51
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
52
|
Oh DH, Hong H, Lee SY, Yun DJ, Bohnert HJ, Dassanayake M. Genome structures and transcriptomes signify niche adaptation for the multiple-ion-tolerant extremophyte Schrenkiella parvula. PLANT PHYSIOLOGY 2014; 164:2123-38. [PMID: 24563282 PMCID: PMC3982767 DOI: 10.1104/pp.113.233551] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Schrenkiella parvula (formerly Thellungiella parvula), a close relative of Arabidopsis (Arabidopsis thaliana) and Brassica crop species, thrives on the shores of Lake Tuz, Turkey, where soils accumulate high concentrations of multiple-ion salts. Despite the stark differences in adaptations to extreme salt stresses, the genomes of S. parvula and Arabidopsis show extensive synteny. S. parvula completes its life cycle in the presence of Na⁺, K⁺, Mg²⁺, Li⁺, and borate at soil concentrations lethal to Arabidopsis. Genome structural variations, including tandem duplications and translocations of genes, interrupt the colinearity observed throughout the S. parvula and Arabidopsis genomes. Structural variations distinguish homologous gene pairs characterized by divergent promoter sequences and basal-level expression strengths. Comparative RNA sequencing reveals the enrichment of ion-transport functions among genes with higher expression in S. parvula, while pathogen defense-related genes show higher expression in Arabidopsis. Key stress-related ion transporter genes in S. parvula showed increased copy number, higher transcript dosage, and evidence for subfunctionalization. This extremophyte offers a framework to identify the requisite adjustments of genomic architecture and expression control for a set of genes found in most plants in a way to support distinct niche adaptation and lifestyles.
Collapse
|
53
|
Sklyar IV, Iarovaia OV, Lipinski M, Vassetzky YS. Translocations affecting human immunoglobulin heavy chain locus. ACTA ACUST UNITED AC 2014. [DOI: 10.7124/bc.000886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- I. V. Sklyar
- CNRS UMR8126, Paris-Sud University, Gustave Roussy Institute
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - O. V. Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - M. Lipinski
- CNRS UMR8126, Paris-Sud University, Gustave Roussy Institute
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - Y. S. Vassetzky
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| |
Collapse
|
54
|
Structural variation-associated expression changes are paralleled by chromatin architecture modifications. PLoS One 2013; 8:e79973. [PMID: 24265791 PMCID: PMC3827143 DOI: 10.1371/journal.pone.0079973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/07/2013] [Indexed: 01/04/2023] Open
Abstract
Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this “neighboring effect”, we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO Series accession number: GSE33784, GSE33867.
Collapse
|
55
|
Chromosomal contact permits transcription between coregulated genes. Cell 2013; 155:606-20. [PMID: 24243018 DOI: 10.1016/j.cell.2013.09.051] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/18/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
Abstract
Transcription of coregulated genes occurs in the context of long-range chromosomal contacts that form multigene complexes. Such contacts and transcription are lost in knockout studies of transcription factors and structural chromatin proteins. To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH and immunofluorescence microscopy revealed that perturbing the site of contact had a direct effect on transcription of other interacting genes. Unexpectedly, this effect on cotranscription was hierarchical, with dominant and subordinate members of the multigene complex engaged in both intra- and interchromosomal contact. This observation reveals the profound influence of these chromosomal contacts on the transcription of coregulated genes in a multigene complex.
Collapse
|
56
|
Abdallah BY, Horne SD, Kurkinen M, Stevens JB, Liu G, Ye CJ, Barbat J, Bremer SW, Heng HHQ. Ovarian cancer evolution through stochastic genome alterations: defining the genomic role in ovarian cancer. Syst Biol Reprod Med 2013; 60:2-13. [PMID: 24147962 DOI: 10.3109/19396368.2013.837989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is the fifth leading cause of death among women worldwide. Characterized by complex etiology and multi-level heterogeneity, its origins are not well understood. Intense research efforts over the last decade have furthered our knowledge by identifying multiple risk factors that are associated with the disease. However, it is still unclear how genetic heterogeneity contributes to tumor formation, and more specifically, how genome-level heterogeneity acts as the key driving force of cancer evolution. Most current genomic approaches are based on 'average molecular profiling.' While effective for data generation, they often fail to effectively address the issue of high level heterogeneity because they mask variation that exists in a cell population. In this synthesis, we hypothesize that genome-mediated cancer evolution can effectively explain diverse factors that contribute to ovarian cancer. In particular, the key contribution of genome replacement can be observed during major transitions of ovarian cancer evolution including cellular immortalization, transformation, and malignancy. First, we briefly review major updates in the literature, and illustrate how current gene-mediated research will offer limited insight into cellular heterogeneity and ovarian cancer evolution. We next explain a holistic framework for genome-based ovarian cancer evolution and apply it to understand the genomic dynamics of a syngeneic ovarian cancer mouse model. Finally, we employ single cell assays to further test our hypothesis, discuss some predictions, and report some recent findings.
