51
|
Patton A, Bridge JA, Liebner D, Chung C, Iwenofu OH. A YAP1::TFE3 cutaneous low-grade fibromyxoid neoplasm: A novel entity! Genes Chromosomes Cancer 2021; 61:194-199. [PMID: 34874592 DOI: 10.1002/gcc.23018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Cutaneous fibromyxoid neoplasms (CFMN) comprise a vast category of benign and malignant tumors that include, but are not limited to, low-grade fibromyxoid sarcoma, myxofibrosarcoma, myxoid dermatofibrosarcoma protuberans, myxoid solitary fibrous tumor, and myxoid neurofibroma with differing implications for treatment and prognosis. Herein, a case of CFMN arising as a painless, slow-growing, flesh-colored forearm mass in a 53-year-old female is presented. The neoplasm comprised of copious myxoid material with banal spindle cells, exhibiting mild hyperchromasia, dissecting the dermal collagen table. Focal perivascular accentuation of spindle cells was identified in the absence of vasoformative features. Immunohistochemically, lesional cells were strongly and diffusely positive for CD34 and multifocally for Factor XIIIa and epithelial membrane antigen while negative for CD31, ERG, FLI-1, D2-40, smooth muscle actin, Desmin, S100, HMB-45, STAT6, MUC4, and keratins. RNA- and DNA-sequencing identified a YAP1::TFE3 fusion transcript that were subsequently corroborated by fluorescence in situ hybridization and immunohistochemistry for TFE3 (Xp11.23) locus rearrangement and strong, diffuse TFE3 immunoreactivity, respectively. To date, the YAP1::TFE3 fusion has only been identified in a subset of epithelioid hemangioendotheliomas and clear cell stromal tumors of the lung. This is the first report of a CFMN featuring a YAP1::TFE3 fusion (YAP1 Exon 1 and TFE3 Exon 4). The morphologic findings are unlike those previously described for epithelioid hemangioendothelioma and suggest that this neoplasm may represent a yet unclassified or novel CFMN entity. Although the patient is 1-year status postsurgical excision with no evidence of clinical recurrence, the clinical behavior of this novel entity remains to be fully characterized.
Collapse
Affiliation(s)
- Ashley Patton
- Department of Pathology and Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Julia A Bridge
- Division of Molecular Pathology, Propath Laboratories, Dallas, Texas, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - David Liebner
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA.,Division of Computational Biology and Bioinformatics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Catherine Chung
- Department of Pathology and Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Division of Dermatology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - O Hans Iwenofu
- Department of Pathology and Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
52
|
Servidei T, Lucchetti D, Navarra P, Sgambato A, Riccardi R, Ruggiero A. Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:6100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
Affiliation(s)
- Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Donatella Lucchetti
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Alessandro Sgambato
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Riccardo Riccardi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| |
Collapse
|
53
|
Dermawan JK, Azzato EM, Billings SD, Fritchie KJ, Aubert S, Bahrami A, Barisella M, Baumhoer D, Blum V, Bode B, Aesif SW, Bovée JVMG, Dickson BC, van den Hout M, Lucas DR, Moch H, Oaxaca G, Righi A, Sciot R, Sumathi V, Yoshida A, Rubin BP. YAP1-TFE3-fused hemangioendothelioma: a multi-institutional clinicopathologic study of 24 genetically-confirmed cases. Mod Pathol 2021; 34:2211-2221. [PMID: 34381186 DOI: 10.1038/s41379-021-00879-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022]
Abstract
YAP1-TFE3-fused hemangioendothelioma is an extremely rare malignant vascular tumor. We present the largest multi-institutional clinicopathologic study of YAP1-TFE3-fused hemangioendothelioma to date. The 24 cases of YAP1-TFE3-fused hemangioendothelioma showed a female predominance (17 female, 7 male) across a wide age range (20-78 years old, median 44). Tumors were most commonly located in soft tissue (50%), followed by bone (29%), lung (13%), and liver (8%), ranging from 3 to 115 mm in size (median 40 mm). About two-thirds presented with multifocal disease, including 7 cases with distant organ metastasis. Histopathologically, we describe three dominant architectural patterns: solid sheets of coalescing nests, pseudoalveolar and (pseudo)vasoformative pattern, and discohesive strands and clusters of cells