51
|
Genome-destabilizing effects associated with top1 loss or accumulation of top1 cleavage complexes in yeast. PLoS Genet 2015; 11:e1005098. [PMID: 25830313 PMCID: PMC4382028 DOI: 10.1371/journal.pgen.1005098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 12/29/2022] Open
Abstract
Topoisomerase 1 (Top1), a Type IB topoisomerase, functions to relieve transcription- and replication-associated torsional stress in DNA. We investigated the effects of Top1 on genome stability in Saccharomyces cerevisiae using two different assays. First, a sectoring assay that detects loss of heterozygosity (LOH) on a specific chromosome was used to measure reciprocal crossover (RCO) rates. Features of individual RCO events were then molecularly characterized using chromosome-specific microarrays. In the second assay, cells were sub-cultured for 250 generations and LOH was examined genome-wide using microarrays. Though loss of Top1 did not destabilize single-copy genomic regions, RCO events were more complex than in a wild-type strain. In contrast to the stability of single-copy regions, sub-culturing experiments revealed that top1 mutants had greatly elevated levels of instability within the tandemly-repeated ribosomal RNA genes (in agreement with previous results). An intermediate in the enzymatic reaction catalyzed by Top1 is the covalent attachment of Top1 to the cleaved DNA. The resulting Top1 cleavage complex (Top1cc) is usually transient but can be stabilized by the drug camptothecin (CPT) or by the top1-T722A allele. We found that increased levels of the Top1cc resulted in a five- to ten-fold increase in RCOs and greatly increased instability within the rDNA and CUP1 tandem arrays. A detailed analysis of the events in strains with elevated levels of Top1cc suggests that recombinogenic DNA lesions are introduced during or after DNA synthesis. These results have important implications for understanding the effects of CPT as a chemotherapeutic agent. Topoisomerase I (Top1) nicks one strand of DNA to relieve torsional stress associated with replication, transcription and chromatin remodeling. The enzyme forms a transient, covalent intermediate with the nicked DNA and stabilization of the cleavage complex (Top1cc) leads to genetic instability. We examined the effect of Top1 loss or Top1cc stabilization on genome-wide mitotic stability and on mitotic crossovers that lead to loss of heterozygosity (LOH) in budding yeast. The level of Top1cc was elevated using the chemotherapeutic drug camptothecin or a mutant form of the enzyme. Whereas loss of Top1 only destabilized ribosomal DNA repeats, Top1cc accumulation was additionally associated with elevated LOH and genome-wide instability. In particular, the Top1cc greatly elevated copy number variation at the CUP1 tandem-repeat locus, consistent with elevated sister chromatid recombination. Molecular examination of LOH events associated with the Top1cc was also consistent with generation of recombination-initiating lesions during or after DNA synthesis. These results demonstrate that the use of topoisomerase inhibitors results in widespread genome instability that may contribute to secondary neoplasms.
Collapse
|
52
|
Interplay between histone H3 lysine 56 deacetylation and chromatin modifiers in response to DNA damage. Genetics 2015; 200:185-205. [PMID: 25786853 DOI: 10.1534/genetics.115.175919] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/12/2015] [Indexed: 01/23/2023] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage-induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage-induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage.
Collapse
|
53
|
Krol K, Brozda I, Skoneczny M, Bretne M, Skoneczna A. A genomic screen revealing the importance of vesicular trafficking pathways in genome maintenance and protection against genotoxic stress in diploid Saccharomyces cerevisiae cells. PLoS One 2015; 10:e0120702. [PMID: 25756177 PMCID: PMC4355298 DOI: 10.1371/journal.pone.0120702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/25/2015] [Indexed: 11/30/2022] Open
Abstract
The ability to survive stressful conditions is important for every living cell. Certain stresses not only affect the current well-being of cells but may also have far-reaching consequences. Uncurbed oxidative stress can cause DNA damage and decrease cell survival and/or increase mutation rates, and certain substances that generate oxidative damage in the cell mainly act on DNA. Radiomimetic zeocin causes oxidative damage in DNA, predominantly by inducing single- or double-strand breaks. Such lesions can lead to chromosomal rearrangements, especially in diploid cells, in which the two sets of chromosomes facilitate excessive and deleterious recombination. In a global screen for zeocin-oversensitive mutants, we selected 133 genes whose deletion reduces the survival of zeocin-treated diploid Saccharomyces cerevisiae cells. The screen revealed numerous genes associated with stress responses, DNA repair genes, cell cycle progression genes, and chromatin remodeling genes. Notably, the screen also demonstrated the involvement of the vesicular trafficking system in cellular protection against DNA damage. The analyses indicated the importance of vesicular system integrity in various pathways of cellular protection from zeocin-dependent damage, including detoxification and a direct or transitional role in genome maintenance processes that remains unclear. The data showed that deleting genes involved in vesicular trafficking may lead to Rad52 focus accumulation and changes in total DNA content or even cell ploidy alterations, and such deletions may preclude proper DNA repair after zeocin treatment. We postulate that functional vesicular transport is crucial for sustaining an integral genome. We believe that the identification of numerous new genes implicated in genome restoration after genotoxic oxidative stress combined with the detected link between vesicular trafficking and genome integrity will reveal novel molecular processes involved in genome stability in diploid cells.