Collapse
|
57
|
Abdallah BY, Horne SD, Stevens JB, Liu G, Ying AY, Vanderhyden B, Krawetz SA, Gorelick R, Heng HH. Single cell heterogeneity: why unstable genomes are incompatible with average profiles. Cell Cycle 2013; 12:3640-9. [PMID: 24091732 DOI: 10.4161/cc.26580] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-mediated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype heterogeneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more difficult for heterogeneous cell populations than for homogenous cell populations. Since "outliers" play an important role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell populations are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-based methods is not only inaccurate but deceptive, as the "average" cancer cell clearly does not exist. Genome-level heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution.
Collapse
Affiliation(s)
- Batoul Y Abdallah
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Impacts of variation in the human genome on gene regulation. J Mol Biol 2013; 425:3970-7. [PMID: 23871684 DOI: 10.1016/j.jmb.2013.07.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 11/22/2022]
Abstract
Recent advances in fast and inexpensive DNA sequencing have enabled the extensive study of genomic and transcriptomic variation in humans. Human genomic variation is composed of sequence and structural changes including single-nucleotide and multinucleotide variants, short insertions or deletions (indels), larger copy number variants, and similarly sized copy neutral inversions and translocations. It is now well established that any two genomes differ extensively and that structural changes constitute a prominent source of this variation. There have also been major technological advances in RNA sequencing to globally quantify and describe diversity in transcripts. Large consortia such as the 1000 Genomes Project and the ENCODE (ENCyclopedia Of DNA Elements) Project are producing increasingly comprehensive maps outlining the regions of the human genome containing variants and functional elements, respectively. Integration of genetic variation data and extensive annotation of functional genomic elements, along with the ability to measure global transcription, allow the impacts of genetic variants on gene expression to be resolved. There are several well-established models by which genetic variants affect gene regulation depending on the type, nature, and position of the variant with respect to the affected genes. These effects can be manifested in two ways: changes to transcript sequences and isoforms by coding variants, and changes to transcript abundance by dosage or regulatory variants. Here, we review the current state of how genetic variations impact gene regulation locally and globally in the human genome.
Collapse
|
59
|
Abstract
In vivo, the human genome functions as a complex, folded, three-dimensional chromatin polymer. Understanding how the human genome is spatially organized and folded inside the cell nucleus is therefore central to understanding how genes are regulated in normal development and dysregulated in disease. Established light microscopy-based approaches and more recent molecular chromosome conformation capture methods are now combining to give us unprecedented insight into this fascinating aspect of human genomics.
Collapse
Affiliation(s)
- Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| |
Collapse
|
60
|
Abstract
The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.
Collapse
|
61
|
Neonatal pancytopenia associated with de novo 1q43-44 deletion and 10p15 duplication. J Pediatr Hematol Oncol 2013; 35:e94-9. [PMID: 23337548 DOI: 10.1097/mph.0b013e31827e5d89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deletion of 1q43-44 has been reported in >50 cases. Phenotype-genotype correlation of this deletion has recently been described based on 20 pure cases. This led to the definition of critical regions and candidate genes for microcephaly, corpus callosum abnormalities, and seizure disorders. Variable penetrance and expressivity are associated with 1q43-44 microdeletion syndrome, explaining the lack of correlation in rare cases. Despite variation in size of the deletion, most cases are characterized by typical dysmorphic features, but none have demonstrated neonatal pancytopenia. We report on a newborn with partial monosomy 1q43-44 and partial trisomy 10p15.1→10pter born with dysmorphic features and neonatal pancytopenia. Array-CGH analysis characterizes the deletion and the duplication as terminal with estimated sizes of 8 to 9 and 5 to 6 Mb, respectively. Conventional cytogenetic analysis showed the 10p duplication as unbalanced and translocated onto 1q. The deletion in the 1q43-44 region is the largest among the 20 cases reported most recently. The 10p partnership with the derivative 1q43-44 region is unique. We discuss the association of neonatal pancytopenia with 1q deletion and 10p duplication, in light of a recent published case of acute lymphoblastic leukemia in a constitutional case of 1q deletion and 1p duplication.
