertilized oocytes and resulted in embryonic death in the uterus. Alteration of these epigenetic modification patterns will cause infertility, both in male and female.
Collapse
|
62
|
Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 2016; 18:90-101. [PMID: 27924077 DOI: 10.1038/nrm.2016.140] [Citation(s) in RCA: 735] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eight types of short-chain Lys acylations have recently been identified on histones: propionylation, butyrylation, 2-hydroxyisobutyrylation, succinylation, malonylation, glutarylation, crotonylation and β-hydroxybutyrylation. Emerging evidence suggests that these histone modifications affect gene expression and are structurally and functionally different from the widely studied histone Lys acetylation. In this Review, we discuss the regulation of non-acetyl histone acylation by enzymatic and metabolic mechanisms, the acylation 'reader' proteins that mediate the effects of different acylations and their physiological functions, which include signal-dependent gene activation, spermatogenesis, tissue injury and metabolic stress. We propose a model to explain our present understanding of how differential histone acylation is regulated by the metabolism of the different acyl-CoA forms, which in turn modulates the regulation of gene expression.
Collapse
|
63
|
Moretti C, Vaiman D, Tores F, Cocquet J. Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells. Epigenetics Chromatin 2016; 9:47. [PMID: 27795737 PMCID: PMC5081929 DOI: 10.1186/s13072-016-0099-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During meiosis, the X and Y chromosomes are transcriptionally silenced. The persistence of repressive chromatin marks on the sex chromatin after meiosis initially led to the assumption that XY gene silencing persists to some extent in spermatids. Considering the many reports of XY-linked genes expressed and needed in the post-meiotic phase of mouse spermatogenesis, it is still unclear whether or not the mouse sex chromatin is a repressive or permissive environment, after meiosis. RESULTS To determine the transcriptional and chromatin state of the sex chromosomes after meiosis, we re-analyzed ten ChIP-Seq datasets performed on mouse round spermatids and four RNA-seq datasets from male germ cells purified at different stages of spermatogenesis. For this, we used the last version of the genome (mm10/GRCm38) and included reads that map to several genomic locations in order to properly interpret the high proportion of sex chromosome-encoded multicopy genes. Our study shows that coverage of active epigenetic marks H3K4me3 and Kcr is similar on the sex chromosomes and on autosomes. The post-meiotic sex chromatin nevertheless differs from autosomal chromatin in its enrichment in H3K9me3 and its depletion in H3K27me3 and H4 acetylation. We also identified a posttranslational modification, H3K27ac, which specifically accumulates on the Y chromosome. In parallel, we found that the X and Y chromosomes are enriched in genes expressed post-meiotically and display a higher proportion of spermatid-specific genes compared to autosomes. Finally, we observed that portions of chromosome 14 and of the sex chromosomes share specific features, such as enrichment in H3K9me3 and the presence of multicopy genes that are specifically expressed in round spermatids, suggesting that parts of chromosome 14 are under the same evolutionary constraints than the sex chromosomes. CONCLUSIONS Based on our expression and epigenomic studies, we conclude that, after meiosis, the mouse sex chromosomes are no longer silenced but are nevertheless regulated differently than autosomes and accumulate different chromatin marks. We propose that post-meiotic selective constraints are at the basis of the enrichment of spermatid-specific genes and of the peculiar chromatin composition of the sex chromosomes and of parts of chromosome 14.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Daniel Vaiman
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frederic Tores
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Julie Cocquet
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
64
|
Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole ( Cynoglossus semilaevis ) by regulating testis protein ubiquitination. Gene 2016; 592:215-220. [DOI: 10.1016/j.gene.2016.07.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
|
65
|
Abstract
Meiosis is essential for reproduction in sexually reproducing organisms. A key stage in meiosis is the synapsis of maternal and paternal homologous chromosomes, accompanied by exchange of genetic material to generate crossovers. A decade ago, studies found that when chromosomes fail to synapse, the many hundreds of genes housed within them are transcriptionally inactivated. This process, meiotic silencing, is conserved in all mammals studied to date, but its purpose is not yet defined. Here, I review the molecular genetics of meiotic silencing and consider the many potential functions that it could serve in the mammalian germ line. In addition, I discuss how meiotic silencing influences sex differences in meiotic infertility and the profound impact that meiotic silencing has had on the evolution of mammalian sex chromosomes.