Collapse
Affiliation(s)
- Kamil Krol
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Brozda
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Maria Bretne
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
54
|
Identification of new players in cell division, DNA damage response, and morphogenesis through construction of Schizosaccharomyces pombe deletion strains. G3-GENES GENOMES GENETICS 2014; 5:361-70. [PMID: 25552606 PMCID: PMC4349090 DOI: 10.1534/g3.114.015701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many fundamental biological processes are studied using the fission yeast, Schizosaccharomyces pombe. Here we report the construction of a set of 281 haploid gene deletion strains covering many previously uncharacterized genes. This collection of strains was tested for growth under a variety of different stress conditions. We identified new genes involved in DNA metabolism, completion of the cell cycle, and morphogenesis. This subset of nonessential gene deletions will add to the toolkits available for the study of biological processes in S. pombe.
Collapse
|
55
|
Soma S, Yang K, Morales MI, Polymenis M. Multiple metabolic requirements for size homeostasis and initiation of division in Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:256-266. [PMID: 28357252 PMCID: PMC5349232 DOI: 10.15698/mic2014.08.160] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most cells must grow before they can divide, but it is not known how cells
determine when they have grown enough so they can commit to a new round of cell
division. Several parameters affect the timing of initiation of division: cell
size at birth, the size cells have to reach when they commit to division, and
how fast they reach that size. We report that Saccharomyces
cerevisiae mutants in metabolic and biosynthetic pathways differ in
these variables, controlling the timing of initiation of cell division in
various ways. Some mutants affect the size at birth, size at initiation of
division, the rate of increase in size, or any combination of the above.
Furthermore, we show that adenylate kinase, encoded by ADK1, is
a significant determinant of the efficiency of size control mechanisms. Finally,
our data argue strongly that the cell size at division is not necessarily a
function of the rate cells increase in size in the G1 phase of the cell cycle.
Taken together, these findings reveal an unexpected diversity in the G1 cell
cycle phenotypes of metabolic and biosynthetic mutants, suggesting that growth
requirements for cell division are multiple, distinct and imposed throughout the
G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Maria I Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
56
|
Micallef L, Rodgers P. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One 2014; 9:e101717. [PMID: 25032825 PMCID: PMC4102485 DOI: 10.1371/journal.pone.0101717] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/10/2014] [Indexed: 12/22/2022] Open
Abstract
Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.
Collapse
Affiliation(s)
- Luana Micallef
- School of Computing, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail:
| | - Peter Rodgers
- School of Computing, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
57
|
Abstract
The Golgi apparatus consists of disc-like cisternae, stretching around the nucleus through forces exerted by F-actin and the Golgi membrane protein GOLPH3. Farber-Katz et al. now report that DNA damage triggers Golgi dispersal and inhibits vesicular transport through DNA-PK-mediated GOLPH3 phosphorylation, thereby linking the DNA damage response to Golgi regulation.