Collapse
|
62
|
Mitsui N, Shimizu K, Nishimoto H, Mochizuki H, Iida M, Ohashi H. Patient with terminal 9 Mb deletion of chromosome 9p: refining the critical region for 9p monosomy syndrome with trigonocephaly. Congenit Anom (Kyoto) 2013; 53:49-53. [PMID: 23480358 DOI: 10.1111/j.1741-4520.2012.00362.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a patient with typical manifestations of 9p monosomy syndrome, including trigonocephaly and sex reversal. Array comparative genomic hybridization (CGH) revealed a 9p terminal deletion of approximately 9 Mb with the breakpoint at 9p23. We compared the deleted segments of 9p associated with reported cases of 9p monosomy syndrome with trigonocephaly. We did not identify a region that was shared by all patients; however, when only pure terminal or interstitial deletions that did not involve material from any other chromosome were compared, we identified a segment from D9S912 to RP11-439I6 of approximately 1 Mb that was deleted in every patient. We propose that this 1-Mb segment might be the critical region for 9p monosomy syndrome with trigonocephaly.
Collapse
Affiliation(s)
- Norimasa Mitsui
- Department of Clinical Laboratory, Divisions of Medical Genetics Neurosurgery Metabolism and Endocrinology, Saitama Children's Medical Center, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
63
|
Levesque MJ, Raj A. Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat Methods 2013; 10:246-8. [PMID: 23416756 PMCID: PMC4131260 DOI: 10.1038/nmeth.2372] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/18/2013] [Indexed: 12/23/2022]
Abstract
We report intron chromosomal expression FISH (iceFISH), a multiplex imaging method for measuring gene expression and chromosome structure simultaneously on single chromosomes. We find substantial differences in transcriptional frequency between genes on a translocated chromosome and the same genes in their normal chromosomal context in the same cell. Correlations between genes on a single chromosome pointed toward a cis chromosome-level transcriptional interaction spanning 14.3 megabases.
Collapse
Affiliation(s)
- Marshall J Levesque
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
64
|
Li M, Liu GH, Izpisua Belmonte JC. Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 2012; 13:524-35. [PMID: 22820889 DOI: 10.1038/nrm3393] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pluripotent stem cells, which include embryonic stem cells and induced pluripotent stem cells, use a complex network of genetic and epigenetic pathways to maintain a delicate balance between self-renewal and multilineage differentiation. Recently developed high-throughput genomic tools greatly facilitate the study of epigenetic regulation in pluripotent stem cells. Increasing evidence suggests the existence of extensive crosstalk among epigenetic pathways that modify DNA, histones and nucleosomes. Novel methods of mapping higher-order chromatin structure and chromatin-nuclear matrix interactions also provide the first insight into the three-dimensional organization of the genome and a framework in which existing genomic data of epigenetic regulation can be integrated to discover new rules of gene regulation.
Collapse
Affiliation(s)
- Mo Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
65
|
Maruyama EO, Hori T, Tanabe H, Kitamura H, Matsuda R, Tone S, Hozak P, Habermann FA, von Hase J, Cremer C, Fukagawa T, Harata M. The actin family member Arp6 and the histone variant H2A.Z are required for spatial positioning of chromatin in chicken cell nuclei. J Cell Sci 2012; 125:3739-43. [PMID: 22573822 DOI: 10.1242/jcs.103903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The spatial organization of chromatin in the nucleus contributes to genome function and is altered during the differentiation of normal and tumorigenic cells. Although nuclear actin-related proteins (Arps) have roles in the local alteration of chromatin structure, it is unclear whether they are involved in the spatial positioning of chromatin. In the interphase nucleus of vertebrate cells, gene-dense and gene-poor chromosome territories (CTs) are located in the center and periphery, respectively. We analyzed chicken DT40 cells in which Arp6 had been knocked out conditionally, and showed that the radial distribution of CTs was impaired in these knockout cells. Arp6 is an essential component of the SRCAP chromatin remodeling complex, which deposits the histone variant H2A.Z into chromatin. The redistribution of CTs was also observed in H2A.Z-deficient cells for gene-rich microchromosomes, but to lesser extent for gene-poor macrochromosomes. These results indicate that Arp6 and H2A.Z contribute to the radial distribution of CTs through different mechanisms. Microarray analysis suggested that the localization of chromatin to the nuclear periphery per se is insufficient for the repression of most genes.