Collapse
|
66
|
Samanta L, Swain N, Ayaz A, Venugopal V, Agarwal A. Post-Translational Modifications in sperm Proteome: The Chemistry of Proteome diversifications in the Pathophysiology of male factor infertility. Biochim Biophys Acta Gen Subj 2016; 1860:1450-65. [DOI: 10.1016/j.bbagen.2016.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
|
67
|
Harding SM, Greenberg RA. Choreographing the Double Strand Break Response: Ubiquitin and SUMO Control of Nuclear Architecture. Front Genet 2016; 7:103. [PMID: 27375678 PMCID: PMC4894868 DOI: 10.3389/fgene.2016.00103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022] Open
Abstract
The cellular response to DNA double strand breaks (DSBs) is a multifaceted signaling program that centers on post-translational modifications including phosphorylation, ubiquitylation and SUMOylation. In this review we discuss how ubiquitin and SUMO orchestrate the recognition of DSBs and explore how this influences chromatin organization. We discuss functional outcomes of this response including transcriptional silencing and how pre-existing chromatin states may control the DSB response and the maintenance of genomic stability.
Collapse
Affiliation(s)
- Shane M Harding
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Roger A Greenberg
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
68
|
Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 2016; 151:R55-70. [PMID: 26850883 DOI: 10.1530/rep-15-0562] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then by protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. Although early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we discuss recent advances in our understanding of how epigenetic players, such as histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| |
Collapse
|
69
|
Hu YC, Namekawa SH. Functional significance of the sex chromosomes during spermatogenesis. Reproduction 2016; 149:R265-77. [PMID: 25948089 DOI: 10.1530/rep-14-0613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2.
Collapse
Affiliation(s)
- Yueh-Chiang Hu
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Satoshi H Namekawa
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
70
|
Minarovits J, Banati F, Szenthe K, Niller HH. Epigenetic Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:1-25. [DOI: 10.1007/978-3-319-24738-0_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
71
|
Royo H, Seitz H, ElInati E, Peters AHFM, Stadler MB, Turner JMA. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation. PLoS Genet 2015; 11:e1005461. [PMID: 26509798 PMCID: PMC4624941 DOI: 10.1371/journal.pgen.1005461] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. During male germ cell formation, the X and the Y chromosomes are inactivated. This process is conserved and it is essential for germ cell generation. It is believed that X/Y silencing affects all protein-coding genes, but the status of miRNAs and other non-coding genes needs further investigation. MicroRNAs from the X-chromosome (X-miRNAs) have been reported as potential silencing escapers, and they have been proposed to play a role in the inactivation mechanism itself. By looking at the individual cell level, we show unambiguously that X-miRNAs are subject to X/Y silencing, a finding that contradicts the current literature. Moreover, we generated mouse mutants in which we forced expression of X-miRNAs during X/Y silencing, and this lead to germ cell death. We propose that X/Y silencing can influence transcription of essential germ cell genes by regulating X-repressors.
Collapse
Affiliation(s)
- Hélène Royo
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Hervé Seitz
- Institute of Human Genetics, UPR 1142, CNRS, Montpellier, France
| | - Elias ElInati
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | | | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - James M. A. Turner
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- * E-mail:
| |
Collapse
|
72
|
Kartashov AV, Barski A. BioWardrobe: an integrated platform for analysis of epigenomics and transcriptomics data. Genome Biol 2015; 16:158. [PMID: 26248465 PMCID: PMC4531538 DOI: 10.1186/s13059-015-0720-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023] Open
Abstract
High-throughput sequencing has revolutionized biology by enhancing our ability to perform genome-wide studies. However, due to lack of bioinformatics expertise, modern technologies are still beyond the capabilities of many laboratories. Herein, we present the BioWardrobe platform, which allows users to store, visualize and analyze epigenomics and transcriptomics data using a biologist-friendly web interface, without the need for programming expertise. Predefined pipelines allow users to download data, visualize results on a genome browser, calculate RPKMs (reads per kilobase per million) and identify peaks. Advanced capabilities include differential gene expression and binding analysis, and creation of average tag -density profiles and heatmaps. BioWardrobe can be found at http://biowardrobe.com.