Collapse
Affiliation(s)
- Marco Foiani
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Milan 20122, Italy.
| | - Jiri Bartek
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 771 15 Olomouc, Czech Republic.
| |
Collapse
|
58
|
Morvan J, de Craene JO, Rinaldi B, Addis V, Misslin C, Friant S. Btn3 regulates the endosomal sorting function of the yeast Ent3 epsin, an adaptor for SNARE proteins. J Cell Sci 2014; 128:706-16. [DOI: 10.1242/jcs.159699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain containing proteins involved in protein trafficking between the Golgi and late endosomes (LE). They interact with clathrin, clathrin adaptor at the Golgi (AP-1 and GGA) and different SNAREs (Vti1, Snc1, Pep12 and Syn8) required for vesicular transport at the Golgi and endosomes. To better understand the role of these epsins in membrane trafficking, we performed a protein-protein interaction screen. We identified Btn3/Tda3, a putative oxidoreductase, as a new partner of both Ent3 and Ent5. Btn3 is a negative regulator of the Batten disease linked protein Btn2 involved in the retrieval of specific SNAREs (Vti1, Snc1, Tlg1 and Tlg2) from the LE to the Golgi. We show that Btn3 endosomal localization depends on epsins Ent3 and Ent5. We demonstrated that in btn3Δ mutant cells, endosomal sorting of ubiquitinated cargos and endosomal recycling of the Snc1 SNARE are delayed. We thus propose that Btn3 regulates the sorting function of two adaptors for SNARE proteins, the epsin Ent3 and the Batten disease linked protein Btn2.
Collapse
|
59
|
Luo Z, Walkey CJ, Madilao LL, Measday V, Van Vuuren HJJ. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine. FEMS Yeast Res 2013; 13:485-94. [PMID: 23692528 DOI: 10.1111/1567-1364.12053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 01/07/2023] Open
Abstract
Control of volatile acidity (VA) is a major issue for wine quality. In this study, we investigated the production of VA by a deletion mutant of the fermentation stress response gene AAF1 in the budding yeast Saccharomyces cerevisiae. Fermentations were carried out in commercial Chardonnay grape must to mimic industrial wine-making conditions. We demonstrated that a wine yeast strain deleted for AAF1 reduced acetic acid levels in wine by up to 39.2% without increasing the acetaldehyde levels, revealing a potential for industrial application. Deletion of the cytosolic aldehyde dehydrogenase gene ALD6 also reduced acetic acid levels dramatically, but increased the acetaldehyde levels by 41.4%, which is not desired by the wine industry. By comparison, ALD4 and the AAF1 paralog RSF2 had no effects on acetic acid production in wine. Deletion of AAF1 was detrimental to the growth of ald6Δ and ald4Δald6Δ mutants, but had no effect on acetic acid production. Overexpression of AAF1 dramatically increased acetic acid levels in wine in an Ald6p-dependent manner, indicating that Aaf1p regulates acetic acid production mainly via Ald6p. Overexpression of AAF1 in an ald4Δald6Δ strain produced significantly more acetic acid in wine than the ald4Δald6Δ mutant, suggesting that Aaf1p may also regulate acetic acid synthesis independently of Ald4p and Ald6p.
Collapse
Affiliation(s)
- Zongli Luo
- Wine Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
60
|
Physical and genetic-interaction density reveals functional organization and informs significance cutoffs in genome-wide screens. Proc Natl Acad Sci U S A 2013; 110:7389-94. [PMID: 23589890 DOI: 10.1073/pnas.1219582110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome-wide experiments often measure quantitative differences between treated and untreated cells to identify affected strains. For these studies, statistical models are typically used to determine significance cutoffs. We developed a method termed "CLIK" (Cutoff Linked to Interaction Knowledge) that overlays biological knowledge from the interactome on screen results to derive a cutoff. The method takes advantage of the fact that groups of functionally related interacting genes often respond similarly to experimental conditions and, thus, cluster in a ranked list of screen results. We applied CLIK analysis to five screens of the yeast gene disruption library and found that it defined a significance cutoff that differed from traditional statistics. Importantly, verification experiments revealed that the CLIK cutoff correlated with the position in the rank order where the rate of true positives drops off significantly. In addition, the gene sets defined by CLIK analysis often provide further biological perspectives. For example, applying CLIK analysis retrospectively to a screen for cisplatin sensitivity allowed us to identify the importance of the Hrq1 helicase in DNA crosslink repair. Furthermore, we demonstrate the utility of CLIK to determine optimal treatment conditions by analyzing genome-wide screens at multiple rapamycin concentrations. We show that CLIK is an extremely useful tool for evaluating screen quality, determining screen cutoffs, and comparing results between screens. Furthermore, because CLIK uses previously annotated interaction data to determine biologically informed cutoffs, it provides additional insights into screen results, which supplement traditional statistical approaches.