Collapse
Affiliation(s)
- Eri Ohfuchi Maruyama
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Finelli P, Sirchia SM, Masciadri M, Crippa M, Recalcati MP, Rusconi D, Giardino D, Monti L, Cogliati F, Faravelli F, Natacci F, Zoccante L, Bernardina BD, Russo S, Larizza L. Juxtaposition of heterochromatic and euchromatic regions by chromosomal translocation mediates a heterochromatic long-range position effect associated with a severe neurological phenotype. Mol Cytogenet 2012; 5:16. [PMID: 22475481 PMCID: PMC3395859 DOI: 10.1186/1755-8166-5-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/04/2012] [Indexed: 11/11/2022] Open
Abstract
Background The term "position effect" is used when the expression of a gene is deleteriously affected by an alteration in its chromosomal environment even though the integrity of the protein coding sequences is maintained. We describe a patient affected by epilepsy and severe neurodevelopment delay carrying a balanced translocation t(15;16)(p11.2;q12.1)dn that we assume caused a position effect as a result of the accidental juxtaposition of heterochromatin in the euchromatic region. Results FISH mapped the translocation breakpoints (bkps) to 15p11.2 within satellite III and the 16q12.1 euchromatic band within the ITFG1 gene. The expression of the genes located on both sides of the translocation were tested by means of real-time PCR and three, all located on der(16), were found to be variously perturbed: the euchromatic gene NETO2/BTCL2 was silenced, whereas VPS35 and SHCBP1, located within the major heterochromatic block of chromosome 16q11.2, were over-expressed. Pyrosequencing and chromatin immunoprecipitation of NETO2/BTCL2 and VPS35 confirmed the expression findings. Interphase FISH analysis showed that der(16) localised to regions occupied by the beta satellite heterochromatic blocks more frequently than der(15). Conclusions To the best of our knowledge, this is the first report of a heterochromatic position effect in humans caused by the juxtaposition of euchromatin/heterochromatin as a result of chromosomal rearrangement. The overall results are fully in keeping with the observations in Drosophila and suggest the occurrence of a human heterochromatin position effect associated with the nuclear repositioning of the der(16) and its causative role in the patient's syndromic phenotype.
Collapse
Affiliation(s)
- Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Cusano Milanino 20095, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
A unique chromosomal rearrangement in the Cryptococcus neoformans var. grubii type strain enhances key phenotypes associated with virulence. mBio 2012; 3:mBio.00310-11. [PMID: 22375073 PMCID: PMC3302566 DOI: 10.1128/mbio.00310-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The accumulation of genomic structural variation between closely related populations over time can lead to reproductive isolation and speciation. The fungal pathogen Cryptococcus is thought to have recently diversified, forming a species complex containing members with distinct morphologies, distributions, and pathologies of infection. We have investigated structural changes in genomic architecture such as inversions and translocations that distinguish the most pathogenic variety, Cryptococcus neoformans var. grubii, from the less clinically prevalent Cryptococcus neoformans var. neoformans and Cryptococcus gattii. Synteny analysis between the genomes of the three Cryptococcus species/varieties (strains H99, JEC21, and R265) reveals that C. neoformans var. grubii possesses surprisingly few unique genomic rearrangements. All but one are relatively small and are shared by all molecular subtypes of C. neoformans var. grubii. In contrast, the large translocation peculiar to the C. neoformans var. grubii type strain is found in all tested subcultures from multiple laboratories, suggesting that it has possessed this rearrangement since its isolation from a human clinical sample. Furthermore, we find that the translocation directly disrupts two genes. The first of these encodes a novel protein involved in metabolism of glucose at human body temperature and affects intracellular levels of trehalose. The second encodes a homeodomain-containing transcription factor that modulates melanin production. Both mutations would be predicted to increase pathogenicity; however, when recreated in an alternate genetic background, these mutations do not affect virulence in animal models. The type strain of C. neoformans var. grubii in which the majority of molecular studies have been performed is therefore atypical for carbon metabolism and key virulence attributes. The fungal pathogen Cryptococcus is a major cause of mortality among the immunocompromised population, primarily in AIDS patients of sub-Saharan Africa. Most research into the particular variety of Cryptococcus responsible for the vast majority of infections, Cryptococcus neoformans var. grubii, is performed using the type strain isolated in 1978 from a Hodgkin’s disease patient from North Carolina. We have determined that this particular isolate contains a chromosomal translocation that directly interrupts two genes, which all descendants of this strain from various research laboratories appear to possess. Disruption of these two genes affects multiple virulence factors of Cryptococcus, particularly the ability to grow at human body temperature, which could have wide-ranging implications for molecular genetic studies and virulence assays using this important strain.