set in a myxoid to myxohyaline stroma. These patterns were present in variable proportions across different tumors and often coexisted within the same tumor. The dominant cytomorphology (88%) was large epithelioid cells with abundant, glassy eosinophilic to vacuolated cytoplasm, prominent nucleoli and well-demarcated cell borders. Multinucleated or binucleated cells, prominent admixed erythrocytic and lymphocytic infiltrates, and intratumoral fat were frequently present. Immunohistochemically, ERG, CD31, and TFE3 were consistently expressed, while expression of CD34 (83%) and cytokeratin AE1/AE3 (20%) was variable. CAMTA1 was negative in all but one case. All cases were confirmed by molecular testing to harbor YAP1-TFE3 gene fusions: majority with YAP1 exon 1 fused to TFE3 exon 4 (88%), or less commonly, TFE3 exon 6 (12%). Most patients (88%) were treated with primary surgical resection. Over a follow-up period of 4-360 months (median 36 months) in 17 cases, 35% of patients remained alive without disease, and 47% survived many years with stable, albeit multifocal and/or metastatic disease. Five-year progression-free survival probability was 88%. We propose categorizing YAP1-TFE3-fused hemangioendothelioma as a distinct disease entity given its unique clinical and histopathologic characteristics in comparison to conventional epithelioid hemangioendothelioma.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elizabeth M Azzato
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven D Billings
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karen J Fritchie
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sebastien Aubert
- Department of Pathology, Institut de Pathologie, University of Lille, Lille, France
| | - Armita Bahrami
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Marta Barisella
- Struttura Complessa Anatomia Patologica, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Veronika Blum
- FMH Medical Oncology, Luzerner Kantonsspital, Luzern, Switzerland
| | - Beata Bode
- Pathology Institute Enge and University of Zurich, Zurich, Switzerland
| | - Scott W Aesif
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Mari van den Hout
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David R Lucas
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gabriel Oaxaca
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Vaiyapuri Sumathi
- Department of Musculoskeletal Pathology, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, UK
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
54
|
Arakaki AKS, Szulzewsky F, Gilbert MR, Gujral TS, Holland EC. Utilizing preclinical models to develop targeted therapies for rare central nervous system cancers. Neuro Oncol 2021; 23:S4-S15. [PMID: 34725698 PMCID: PMC8561121 DOI: 10.1093/neuonc/noab183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with rare central nervous system (CNS) tumors typically have a poor prognosis and limited therapeutic options. Historically, these cancers have been difficult to study due to small number of patients. Recent technological advances have identified molecular drivers of some of these rare cancers which we can now use to generate representative preclinical models of these diseases. In this review, we outline the advantages and disadvantages of different models, emphasizing the utility of various in vitro and ex vivo models for target discovery and mechanistic inquiry and multiple in vivo models for therapeutic validation. We also highlight recent literature on preclinical model generation and screening approaches for ependymomas, histone mutated high-grade gliomas, and atypical teratoid rhabdoid tumors, all of which are rare CNS cancers that have recently established genetic or epigenetic drivers. These preclinical models are critical to advancing targeted therapeutics for these rare CNS cancers that currently rely on conventional treatments.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
55
|
Seavey CN, Rubin BP. Letter by Seavey and Rubin Regarding Article, "Sustained Activation of Endothelial YAP1 Causes Epithelioid Hemangioendothelioma". Arterioscler Thromb Vasc Biol 2021; 41:e491-e492. [PMID: 34550713 DOI: 10.1161/atvbaha.121.316754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Caleb N Seavey
- Department of Cancer Biology, Lerner Research Institute (C.N.S., B.P.R.), Cleveland Clinic Foundation, OH.,Department of General Surgery, Digestive Disease and Surgery Institute (C.N.S.), Cleveland Clinic Foundation, OH.,Department of Molecular Medicine, PRISM Program, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, OH (C.N.S.)