Collapse
|
61
|
Actin dosage lethality screening in yeast mediated by selective ploidy ablation reveals links to urmylation/wobble codon recognition and chromosome stability. G3-GENES GENOMES GENETICS 2013; 3:553-61. [PMID: 23450344 PMCID: PMC3583461 DOI: 10.1534/g3.113.005579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022]
Abstract
The actin cytoskeleton exists in a dynamic equilibrium with monomeric and filamentous states of its subunit protein actin. The spatial and temporal regulation of actin dynamics is critical to the many functions of actin. Actin levels are remarkably constant, suggesting that cells have evolved to function within a narrow range of actin concentrations. Here we report the results of screens in which we have increased actin levels in strains deleted for the ~4800 nonessential yeast genes using a technical advance called selective ploidy ablation. We detected 83 synthetic dosage interactions with actin, 78 resulted in reduced growth, whereas in 5 cases overexpression of actin suppressed the growth defects caused by the deleted genes. The genes were highly enriched in several classes, including transfer RNA wobble uridine modification, chromosome stability and segregation, cell growth, and cell division. We show that actin overexpression sequesters a limited pool of eEF1A, a bifunctional protein involved in aminoacyl-transfer RNA recruitment to the ribosome and actin filament cross-linking. Surprisingly, the largest class of genes is involved in chromosome stability and segregation. We show that actin mutants have chromosome segregation defects, suggesting a possible role in chromosome structure and function. Monomeric actin is a core component of the INO80 and SWR chromatin remodeling complexes and the NuA4 histone modification complex, and our results suggest these complexes may be sensitive to actin stoichiometry. We propose that the resulting effects on chromatin structure can lead to synergistic effects on chromosome stability in strains lacking genes important for chromosome maintenance.
Collapse
|
62
|
Cho JE, Kim N, Li YC, Jinks-Robertson S. Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast. DNA Repair (Amst) 2013; 12:205-11. [PMID: 23305949 DOI: 10.1016/j.dnarep.2012.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 11/27/2022]
Abstract
Topoisomerase 1 (Top1) resolves transcription-associated supercoils by generating transient single-strand breaks in DNA. Top1 activity in yeast is a major source of transcription-associated mutagenesis, generating a distinctive mutation signature characterized by deletions in short, tandem repeats. A similar signature is associated with the persistence of ribonucleoside monophosphates (rNMPs) in DNA, and it also depends on Top1 activity. There is only partial overlap, however, between Top1-dependent deletion hotspots identified in highly transcribed DNA and those associated with rNMPs, suggesting the existence of both rNMP-dependent and rNMP-independent events. Here, we present genetic studies confirming that there are two distinct types of hotspots. Data suggest a novel model in which rNMP-dependent hotspots are generated by sequential Top1 reactions and are consistent with rNMP-independent hotspots reflecting processing of a trapped Top1 cleavage complex.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
63
|
The fermentation stress response protein Aaf1p/Yml081Wp regulates acetate production in Saccharomyces cerevisiae. PLoS One 2012; 7:e51551. [PMID: 23240040 PMCID: PMC3519862 DOI: 10.1371/journal.pone.0051551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/02/2012] [Indexed: 11/19/2022] Open
Abstract
The production of acetic acid during wine fermentation is a critical issue for wineries since the sensory quality of a wine can be affected by the amount of acetic acid it contains. We found that the C2H2-type zinc-finger transcription factor YML081Wp regulated the mRNA levels of ALD4 and ALD6, which encode a cytosolic acetaldehyde dehydrogenase (ACDH) and a mitochondrial ACDH, respectively. These enzymes produce acetate from acetaldehyde as part of the pyruvate dehydrogenase bypass. This regulation was also reflected in the protein levels of Ald4p and Ald6p, as well as total ACDH activity. In the absence of ALD6, YML081W had no effect on acetic acid levels, suggesting that this transcription factor's effects are mediated primarily through this gene. lacZ reporter assays revealed that Yml081wp stimulates ALD6 transcription, in large part from a GAGGGG element 590 base pairs upstream of the translation start site. The non-annotated ORF YML081W therefore encodes a transcription factor that regulates acetate production in Saccharomyces cerevisiae. We propose AAF1 as a gene name for the YML081W ORF.