Collapse
|
68
|
Abstract
Structural variation, whether it is caused by copy number variants or present in a balanced form, such as reciprocal translocations and inversions, can have a profound and dramatic effect on the expression of genes mapping within and close to the rearrangement, as well as affecting others genome wide. These effects can be caused by altering the copy number of one or more genes or regulatory elements (dosage effect) or from physical disruption of links between regulatory elements and their associated gene or genes, resulting in perturbation of expression. Similarly, large-scale structural variants can result in genome-wide expression changes by altering the positions that chromosomes occupy within the nucleus, potentially disrupting not only local cis interactions, but also trans interactions that occur throughout the genome. Structural variation is, therefore, a significant factor in the study of gene expression and is discussed here in more detail.
Collapse
Affiliation(s)
- Louise Harewood
- The Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
69
|
Hochstenbach R, Buizer-Voskamp JE, Vorstman JAS, Ophoff RA. Genome arrays for the detection of copy number variations in idiopathic mental retardation, idiopathic generalized epilepsy and neuropsychiatric disorders: lessons for diagnostic workflow and research. Cytogenet Genome Res 2011; 135:174-202. [PMID: 22056632 DOI: 10.1159/000332928] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
We review the contributions and limitations of genome-wide array-based identification of copy number variants (CNVs) in the clinical diagnostic evaluation of patients with mental retardation (MR) and other brain-related disorders. In unselected MR referrals a causative genomic gain or loss is detected in 14-18% of cases. Usually, such CNVs arise de novo, are not found in healthy subjects, and have a major impact on the phenotype by altering the dosage of multiple genes. This high diagnostic yield justifies array-based segmental aneuploidy screening as the initial genetic test in these patients. This also pertains to patients with autism (expected yield about 5-10% in nonsyndromic and 10-20% in syndromic patients) and schizophrenia (at least 5% yield). CNV studies in idiopathic generalized epilepsy, attention-deficit hyperactivity disorder, major depressive disorder and Tourette syndrome indicate that patients have, on average, a larger CNV burden as compared to controls. Collectively, the CNV studies suggest that a wide spectrum of disease-susceptibility variants exists, most of which are rare (<0.1%) and of variable and usually small effect. Notwithstanding, a rare CNV can have a major impact on the phenotype. Exome sequencing in MR and autism patients revealed de novo mutations in protein coding genes in 60 and 20% of cases, respectively. Therefore, it is likely that arrays will be supplanted by next-generation sequencing methods as the initial and perhaps ultimate diagnostic tool in patients with brain-related disorders, revealing both CNVs and mutations in a single test.
Collapse
Affiliation(s)
- R Hochstenbach
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
70
|
Abstract
Although the nonrandom nature of interphase chromosome arrangement is widely accepted, how nuclear organization relates to genomic function remains unclear. Nuclear subcompartments may play a role by offering rich microenvironments that regulate chromatin state and ensure optimal transcriptional efficiency. Technological advances now provide genome-wide and four-dimensional analyses, permitting global characterizations of nuclear order. These approaches will help uncover how seemingly separate nuclear processes may be coupled and aid in the effort to understand the role of nuclear organization in development and disease.