Collapse
Affiliation(s)
- Andrey V Kartashov
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA. .,Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
73
|
Sin HS, Kartashov AV, Hasegawa K, Barski A, Namekawa SH. Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biol 2015. [PMID: 26198001 PMCID: PMC4508805 DOI: 10.1186/s12915-015-0159-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background The male germline transcriptome changes dramatically during the mitosis-to-meiosis transition to activate late spermatogenesis genes and to transiently suppress genes commonly expressed in somatic lineages and spermatogenesis progenitor cells, termed somatic/progenitor genes. Results These changes reflect epigenetic regulation. Induction of late spermatogenesis genes during spermatogenesis is facilitated by poised chromatin established in the stem cell phases of spermatogonia, whereas silencing of somatic/progenitor genes during meiosis and postmeiosis is associated with formation of bivalent domains which also allows the recovery of the somatic/progenitor program after fertilization. Importantly, during spermatogenesis mechanisms of epigenetic regulation on sex chromosomes are different from autosomes: X-linked somatic/progenitor genes are suppressed by meiotic sex chromosome inactivation without deposition of H3K27me3. Conclusions Our results suggest that bivalent H3K27me3 and H3K4me2/3 domains are not limited to developmental promoters (which maintain bivalent domains that are silent throughout the reproductive cycle), but also underlie reversible silencing of somatic/progenitor genes during the mitosis-to-meiosis transition in late spermatogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0159-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ho-Su Sin
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 49229, USA.,Present address: Department of Developmental Biology, Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrey V Kartashov
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 49229, USA
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 49229, USA.,Present address: Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Artem Barski
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 49229, USA.
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 49229, USA.
| |
Collapse
|
74
|
Kato Y, Alavattam KG, Sin HS, Meetei AR, Pang Q, Andreassen PR, Namekawa SH. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis. Hum Mol Genet 2015; 24:5234-49. [PMID: 26123487 DOI: 10.1093/hmg/ddv244] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 11/13/2022] Open
Abstract
Fanconi anemia (FA) is a recessive X-linked and autosomal genetic disease associated with bone marrow failure and increased cancer, as well as severe germline defects such as hypogonadism and germ cell depletion. Although deficiencies in FA factors are commonly associated with germ cell defects, it remains unknown whether the FA pathway is involved in unique epigenetic events in germ cells. In this study, we generated Fancb mutant mice, the first mouse model of X-linked FA, and identified a novel function of the FA pathway in epigenetic regulation during mammalian gametogenesis. Fancb mutant mice were infertile and exhibited primordial germ cell (PGC) defects during embryogenesis. Further, Fancb mutation resulted in the reduction of undifferentiated spermatogonia in spermatogenesis, suggesting that FANCB regulates the maintenance of undifferentiated spermatogonia. Additionally, based on functional studies, we dissected the pathway in which FANCB functions during meiosis. The localization of FANCB on sex chromosomes is dependent on MDC1, a binding partner of H2AX phosphorylated at serine 139 (γH2AX), which initiates chromosome-wide silencing. Also, FANCB is required for FANCD2 localization during meiosis, suggesting that the role of FANCB in the activation of the FA pathway is common to both meiosis and somatic DNA damage responses. H3K9me2, a silent epigenetic mark, was decreased on sex chromosomes, whereas H3K9me3 was increased on sex chromosomes in Fancb mutant spermatocytes. Taken together, these results indicate that FANCB functions at critical stages of germ cell development and reveal a novel function of the FA pathway in the regulation of H3K9 methylation in the germline.