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute (C.N.S., B.P.R.), Cleveland Clinic Foundation, OH.,Robert J. Tomsich Pathology and Laboratory Medicine Institute (B.P.R.), Cleveland Clinic Foundation, OH
| |
Collapse
|
56
|
Lim KY, Lee KH, Phi JH, Yun H, Won JK, Choi SH, Park SH. ZFTA-YAP1 fusion-positive ependymoma can occur in the spinal cord: Letter to the editor. Brain Pathol 2021; 32:e13020. [PMID: 34506076 PMCID: PMC8713521 DOI: 10.1111/bpa.13020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ka Young Lim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang Hoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Precision Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
57
|
Lavado A, Gangwar R, Paré J, Wan S, Fan Y, Cao X. YAP/TAZ maintain the proliferative capacity and structural organization of radial glial cells during brain development. Dev Biol 2021; 480:39-49. [PMID: 34419458 DOI: 10.1016/j.ydbio.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
The Hippo pathway regulates the development and homeostasis of many tissues and in many species. It controls the activity of two paralogous transcriptional coactivators, YAP and TAZ (YAP/TAZ). Although previous studies have established that aberrant YAP/TAZ activation is detrimental to mammalian brain development, whether and how endogenous levels of YAP/TAZ activity regulate brain development remain unclear. Here, we show that during mammalian cortical development, YAP/TAZ are specifically expressed in apical neural progenitor cells known as radial glial cells (RGCs). The subcellular localization of YAP/TAZ undergoes dynamic changes as corticogenesis proceeds. YAP/TAZ are required for maintaining the proliferative potential and structural organization of RGCs, and their ablation during cortical development reduces the numbers of cortical projection neurons and causes the loss of ependymal cells, resulting in hydrocephaly. Transcriptomic analysis using sorted RGCs reveals gene expression changes in YAP/TAZ-depleted cells that correlate with mutant phenotypes. Thus, our study has uncovered essential functions of YAP/TAZ during mammalian brain development and revealed the transcriptional mechanism of their action.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ruchika Gangwar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
58
|
He Z, Li R, Jiang H. Mutations and Copy Number Abnormalities of Hippo Pathway Components in Human Cancers. Front Cell Dev Biol 2021; 9:661718. [PMID: 34150758 PMCID: PMC8209335 DOI: 10.3389/fcell.2021.661718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway is highly conserved from Drosophila to mammals. As a key regulator of cell proliferation, the Hippo pathway controls tissue homeostasis and has a major impact on tumorigenesis. The originally defined core components of the Hippo pathway in mammals include STK3/4, LATS1/2, YAP1/TAZ, TEAD, VGLL4, and NF2. However, for most of these genes, mutations and copy number variations are relatively uncommon in human cancer. Several other recently identified upstream and downstream regulators of Hippo signaling, including FAT1, SHANK2, Gq/11, and SWI/SNF complex, are more commonly dysregulated in human cancer at the genomic level. This review will discuss major genomic events in human cancer that enable cancer cells to escape the tumor-suppressive effects of Hippo signaling.
Collapse
Affiliation(s)
- Zhengjin He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruihan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hai Jiang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
59
|
Merritt N, Garcia K, Rajendran D, Lin ZY, Zhang X, Mitchell KA, Borcherding N, Fullenkamp C, Chimenti MS, Gingras AC, Harvey KF, Tanas MR. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. eLife 2021; 10:62857. [PMID: 33913810 PMCID: PMC8143797 DOI: 10.7554/elife.62857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next-generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers. The proliferation of human cells is tightly regulated to ensure that enough cells are made to build and repair organs and tissues, while at the same time stopping cells from dividing uncontrollably and damaging the body. To get the right balance, cells rely on physical and chemical cues from their environment that trigger the biochemical signals that regulate two proteins called TAZ and YAP. These proteins control gene activity by regulating the rate at which genes are copied to produce proteins. If this process becomes dysregulated, cells can grow uncontrollably, causing cancer. In cancer cells, it is common to find TAZ and YAP fused to other proteins. In epithelioid hemangioendothelioma, a rare cancer that grows in the blood vessels, cancerous growth can be driven by a version of TAZ fused to the protein CAMTA1, or a version of YAP fused to the protein TFE3. While the role of TAZ and YAP in promoting gene activity is known, it is unclear how CAMTA1 and TFE3 contribute to cell growth becoming dysregulated. Merritt, Garcia et al. studied sarcoma cell lines to show that these two fusion proteins, TAZ-CAMTA1 and YAP-TFE3, change the pattern of gene activity seen in the cells compared to TAZ or YAP alone. An analysis of molecules that interact with the two fusion proteins identified a complex called ATAC as the cause of these changes. This complex adds chemical markers to DNA-packaging proteins, which control which genes are available for activation. The fusion proteins combine the ability of TAZ and YAP to control gene activity and the ability of CAMTA1 and TFE3 to make DNA more accessible, allowing the fusion proteins to drive uncontrolled cancerous growth. Similar TAZ and YAP fusion proteins have been found in other cancers, which can activate genes and potentially alter DNA packaging. Targeting drug development efforts at the proteins that complex with TAZ and YAP fusion proteins may lead to new therapies.
