51
|
Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol 2017; 7:51. [PMID: 28409123 PMCID: PMC5374984 DOI: 10.3389/fonc.2017.00051] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.
Collapse
Affiliation(s)
- Søs Grønbæk Mathiassen
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
52
|
Antonioli M, Di Rienzo M, Piacentini M, Fimia GM. Emerging Mechanisms in Initiating and Terminating Autophagy. Trends Biochem Sci 2016; 42:28-41. [PMID: 27765496 DOI: 10.1016/j.tibs.2016.09.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
Autophagy is a major degradative process activated in a rapid and transient manner to cope with stress conditions. Whether autophagy is beneficial or detrimental depends upon the rate of induction and the appropriateness of the duration. Alterations in both autophagy initiation and termination predispose the cell to death, and affect the execution of other inducible processes such as inflammation. In this review we discuss how stress signaling pathways dynamically control the activity of the autophagy machinery by mediating post-translational modifications and regulatory protein interactions. In particular, we highlight the emerging role of TRIM and CULLIN families of ubiquitin ligases which play opposite roles in the autophagy response by promoting or inhibiting, respectively, the activity of the autophagy initiation complex.
Collapse
Affiliation(s)
- Manuela Antonioli
- National Institute for Infectious Diseases 'L. Spallanzani', Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg 79104, Germany
| | - Martina Di Rienzo
- National Institute for Infectious Diseases 'L. Spallanzani', Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; Department of Biology, University of Rome 'Tor Vergata', 00173 Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases 'L. Spallanzani', Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; Department of Biology, University of Rome 'Tor Vergata', 00173 Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases 'L. Spallanzani', Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce 73100, Italy.
| |
Collapse
|
53
|
Cui D, Xiong X, Zhao Y. Cullin-RING ligases in regulation of autophagy. Cell Div 2016; 11:8. [PMID: 27293474 PMCID: PMC4902950 DOI: 10.1186/s13008-016-0022-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022] Open
Abstract
Cullin-RING ligases (CRLs), the largest E3 ubiquitin ligase family, promote ubiquitination and degradation of various cellular key regulators involved in a broad array of physiological and pathological processes, including cell cycle progression, signal transduction, transcription, cardiomyopathy, and tumorigenesis. Autophagy, an intracellular catabolic reaction that delivers cytoplasmic components to lysosomes for degradation, is crucial for cellular metabolism and homeostasis. The dysfunction of autophagy has been proved to associate with a variety of human diseases. Recent evidences revealed the emerging roles of CRLs in the regulation of autophagy. In this review, we will focus mainly on recent advances in our understandings of the regulation of autophagy by CRLs and the cross-talk between CRLs and autophagy, two degradation systems. We will also discuss the pathogenesis of human diseases associated with the dysregulation of CRLs and autophagy. Finally, we will discuss current efforts and future perspectives on basic and translational research on CRLs and autophagy.
Collapse
Affiliation(s)
- Danrui Cui
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing-Chun Road, Hangzhou, Zhejiang 310003 People's Republic of China ; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kai-Xuan Road, Hangzhou, Zhejiang 310029 People's Republic of China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kai-Xuan Road, Hangzhou, Zhejiang 310029 People's Republic of China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing-Chun Road, Hangzhou, Zhejiang 310003 People's Republic of China ; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kai-Xuan Road, Hangzhou, Zhejiang 310029 People's Republic of China
| |
Collapse
|
54
|
Abstract
Macroautophagy (autophagy hereafter) captures, degrades, and recycles intracellular components to maintain metabolic homeostasis and protein and organelle quality control. Autophagy thereby promotes survival in starvation and prevents tissue degeneration. There is an important relationship between autophagy and p53. Autophagy suppresses p53 and also p53 activates autophagy. The suppression of p53 by autophagy is important for tumor promotion and likely also for preventing tissue degeneration. Alternatively, the activation of autophagy by p53 suggests that autophagy is part of the protective function of p53. Uncovering the underlying mechanisms of the autophagy-p53 reciprocal functional interaction and has important implications for human disease and treatment.
Collapse
Affiliation(s)
- Eileen White
- Rutgers Cancer Institute of New Jersey (CINJ), New Brunswick, New Jersey 08903 Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
55
|
Liu CC, Lin YC, Chen YH, Chen CM, Pang LY, Chen HA, Wu PR, Lin MY, Jiang ST, Tsai TF, Chen RH. Cul3-KLHL20 Ubiquitin Ligase Governs the Turnover of ULK1 and VPS34 Complexes to Control Autophagy Termination. Mol Cell 2016; 61:84-97. [DOI: 10.1016/j.molcel.2015.11.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/19/2015] [Accepted: 10/30/2015] [Indexed: 12/17/2022]
|
56
|
Magraoui FE, Reidick C, Meyer HE, Platta HW. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease. Cells 2015; 4:596-621. [PMID: 26445063 PMCID: PMC4695848 DOI: 10.3390/cells4040596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Hemut E Meyer
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
57
|
Wu ZH, Pfeffer LM. MicroRNA regulation of F-box proteins and its role in cancer. Semin Cancer Biol 2015; 36:80-7. [PMID: 26433073 DOI: 10.1016/j.semcancer.2015.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/26/2023]
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment.