Collapse
Affiliation(s)
- Yasuko Kato
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Ho-Su Sin
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| |
Collapse
|
75
|
Broering TJ, Wang YL, Pandey RN, Hegde RS, Wang SC, Namekawa SH. BAZ1B is dispensable for H2AX phosphorylation on Tyrosine 142 during spermatogenesis. Biol Open 2015; 4:873-84. [PMID: 25979708 PMCID: PMC4571090 DOI: 10.1242/bio.011734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Meiosis is precisely regulated by the factors involved in DNA damage response in somatic cells. Among them, phosphorylation of H2AX on Serine 139 (γH2AX) is an essential signal for the silencing of unsynapsed sex chromosomes during male meiosis. However, it remains unknown how adjacent H2AX phosphorylation on Tyrosine 142 (pTyr142) is regulated in meiosis. Here we investigate the meiotic functions of BAZ1B (WSTF), the only known Tyr142 kinase in somatic cells, using mice possessing a conditional deletion of BAZ1B. Although BAZ1B deletion causes ectopic γH2AX signals on synapsed autosomes during the early pachytene stage, BAZ1B is dispensable for fertility and critical events during spermatogenesis. BAZ1B deletion does not alter events on unsynapsed axes and pericentric heterochromatin formation. Furthermore, BAZ1B is dispensable for localization of the ATP-dependent chromatin remodeling protein SMARCA5 (SNF2h) during spermatogenesis despite the complex formation between BAZ1B and SMARCA5, known as the WICH complex, in somatic cells. Notably, pTyr142 is regulated independently of BAZ1B and is dephosphorylated on the sex chromosomes during meiosis in contrast with the presence of adjacent γH2AX. Dephosphorylation of pTyr142 is regulated by MDC1, a binding partner of γH2AX. These results reveal the distinct regulation of two adjacent phosphorylation sites of H2AX during meiosis, and suggest that another kinase mediates Tyr142 phosphorylation.
Collapse
Affiliation(s)
- Tyler J Broering
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yuan-Liang Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ram Naresh Pandey
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shao-Chun Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
76
|
Rousseaux S, Khochbin S. Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology. CELL JOURNAL 2015; 17:1-6. [PMID: 25870829 PMCID: PMC4393657 DOI: 10.22074/cellj.2015.506] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 12/16/2022]
Abstract
Histone acetylation, one of the first and best studied histone post-translational modifications (PTMs), as well as the factors involved in its deposition (writers), binding (readers) and removal (erasers), have been shown to act at the heart of regulatory circuits controlling essential cellular functions. The identification of a variety of competing histone lysine-modifying acyl groups including propionyl, butyryl, 2-hydroxyisobutyryl, crotonyl, malonyl, succinyl and glutaryl, raises numerous questions on their functional significance, the molecular systems that manage their establishment, removal and interplay with the well-known acetylation-based mechanisms. Detailed and large-scale investigations of two of these new histone PTMs, crotonylation and 2-hydroxyisobutyrylation, along with histone acetylation, in the context of male genome programming, where stage-specific gene expression programs are switched on and off in turn, have shed light on their functional contribution to the epigenome for the first time. These initial investigations fired many additional questions, which remain to be explored. This review surveys the major results taken from these two new histone acylations and discusses the new biology that is emerging based on the diversity of histone lysine acylations.
Collapse
Affiliation(s)
| | - Saadi Khochbin
- INSERMU823University Grenoble-AlpesInstitute Albert BonniotGrenobleF-38700France
| |
Collapse
|
77
|
Hasegawa K, Sin HS, Maezawa S, Broering TJ, Kartashov AV, Alavattam KG, Ichijima Y, Zhang F, Bacon WC, Greis KD, Andreassen PR, Barski A, Namekawa SH. SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination. Dev Cell 2015; 32:574-88. [PMID: 25703348 PMCID: PMC4391279 DOI: 10.1016/j.devcel.2015.01.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 12/23/2014] [Accepted: 01/16/2015] [Indexed: 01/03/2023]
Abstract
Gametogenesis is dependent on the expression of germline-specific genes. However, it remains unknown how the germline epigenome is distinctly established from that of somatic lineages. Here we show that genes commonly expressed in somatic lineages and spermatogenesis-progenitor cells undergo repression in a genome-wide manner in late stages of the male germline and identify underlying mechanisms. SCML2, a germline-specific subunit of a Polycomb repressive complex 1 (PRC1), establishes the unique epigenome of the male germline through two distinct antithetical mechanisms. SCML2 works with PRC1 and promotes RNF2-dependent ubiquitination of H2A, thereby marking somatic/progenitor genes on autosomes for repression. Paradoxically, SCML2 also prevents RNF2-dependent ubiquitination of H2A on sex chromosomes during meiosis, thereby enabling unique epigenetic programming of sex chromosomes for male reproduction. Our results reveal divergent mechanisms involving a shared regulator by which the male germline epigenome is distinguished from that of the soma and progenitor cells.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Ho-Su Sin
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Tyler J Broering
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Andrey V Kartashov
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Yosuke Ichijima
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - W Clark Bacon
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Artem Barski
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.