Collapse
Affiliation(s)
- Indika Rajapakse
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
71
|
Sugawara H, Iwamoto K, Bundo M, Ueda J, Ishigooka J, Kato T. Comprehensive DNA methylation analysis of human peripheral blood leukocytes and lymphoblastoid cell lines. Epigenetics 2011; 6:508-15. [PMID: 21304276 DOI: 10.4161/epi.6.4.14876] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is involved in development and in human diseases. Genomic DNA derived from lymphoblastoid cell lines (LCLs) is commonly used to study DNA methylation. There are potential confounding factors regarding the use of LCL-derived DNA, however, such as Epstein-Barr (EB) viral infection and artifacts induced during cell culture. Recently, several groups compared the DNA methylation status of peripheral blood leukocytes (PBLs) and LCLs and concluded that the DNA methylation profiles between them might be consistent. To confirm and extend theses results, we performed a comprehensive DNA methylation analysis using both PBLs and LCLs derived from the same individuals. Using the luminometric methylation assay, we revealed that the global DNA methylation level was different between PBLs and LCLs. Furthermore, the direction of change was not consistent. Comparisons of genome-wide DNA methylation patterns of promoter regions revealed that methylation profiles were largely conserved between PBLs and LCLs. A preliminary analysis in a small number of samples suggested that the methylation status of an LCL may be better correlated with PBLs from the same individual than with LCLs from other individuals. Expectedly, DNA methylation in promoter regions overlapping with CpG islands was associated with gene silencing in both PBLs and LCLs. With regard to methylation differences, we found that hypermethylation was more predominant than hypomethylation in LCLs compared with PBLs. These findings suggest that LCLs should be used for DNA methylation studies with caution as the methylation patterns of promoter regions in LCLs are not always the same as those in PBLs.
Collapse
Affiliation(s)
- Hiroko Sugawara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
72
|
Snow KJ, Wright SM, Woo Y, Titus LC, Mills KD, Shopland LS. Nuclear positioning, higher-order folding, and gene expression of Mmu15 sequences are refractory to chromosomal translocation. Chromosoma 2011; 120:61-71. [PMID: 20703494 PMCID: PMC3057431 DOI: 10.1007/s00412-010-0290-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/20/2010] [Indexed: 01/21/2023]
Abstract
Nuclear localization influences the expression of certain genes. Chromosomal rearrangements can reposition genes in the nucleus and thus could impact the expression of genes far from chromosomal breakpoints. However, the extent to which chromosomal rearrangements influence nuclear organization and gene expression is poorly understood. We examined mouse progenitor B cell lymphomas with a common translocation, der(12)t(12;15), which fuses a gene-rich region of mouse chromosome 12 (Mmu 12) with a gene-poor region of mouse chromosome 15 (Mmu 15). We found that sequences 2.3 Mb proximal and 2.7 Mb distal to the der(12)t(12;15) breakpoint had different nuclear positions measured relative to the nuclear radius. However, their positions were similar on unrearranged chromosomes in the same tumor cells and normal progenitor B cells. In addition, higher-order chromatin folding marked by three-dimensional gene clustering was not significantly altered for the 7 Mb of Mmu 15 sequence distal to this translocation breakpoint. Translocation also did not correspond to significant changes in gene expression in this region. Thus, any changes to Mmu 15 structure and function imposed by the der(12)t(12;15) translocation are constrained to sequences near (<2.5 Mb) the translocation junction. These data contrast with those of certain other chromosomal rearrangements and suggest that significant changes to Mmu 15 sequence are structurally and functionally tolerated in the tumor cells examined.
Collapse
Affiliation(s)
- Kathy J. Snow
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, ME USA
- Graduate School of Biomedical Sciences, University of Maine, Orono, ME USA
| | - Sarah M. Wright
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, ME USA
| | - Yong Woo
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, ME USA
- Graduate School of Biomedical Sciences, University of Maine, Orono, ME USA
| | - Laura C. Titus
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, ME USA
| | - Kevin D. Mills
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, ME USA
- Graduate School of Biomedical Sciences, University of Maine, Orono, ME USA
| | - Lindsay S. Shopland
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, ME USA
- Graduate School of Biomedical Sciences, University of Maine, Orono, ME USA
| |
Collapse
|
73
|
Abstract
Understanding the evolutionary origin of the nucleus and its compartmentalized architecture provides a huge but, as expected, greatly rewarding challenge in the post-genomic era. We start this chapter with a survey of current hypotheses on the evolutionary origin of the cell nucleus. Thereafter, we provide an overview of evolutionarily conserved features of chromatin organization and arrangements, as well as topographical aspects of DNA replication and transcription, followed by a brief introduction of current models of nuclear architecture. In addition to features which may possibly apply to all eukaryotes, the evolutionary plasticity of higher-order nuclear organization is reflected by cell-type- and species-specific features, by the ability of nuclear architecture to adapt to specific environmental demands, as well as by the impact of aberrant nuclear organization on senescence and human disease. We conclude this chapter with a reflection on the necessity of interdisciplinary research strategies to map epigenomes in space and time.