Collapse
Affiliation(s)
- Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| |
Collapse
|
58
|
Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 2015; 36:105-19. [PMID: 26427329 DOI: 10.1016/j.semcancer.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
59
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
60
|
Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol 2015; 36:3-17. [PMID: 26416465 DOI: 10.1016/j.semcancer.2015.09.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Suzanne J Randle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
61
|
Bi D, Yang M, Zhao X, Huang S. Effect of Cnidium Lactone on Serum Mutant P53 and BCL-2/BAX Expression in Human Prostate Cancer Cells PC-3 Tumor-Bearing BALB/C Nude Mouse Model. Med Sci Monit 2015; 21:2421-7. [PMID: 26286430 PMCID: PMC4547542 DOI: 10.12659/msm.893745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Cnidium lactone is a natural coumarin compound that can inhibit a variety of cancer cell proliferation and induce cancer cell apoptosis. This experiment investigated the effect of cnidium lactone on molecular marker expression in prostate cancer nude mice to study its effect in inducing apoptosis. Material/Methods We randomly and equally divided 30 male BALB/C nude mice inoculated with human prostate cancer cells PC-3 into a negative control group, a cyclophosphamide group (500 mg/Kg), and cnidium lactone groups at 3 doses (280 mg/Kg, 140 mg/Kg, and 70 mg/Kg). The mice were weighed at 2 weeks after administration. Tunnel assay was applied to test the nude mice tumor cell apoptosis. ELISA was performed to detect serum AMACR, CD147, mutant P53, BCL-2, AND BAX expression levels. Tumor tissue was separated and weighed. Results Mice weight did not change significantly in the groups receiving 3 different doses of cnidium lactone(p>0.05), while it decreased obviously in the cyclophosphamide group (p<0.05). Tumor weight, CD147, mutant P53, and BCL-2 levels were significantly lower in the groups receiving 3 different doses of cnidium lactone than in the negative control group (p<0.05). Among them, the abovementioned indexes decreased markedly in the 280 mg/Kg and 140 mg/Kg dose groups than in the cyclophosphamide group (p<0.05). AMACR and BAX levels showed no significant difference in the cnidium lactone group or the cyclophosphamide group (p>0.05). Conclusions Cnidium lactone may induce prostate cancer cell apoptosis and inhibit its proliferation through regulating CD147, mutant P53, and BCL-2 expression in nude mice.
Collapse
Affiliation(s)
- Dongbin Bi
- Department of Urology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Mingshan Yang
- Department of Urology, Shandong Tumor Hospital, Jinan, Shandong, China (mainland)
| | - Xia Zhao
- Department of Neurology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Shiming Huang
- Department of Neurology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
62
|
Zhang Z, Guo M, Zhao S, Xu W, Shao J, Zhang F, Wu L, Lu Y, Zheng S. The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomed Pharmacother 2015; 74:17-29. [DOI: 10.1016/j.biopha.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023] Open
|
63
|
Zhao GX, Pan H, Ouyang DY, He XH. The critical molecular interconnections in regulating apoptosis and autophagy. Ann Med 2015; 47:305-315. [PMID: 25982797 DOI: 10.3109/07853890.2015.1040831] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/08/2015] [Indexed: 01/02/2023] Open
Abstract
Apoptosis and autophagy are both highly regulated biological processes that have important roles in development, differentiation, homeostasis, and disease. These processes may take place independently, with autophagy being cytoprotective for preventing cells from apoptosis and apoptosis blocking autophagy. But in most circumstances, both may be induced sequentially with autophagy preceding apoptosis. The simultaneous activation of both processes has been observed not only in experimental settings but also in pathophysiological conditions. In fact, these two pathways are tightly connected with each other by substantial interplays between them, enabling the coordinated regulation of cell fates by these two pathways. They share some common upstream signaling components, and some components of one pathway may play important roles in the other, and vice versa. Such proteins represent the critical interconnections of the two pathways, which seem to determine the cell for survival or death. Here several critical molecular interconnections between apoptosis and autophagy pathways are reviewed, with their action mechanisms being highlighted.
Collapse
Affiliation(s)
- Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou 510632 , China
| | | | | | | |
Collapse
|
64
|
p53-controlled autophagy. Nat Rev Mol Cell Biol 2015. [DOI: 10.1038/nrm3947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|