| |
Collapse
|
78
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
79
|
Zhang Y, Song B, Du WD, He XJ, Ruan J, Zhou FS, Zuo XB, Ye L, Xie XS, Cao YX. Genetic association study ofRNF8andBRDTvariants with non-obstructive azoospermia in the Chinese Han population. Syst Biol Reprod Med 2014; 61:26-31. [DOI: 10.3109/19396368.2014.979513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
80
|
Samson M, Jow MM, Wong CCL, Fitzpatrick C, Aslanian A, Saucedo I, Estrada R, Ito T, Park SKR, Yates JR, Chu DS. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans. PLoS Genet 2014; 10:e1004588. [PMID: 25299455 PMCID: PMC4191889 DOI: 10.1371/journal.pgen.1004588] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.
Collapse
Affiliation(s)
- Mark Samson
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Margaret M. Jow
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Catherine C. L. Wong
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Division, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai, China
| | - Colin Fitzpatrick
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron Aslanian
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Israel Saucedo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo Estrada
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Sung-kyu Robin Park
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
81
|
Broering TJ, Alavattam KG, Sadreyev RI, Ichijima Y, Kato Y, Hasegawa K, Camerini-Otero RD, Lee JT, Andreassen PR, Namekawa SH. BRCA1 establishes DNA damage signaling and pericentric heterochromatin of the X chromosome in male meiosis. ACTA ACUST UNITED AC 2014; 205:663-75. [PMID: 24914237 PMCID: PMC4050732 DOI: 10.1083/jcb.201311050] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The major role of BRCA1 in meiosis is not in meiotic recombination but instead in promotion of the dramatic chromatin changes required for formation and function of the XY body. During meiosis, DNA damage response (DDR) proteins induce transcriptional silencing of unsynapsed chromatin, including the constitutively unsynapsed XY chromosomes in males. DDR proteins are also implicated in double strand break repair during meiotic recombination. Here, we address the function of the breast cancer susceptibility gene Brca1 in meiotic silencing and recombination in mice. Unlike in somatic cells, in which homologous recombination defects of Brca1 mutants are rescued by 53bp1 deletion, the absence of 53BP1 did not rescue the meiotic failure seen in Brca1 mutant males. Further, BRCA1 promotes amplification and spreading of DDR components, including ATR and TOPBP1, along XY chromosome axes and promotes establishment of pericentric heterochromatin on the X chromosome. We propose that BRCA1-dependent establishment of X-pericentric heterochromatin is critical for XY body morphogenesis and subsequent meiotic progression. In contrast, BRCA1 plays a relatively minor role in meiotic recombination, and female Brca1 mutants are fertile. We infer that the major meiotic role of BRCA1 is to promote the dramatic chromatin changes required for formation and function of the XY body.
Collapse
Affiliation(s)
- Tyler J Broering
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Kris G Alavattam
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Ruslan I Sadreyev
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Yosuke Ichijima
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Yasuko Kato
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Paul R Andreassen
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Satoshi H Namekawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
82
|
The role of histone ubiquitination during spermatogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:870695. [PMID: 24963488 PMCID: PMC4052122 DOI: 10.1155/2014/870695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/29/2014] [Indexed: 11/17/2022]
Abstract
Protein ubiquitin-proteasome (ubiquitin-proteasome) system is the major mechanism responsible for protein degradation in eukaryotic cell. During spermatogenesis, the replacement of histone by protamine is vital for normal sperm formation, which is involved in ubiquitination enzymes expressed in testis. Recently, histone ubiquitin ligases have been shown to play critical roles in several aspects of spermatogenesis, such as meiotic sex chromosome inactivation (MSCI), DNA damage response, and spermiogenesis. In this review, we highlight recent progress in the discovery of several histone ubiquitin ligases and elaborate mechanisms of how these enzymes are involved in these processes through knockout mouse model. Using Huwe1, UBR2, and RNF8 as examples, we emphasized the diverse functions for each enzyme and the broad involvement of these enzymes in every stage, from spermatogonia differentiation and meiotic division to spermiogenesis; thus histone ubiquitin ligases represent a class of enzymes, which play important roles in spermatogenesis through targeting histone for ubiquitination and therefore are involved in transcription regulation, epigenetic modification, and other processes essential for normal gametes formation.