Collapse
|
74
|
Ricard G, Molina J, Chrast J, Gu W, Gheldof N, Pradervand S, Schütz F, Young JI, Lupski JR, Reymond A, Walz K. Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models. PLoS Biol 2010; 8:e1000543. [PMID: 21124890 PMCID: PMC2990707 DOI: 10.1371/journal.pbio.1000543] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/04/2010] [Indexed: 02/07/2023] Open
Abstract
The characterization of mice with different number of copies of the same genomic segment shows that structural changes influence the phenotypic outcome independently of gene dosage. A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also “genome regulation.” Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype. Mammalian genomes contain many forms of genetic variation. For example, some genome segments were shown to vary in their number of copies between individuals of the same species, i.e. there is a range of number of copies in the normal population instead of the usual two copies (one per chromosome). These genetic differences play an important role in determining the phenotype (the observable characteristics) of each individual. We do not know, however, if such influences are brought about solely through changes in the number of copies of the genomic segments (and of the genes that map within) or if the structural modification of the genome per se also plays a role in the outcome. We use mouse models with different number of copies of the same genomic region to show that rearrangements of the genetic materials can affect the phenotype independently of the dosage of the rearranged region.
Collapse
Affiliation(s)
- Guénola Ricard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Wenli Gu
- Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nele Gheldof
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Juan I. Young
- Centro de Estudios Científicos (CECS), Valdivia, Chile
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- CIN (Centro de Ingeniería de la Innovación del CECS), Valdivia, Chile
| | - James R. Lupski
- Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Hospital, Houston, Texas, United States of America
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail: (AR); (KW)
| | - Katherina Walz
- Centro de Estudios Científicos (CECS), Valdivia, Chile
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail: (AR); (KW)
| |
Collapse
|
75
|
Chaignat E, Yahya-Graison EA, Henrichsen CN, Chrast J, Schütz F, Pradervand S, Reymond A. Copy number variation modifies expression time courses. Genome Res 2010; 21:106-13. [PMID: 21084671 DOI: 10.1101/gr.112748.110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A preliminary understanding into the phenotypic effect of DNA segment copy number variation (CNV) is emerging. These rearrangements were demonstrated to influence, in a somewhat dose-dependent manner, the expression of genes that map within them. They were also shown to modify the expression of genes located on their flanks and sometimes those at a great distance from their boundary. Here we demonstrate, by monitoring these effects at multiple life stages, that these controls over expression are effective throughout mouse development. Similarly, we observe that the more specific spatial expression patterns of CNV genes are maintained through life. However, we find that some brain-expressed genes mapping within CNVs appear to be under compensatory loops only at specific time points, indicating that the effect of CNVs on these genes is modulated during development. Notably, we also observe that CNV genes are significantly enriched within transcripts that show variable time courses of expression between strains. Thus, modifying the copy number of a gene may potentially alter not only its expression level, but also the timing of its expression.
Collapse
Affiliation(s)
- Evelyne Chaignat
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
The spatial organization of chromosomes inside the cell nucleus is still poorly understood. This organization is guided by intra- and interchromosomal contacts and by interactions of specific chromosomal loci with relatively fixed nuclear 'landmarks' such as the nuclear envelope and the nucleolus. Researchers have begun to use new molecular genome-wide mapping techniques to uncover both types of molecular interactions, providing insights into the fundamental principles of interphase chromosome folding.