Collapse
Affiliation(s)
- Nicole Merritt
- Department of Pathology, University of Iowa, Iowa City, United States
| | - Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States
| | - Dushyandi Rajendran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | | | - Katrina A Mitchell
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, United States
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States.,Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States
| |
Collapse
|
60
|
Driskill JH, Zheng Y, Wu BK, Wang L, Cai J, Rakheja D, Dellinger M, Pan D. WWTR1(TAZ)-CAMTA1 reprograms endothelial cells to drive epithelioid hemangioendothelioma. Genes Dev 2021; 35:495-511. [PMID: 33766984 PMCID: PMC8015719 DOI: 10.1101/gad.348221.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
In this study, Driskill et al. studied whether the TAZ-CAMTA1 gene fusion is a driver of epithelioid hemangioendothelioma (EHE), a poorly understood and devastating vascular cancer. They show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors, and their findings provide the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE. Epithelioid hemangioendothelioma (EHE) is a poorly understood and devastating vascular cancer. Sequencing of EHE has revealed a unique gene fusion between the Hippo pathway nuclear effector TAZ (WWTR1) and the brain-enriched transcription factor CAMTA1 in ∼90% of cases. However, it remains unclear whether the TAZ-CAMTA1 gene fusion is a driver of EHE, and potential targeted therapies are unknown. Here, we show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors. We further show that activated TAZ resembles TAZ-CAMTA1 in driving the formation of EHE-like vascular tumors, suggesting that constitutive activation of TAZ underlies the pathological features of EHE. We show that TAZ-CAMTA1 initiates an angiogenic and regenerative-like transcriptional program in endothelial cells, and disruption of the TAZ-CAMTA1-TEAD interaction or ectopic expression of a dominant negative TEAD in vivo inhibits TAZ-CAMTA1-mediated transformation. Our study provides the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bo-Kuan Wu
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jing Cai
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Pathology and Laboratory Medicine, Children's Health, Dallas, Texas 75235, USA
| | - Michael Dellinger
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
61
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
62
|
Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia 2021; 69:2059-2076. [PMID: 33638562 PMCID: PMC8591561 DOI: 10.1002/glia.23984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.
Collapse
Affiliation(s)
- Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adarsha P Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather M Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
63
|
Wang J, Wang L, Fu L, Li QC, Qiu XS, Wang EH, Yu JH. Supratentorial ependymoma with YAP1:FAM118B fusion: A case report. Neuropathology 2021; 41:133-138. [PMID: 33480048 DOI: 10.1111/neup.12712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/30/2022]
Abstract
We report a case of a 26-year-old Chinese man who had experienced three grand mal seizures in the past two months. Magnetic resonance imaging revealed a relatively well-circumscribed lesion in the left frontal lobe. A craniotomy with total excision of the tumor was performed. Histopathological investigations confirmed a grade 2 ependymoma according to the World Health Organization classification. Genetic analysis revealed a tumor harboring FAM118B fusion to YAP1, and no other genetic alterations or methylation of the O6 -methylguanine-DNA methyltransferase gene promoter were detected. This is the second case report of ependymoma with YAP1:FAM118B fusion.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lin Fu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qing-Chang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Juan-Han Yu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
64
|
Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 2021; 475:205-221. [PMID: 33428889 DOI: 10.1016/j.ydbio.2020.12.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