Collapse
|
83
|
Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA. Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun 2014; 5:3812. [PMID: 24818823 DOI: 10.1038/ncomms4812] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
One of the most remarkable chromatin remodelling processes occurs during spermiogenesis, the post-meiotic phase of sperm development during which histones are replaced with sperm-specific protamines to repackage the genome into the highly compact chromatin structure of mature sperm. Here we identify Chromodomain helicase DNA binding protein 5 (Chd5) as a master regulator of the histone-to-protamine chromatin remodelling process. Chd5 deficiency leads to defective sperm chromatin compaction and male infertility in mice, mirroring the observation of low CHD5 expression in testes of infertile men. Chd5 orchestrates a cascade of molecular events required for histone removal and replacement, including histone 4 (H4) hyperacetylation, histone variant expression, nucleosome eviction and DNA damage repair. Chd5 deficiency also perturbs expression of transition proteins (Tnp1/Tnp2) and protamines (Prm1/2). These findings define Chd5 as a multi-faceted mediator of histone-to-protamine replacement and depict the cascade of molecular events underlying this process of extensive chromatin remodelling.
Collapse
Affiliation(s)
- Wangzhi Li
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jie Wu
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sang-Yong Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ming Zhao
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephen A Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Q Zhang
- 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA [2] MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
84
|
Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:627-43. [PMID: 24631868 DOI: 10.1016/j.bbagrm.2014.03.001] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 03/04/2014] [Indexed: 01/10/2023]
Abstract
A major mechanism regulating the accessibility and function of eukaryotic genomes are the covalent modifications to DNA and histone proteins that dependably package our genetic information inside the nucleus of every cell. Formally postulated over a decade ago, it is becoming increasingly clear that post-translational modifications (PTMs) on histones act singly and in combination to form a language or 'code' that is read by specialized proteins to facilitate downstream functions in chromatin. Underappreciated at the time was the level of complexity harbored both within histone PTMs and their combinations, as well as within the proteins that read and interpret the language. In addition to histone PTMs, newly-identified DNA modifications that can recruit specific effector proteins have raised further awareness that histone PTMs operate within a broader language of epigenetic modifications to orchestrate the dynamic functions associated with chromatin. Here, we highlight key recent advances in our understanding of the epigenetic language encompassing histone and DNA modifications and foreshadow challenges that lie ahead as we continue our quest to decipher the fundamental mechanisms of chromatin regulation. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Scott B Rothbart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
85
|
Goudarzi A, Shiota H, Rousseaux S, Khochbin S. Genome-scale acetylation-dependent histone eviction during spermatogenesis. J Mol Biol 2014; 426:3342-9. [PMID: 24613302 DOI: 10.1016/j.jmb.2014.02.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 12/30/2022]
Abstract
A genome-wide histone hyperacetylation is known to occur in the absence of transcription in haploid male germ cells, spermatids, before and during the global histone eviction and their replacement by non-histone DNA-packaging proteins. Although the occurrence of this histone hyperacetylation has been correlated with histone removal for a long time, the underlying mechanisms have remained largely obscure. Important recent discoveries have not only shed light on how histone acetylation could drive a subsequent transformation in genome organization but also revealed that the associated nucleosome dismantlement is a multi-step process, requiring the contribution of histone variants, critical destabilizing histone modifications and chromatin readers, including Brdt, working together to achieve the full packaging of the male genome, indispensable for the propagation of life.