Collapse
Affiliation(s)
- Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; phone: +31.20.5122040
| | - Job Dekker
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605; phone: (508) 856-4371
| |
Collapse
|
77
|
Babu MM. Early Career Research Award Lecture. Structure, evolution and dynamics of transcriptional regulatory networks. Biochem Soc Trans 2010; 38:1155-78. [PMID: 20863280 DOI: 10.1042/bst0381155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The availability of entire genome sequences and the wealth of literature on gene regulation have enabled researchers to model an organism's transcriptional regulation system in the form of a network. In such a network, TFs (transcription factors) and TGs (target genes) are represented as nodes and regulatory interactions between TFs and TGs are represented as directed links. In the present review, I address the following topics pertaining to transcriptional regulatory networks. (i) Structure and organization: first, I introduce the concept of networks and discuss our understanding of the structure and organization of transcriptional networks. (ii) Evolution: I then describe the different mechanisms and forces that influence network evolution and shape network structure. (iii) Dynamics: I discuss studies that have integrated information on dynamics such as mRNA abundance or half-life, with data on transcriptional network in order to elucidate general principles of regulatory network dynamics. In particular, I discuss how cell-to-cell variability in the expression level of TFs could permit differential utilization of the same underlying network by distinct members of a genetically identical cell population. Finally, I conclude by discussing open questions for future research and highlighting the implications for evolution, development, disease and applications such as genetic engineering.
Collapse
Affiliation(s)
- M Madan Babu
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
78
|
Jasencakova Z, Groth A. Replication stress, a source of epigenetic aberrations in cancer? Bioessays 2010; 32:847-55. [PMID: 20726011 DOI: 10.1002/bies.201000055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells accumulate widespread local and global chromatin changes and the source of this instability remains a key question. Here we hypothesize that chromatin alterations including unscheduled silencing can arise as a consequence of perturbed histone dynamics in response to replication stress. Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono-methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor-promoting insults is recognized as a significant source of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis.
Collapse
Affiliation(s)
- Zuzana Jasencakova
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
79
|
Altrock PM, Traulsen A, Reeves RG, Reed FA. Using underdominance to bi-stably transform local populations. J Theor Biol 2010; 267:62-75. [PMID: 20691703 DOI: 10.1016/j.jtbi.2010.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 01/13/2023]
Abstract
Underdominance refers to natural selection against individuals with a heterozygous genotype. Here, we analyze a single-locus underdominant system of two large local populations that exchange individuals at a certain migration rate. The system can be characterized by fixed points in the joint allele frequency space. We address the conditions under which underdominance can be applied to transform a local population that is receiving wildtype immigrants from another population. In a single population, underdominance has the benefit of complete removal of genetically modified alleles (reversibility) and coexistence is not stable. The two population system that exchanges migrants can result in internal stable states, where coexistence is maintained, but with additional release of wildtype individuals the system can be reversed to a fully wildtype state. This property is critically controlled by the migration rate. We approximate the critical minimum frequency required to result in a stable population transformation. We also concentrate on the destabilizing effects of fitness and migration rate asymmetry. Practical implications of our results are discussed in the context of utilizing underdominance to genetically modify wild populations. This is of importance especially for genetic pest management strategies, where locally stable and potentially reversible transformations of populations of disease vector species are of interest.
Collapse
Affiliation(s)
- Philipp M Altrock
- Research Group for Evolutionary Theory, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, D-24306 Plön, Germany
| | | | | | | |
Collapse
|
80
|
Joffe B, Leonhardt H, Solovei I. Differentiation and large scale spatial organization of the genome. Curr Opin Genet Dev 2010; 20:562-9. [PMID: 20561778 DOI: 10.1016/j.gde.2010.05.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 12/22/2022]
Abstract
The spatial organization of the genome plays an important role in the regulation of nuclear functions and undergoes large scale changes during differentiation. These changes in the nuclear distribution of chromatin are, in a complex way, related to transcriptional status and epigenetic modifications. Recent studies emphasize the roles that gene promoters and alterations in replication timing play in the spatial reorganization of chromatin during cell differentiation. Changes in the association of chromatin regions with the nuclear lamina also emerge as a significant factor of transcriptional regulation. New results suggest that the spatial organization of chromatin in embryonic stem cells may be important for maintenance of the pluripotent state, whereas the nuclear architecture of differentiated cells facilitates formation of transcriptionally active zones with shared transcription and splicing machinery.
Collapse
Affiliation(s)
- Boris Joffe
- Biocenter, Department of Biology II, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | | | | |
Collapse
|