YAP1 is a transcriptional co-activator whose activity is controlled by the Hippo signaling pathway. In addition to important functions in normal tissue homeostasis and regeneration, YAP1 has also prominent functions in cancer initiation, aggressiveness, metastasis, and therapy resistance. In this review we are discussing the molecular functions of YAP1 and its roles in cancer, with a focus on the different mechanisms of de-regulation of YAP1 activity in human cancers, including inactivation of upstream Hippo pathway tumor suppressors, regulation by intersecting pathways, miRNAs, and viral oncogenes. We are also discussing new findings on the function and biology of the recently identified family of YAP1 gene fusions, that constitute a new type of activating mutation of YAP1 and that are the likely oncogenic drivers in several subtypes of human cancers. Lastly, we also discuss different strategies of therapeutic inhibition of YAP1 functions.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| |
Collapse
|
65
|
Russell-Goldman E, Hornick JL, Hanna J. Utility of YAP1 and NUT immunohistochemistry in the diagnosis of porocarcinoma. J Cutan Pathol 2020; 48:403-410. [PMID: 33222286 DOI: 10.1111/cup.13924] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Porocarcinoma is the malignant counterpart of poroma, a benign tumor derived from the eccrine or apocrine units. In contrast to poroma, porocarcinoma is rare and its diagnosis may be challenging. Recent work has identified YAP1-associated gene fusions in most poromas, and a subset of porocarcinomas. These included YAP1-MAML2 and YAP1-NUTM1, the latter being enriched in porocarcinomas over poromas. METHODS We studied YAP1 C-terminus and NUT immunohistochemistry in a cohort of 12 porocarcinomas, 10 poromas, 10 squamous cell carcinomas, and 6 hidradenocarcinomas. RESULTS Seven of 12 (58%) porocarcinomas showed loss of YAP1 C-terminus expression, consistent with a YAP1 fusion. Of these seven, five showed NUT positivity, implying the presence of the YAP1-NUTM1 fusion. One of 12 (8%) cases showed NUT positivity, but retention of YAP1 C-terminus expression, consistent with a non-YAP1 NUT-associated fusion. Eight of 10 (80%) poromas showed loss of YAP1 C-terminus expression and negative NUT staining, consistent with non-NUT YAP1 fusions. All squamous cell carcinomas and hidradenocarcinomas retained YAP1 C-terminus expression and were negative for NUT. CONCLUSION YAP1 C-terminus and NUT immunohistochemistry may be helpful in the diagnosis of porocarcinoma, with the combination of YAP1 C-terminus loss and NUT positivity being particularly informative.
Collapse
Affiliation(s)
- Eleanor Russell-Goldman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
66
|
Takadera M, Satomi K, Szulzewsky F, Cimino PJ, Holland EC, Yamamoto T, Ichimura K, Ozawa T. Phenotypic characterization with somatic genome editing and gene transfer reveals the diverse oncogenicity of ependymoma fusion genes. Acta Neuropathol Commun 2020; 8:203. [PMID: 33228790 PMCID: PMC7684901 DOI: 10.1186/s40478-020-01080-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
Recurrent RELA and YAP1 fusions are intimately associated with tumorigenesis in supratentorial ependymomas. Chromothripsis and focal copy number alterations involving 11q are hallmarks of these tumors. However, it is unknown whether the chromosomal alterations are a direct causal event resulting in fusion transcripts. In addition, the biological significance of the RELA fusion variants and YAP1 fusions is not yet fully characterized. In this study, we generated gene rearrangements on 11q with the CRISPR/Cas9 system and investigated the formation of oncogenic ependymoma fusion genes. Further, we examined the oncogenic potential of RELA fusion variants and YAP1 fusions in a lentiviral gene transfer model. We observed that endogenous RELA fusion events were successfully induced by CRISPR/Cas9-mediated genome rearrangement in cultured cells. In vivo genome editing in mouse brain resulted in the development of ependymoma-like brain tumors that harbored the Rela fusion gene. All RELA fusion variants tested, except a variant lacking the Rel homology domain, were able to induce tumor formation, albeit with different efficacy. Furthermore, expression of YAP1-FAM118B and YAP1-MAMLD1 fusions induced the formation of spindle-cell-like tumors at varying efficacy. Our results indicate that chromosomal rearrangements involving the Rela locus are the causal event for the formation of Rela fusion-driven ependymomas in mice. Furthermore, the type of RELA. fusion might affect the aggressiveness of tumors and that the Rel homology domain is essential for the oncogenic functions of RELA. fusions. The YAP1 fusion genes are also oncogenic when expressed in mice.
Collapse
|