Collapse
Affiliation(s)
- Afsaneh Goudarzi
- Institut National de la Santé et de la Recherche Médicale U823 and Université Grenoble Alpes Institut Albert Bonniot, Grenoble F-38700, France
| | - Hitoshi Shiota
- Institut National de la Santé et de la Recherche Médicale U823 and Université Grenoble Alpes Institut Albert Bonniot, Grenoble F-38700, France
| | - Sophie Rousseaux
- Institut National de la Santé et de la Recherche Médicale U823 and Université Grenoble Alpes Institut Albert Bonniot, Grenoble F-38700, France
| | - Saadi Khochbin
- Institut National de la Santé et de la Recherche Médicale U823 and Université Grenoble Alpes Institut Albert Bonniot, Grenoble F-38700, France.
| |
Collapse
|
86
|
Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:155-68. [DOI: 10.1016/j.bbagrm.2013.08.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|
87
|
Comptour A, Moretti C, Serrentino ME, Auer J, Ialy-Radio C, Ward MA, Touré A, Vaiman D, Cocquet J. SSTY proteins co-localize with the post-meiotic sex chromatin and interact with regulators of its expression. FEBS J 2014; 281:1571-84. [PMID: 24456183 DOI: 10.1111/febs.12724] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/07/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023]
Abstract
In mammals, X- and Y-encoded genes are transcriptionally shut down during male meiosis, but expression of many of them is (re)activated in spermatids after meiosis. Post-meiotic XY gene expression is regulated by active epigenetic marks, which are de novo incorporated in the sex chromatin of spermatids, and by repressive epigenetic marks inherited during meiosis; alterations in this process lead to male infertility. In the mouse, post-meiotic XY gene expression is known to depend on genetic information carried by the male-specific region of the Y chromosome long arm (MSYq). The MSYq gene Sly has been shown to be a key regulator of post-meiotic sex chromosome gene expression and is necessary for the maintenance/recruitment of repressive epigenetic marks on the sex chromatin, but studies suggest that another MSYq gene may also be required. The best candidate to date is Ssty, an MSYq multi-copy gene of unknown function. Here, we show that SSTY proteins are specifically expressed in round and elongating spermatids, and co-localize with post-meiotic sex chromatin. Moreover, SSTY proteins interact with SLY protein and its X-linked homolog SLX/SLXL1, and may be required for localization of SLX/SLY proteins in the spermatid nucleus and sex chromatin. Our data suggest that SSTY is a second MSYq factor involved in the control of XY gene expression during sperm differentiation. As Slx/Slxl1 and Sly genes have been shown to be involved in the XY intra-genomic conflict, which affects the offspring sex ratio, Ssty may constitute another player in this conflict.
Collapse
Affiliation(s)
- Aurélie Comptour
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, UMR8104, Paris, France; Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Namekawa SH. Slide preparation method to preserve three-dimensional chromatin architecture of testicular germ cells. J Vis Exp 2014:e50819. [PMID: 24457971 DOI: 10.3791/50819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During testicular germ cell differentiation, the structure of nuclear chromatin dynamically changes. The following describes a method designed to preserve the three-dimensional chromatin arrangement of testicular germ cells found in mice; this method has been termed as the three-dimensional (3D) slide method. In this method, testicular tubules are directly treated with a permeabilization step that removes cytoplasmic material, followed by a fixation step that fixes nuclear materials. Tubules are then dissociated, the cell suspension is cytospun, and cells adhere to slides. This method improves sensitivity towards detection of subnuclear structures and is applicable for immunofluorescence, DNA, and RNA fluorescence in situ hybridization (FISH) and the combination of these detection methods. As an example of a possible application of the 3D slide method, a Cot-1 RNA FISH is shown to detect nascent RNAs. The 3D slide method will facilitate the detailed examination of spatial relationships between chromatin structure, DNA, and RNA during testicular germ cell differentiation.
Collapse
Affiliation(s)
- Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
89
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
90
|
Dowdle JA, Mehta M, Kass EM, Vuong BQ, Inagaki A, Egli D, Jasin M, Keeney S. Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. PLoS Genet 2013; 9:e1003945. [PMID: 24244200 PMCID: PMC3820798 DOI: 10.1371/journal.pgen.1003945] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/25/2013] [Indexed: 01/11/2023] Open
Abstract
ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations. The eukaryotic genome is packaged into a periodic nucleoprotein complex known as chromatin. Wrapping of DNA around nucleosomes, the basic repeat unit of chromatin, enables packing of long stretches of DNA into a compact nucleus but also impedes access by protein factors involved in essential cellular processes such as transcription, replication, recombination and repair. Chromatin remodeling factors are multi-protein complexes that utilize the energy released during ATP-hydrolysis to assemble, reposition, restructure and disassemble nucleosomes. These complexes disrupt histone-DNA contacts to ‘remodel’ the chromatin and grant access to the genome. Alternatively, access can also be denied to repress transcription, for example. Spermatogenesis, the developmental program that produces sperm, comprises a dramatic chromatin makeover and the induction of a transcriptional program that engages nearly one-third of the genome. Here we provide evidence suggesting that these large-scale alterations leave the genomic material vulnerable to spurious transcriptional changes which are normally repressed by ACF1 (BAZ1A in mammals), the defining member of the well-studied ACF/CHRAC chromatin remodeling complex. These findings indicate that Baz1a plays a previously unrealized role in male fertility and may represent a novel target for male contraceptive development.
Collapse
Affiliation(s)
- James A. Dowdle
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Monika Mehta
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Elizabeth M. Kass
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Bao Q. Vuong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Akiko Inagaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Dieter Egli
- The New York Stem Cell Foundation, New York, New York, United States of America
| | - Maria Jasin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
91
|
Abstract
Human spermatozoa are highly complex specialized cells designed to survive a long and perilous journey from the site of insemination to the upper reaches of the female reproductive tract where fertilization occurs. During this journey, these cells have to run the gauntlet laid down by the female immune system and time their physiological maturation so that as soon as an egg appears in the Fallopian tube, they are equipped to recognize this cell and participate in a remarkable cascade of cellular interactions culminating in fertilization. Despite their high level of specialization, human spermatozoa are notoriously inadequate and appear to be major contributors to the poor fertility that characterizes our species. Defective spermatozoa are also known to have a major impact on the progress of pregnancy and the health trajectory of the offspring, resulting in paternally mediated increases in miscarriage rate and a range of diseases in the progeny, including dominant genetic diseases and cancer. The causes of defective sperm function are complex and involve both genetic and environmental impacts, as well as paternal age. Where genetic factors are involved, there is a concern that the widespread use of assisted conception technologies will serve to enhance the retention of poor fertility genes in the population such that the more we use assisted reproductive technologies in one generation the more we shall need them in the next. These observations may have important implications for the health and well-being of children and for the provision of reproductive healthcare services for future generations.
Collapse
|
92
|
Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 2013; 6:24. [PMID: 23916056 PMCID: PMC3737111 DOI: 10.1186/1756-8935-6-24] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/01/2013] [Indexed: 11/10/2022] Open
Abstract
Histone post-translational modifications (PTMs) have been linked to a variety of biological processes and disease states, thus making their characterization a critical field of study. In the last 5 years, a number of novel sites and types of modifications have been discovered, greatly expanding the histone code. Mass spectrometric methods are essential for finding and validating histone PTMs. Additionally, novel proteomic, genomic and chemical biology tools have been developed to probe PTM function. In this snapshot review, proteomic tools for PTM identification and characterization will be discussed and an overview of PTMs found in the last 5 years will be provided.
Collapse
Affiliation(s)
- Anna M Arnaudo
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine University of Pennsylvania, 1009C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
93
|
Sin HS, Namekawa SH. The great escape: Active genes on inactive sex chromosomes and their evolutionary implications. Epigenetics 2013; 8:887-92. [PMID: 23880818 DOI: 10.4161/epi.25672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic mechanisms precisely regulate sex chromosome inactivation as well as genes that escape the silencing process. In male germ cells, DNA damage response factor RNF8 establishes active epigenetic modifications on the silent sex chromosomes during meiosis, and activates escape genes during a state of sex chromosome-wide silencing in postmeiotic spermatids. During the course of evolution, the gene content of escape genes in postmeiotic spermatids recently diverged on the sex chromosomes. This evolutionary feature mirrors the epigenetic processes of sex chromosomes in germ cells. In this article, we describe how epigenetic processes have helped to shape the evolution of sex chromosome-linked genes. Furthermore, we compare features of escape genes on sex chromosomes in male germ cells to escape genes located on the single X chromosome silenced during X-inactivation in females, clarifying the distinct evolutionary implications between male and female escape genes.
Collapse
Affiliation(s)
- Ho-Su Sin
- Division of Reproductive Sciences; Division of Developmental Biology; Perinatal Institute; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA; Department of Pediatrics; University of Cincinnati College of Medicine; Cincinnati, OH USA
| | | |
Collapse
|