Collapse
|
64
|
Koumanov F, Pereira VJ, Whitley PR, Holman GD. GLUT4 traffic through an ESCRT-III-dependent sorting compartment in adipocytes. PLoS One 2012; 7:e44141. [PMID: 23049745 PMCID: PMC3458039 DOI: 10.1371/journal.pone.0044141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/30/2012] [Indexed: 12/16/2022] Open
Abstract
In insulin target tissues, GLUT4 is known to traffic through multiple compartments that may involve ubiquitin- and/or SUMO-dependent targeting. During these trafficking steps, GLUT4 is sorted into a storage reservoir compartment that is acutely released by insulin signalling processes that are downstream of PI 3-kinase associated changes in inositol phospholipids. As ESCRT components have recently been found to influence cellular sorting processes that are related to changes in both ubiquitination and inositol phospholipids, we have examined whether GLUT4 traffic is routed through ESCRT dependent sorting steps. Introduction of the dominant negative inhibitory constructs of the ESCRT-III components CHMP3 (CHMP3(1–179)) and Vps4 (GFP-Vps4E235Q) into rat adipocytes leads to the accumulation of GLUT4 in large, coalesced and extended vesicles structures that co-localise with the inhibitory constructs over large parts of the extended structure. A new swollen hybrid and extensively ubiquitinated compartment is produced in which GLUT4 co-localises more extensively with the endosomal markers including EEA1 and transferrin receptors but also with the TGN marker syntaxin6. These perturbations are associated with failure of insulin action on GLUT4 traffic to the cell surface and suggest impairment in an ESCRT-dependent sorting step used for GLUT4 traffic to its specialised reservoir compartment.
Collapse
Affiliation(s)
- Françoise Koumanov
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| | | | | | | |
Collapse
|
65
|
Hoose SA, Rawlings JA, Kelly MM, Leitch MC, Ababneh QO, Robles JP, Taylor D, Hoover EM, Hailu B, McEnery KA, Downing SS, Kaushal D, Chen Y, Rife A, Brahmbhatt KA, Smith R, Polymenis M. A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division. PLoS Genet 2012; 8:e1002590. [PMID: 22438835 PMCID: PMC3305459 DOI: 10.1371/journal.pgen.1002590] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/25/2012] [Indexed: 01/20/2023] Open
Abstract
Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms. What determines when cells begin a new round of cell division also dictates how fast cells multiply. Knowing which cellular pathways and how these pathways affect the machinery of cell division will allow modulations of cell proliferation. Baker's yeast is suited for genetic and biochemical studies of eukaryotic cell division. Previous studies relied mainly on cell size changes to identify systematically factors that control initiation of cell division. Here, we measured the DNA content of each non-essential single gene deletion strain to identify genes required for the correct timing of cell cycle transitions. Our comprehensive strategy revealed new pathways that control cell division. We expect that this study will be a valuable resource for numerous future analyses of mechanisms that control cell division in yeast and other organisms, including humans.
Collapse
Affiliation(s)
- Scott A. Hoose
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jeremy A. Rawlings
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Michelle M. Kelly
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - M. Camille Leitch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Qotaiba O. Ababneh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Juan P. Robles
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - David Taylor
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Evelyn M. Hoover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Bethel Hailu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Kayla A. McEnery
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - S. Sabina Downing
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Deepika Kaushal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Yi Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Alex Rife
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Kirtan A. Brahmbhatt
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Roger Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
66
|
Ben-Shitrit T, Yosef N, Shemesh K, Sharan R, Ruppin E, Kupiec M. Systematic identification of gene annotation errors in the widely used yeast mutation collections. Nat Methods 2012; 9:373-8. [PMID: 22306811 DOI: 10.1038/nmeth.1890] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 12/26/2011] [Indexed: 11/09/2022]
Abstract
The baker's yeast mutation collections are extensively used genetic resources that are the basis for many genome-wide screens and new technologies. Anecdotal evidence has previously pointed to the putative existence of a neighboring gene effect (NGE) in these collections. NGE occurs when the phenotype of a strain carrying a particular perturbed gene is due to the lack of proper function of its adjacent gene. Here we performed a large-scale study of NGEs, presenting a network-based algorithm for detecting NGEs and validating software predictions using complementation experiments. We applied our approach to four datasets uncovering a similar magnitude of NGE in each (7-15%). These results have important consequences for systems biology, as the mutation collections are extensively used in almost every aspect of the field, from genetic network analysis to functional gene annotation.
Collapse
Affiliation(s)
- Taly Ben-Shitrit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
67
|
Kettner K, Krause U, Mosler S, Bodenstein C, Kriegel TM, Rödel G. Saccharomyces cerevisiae gene YMR291W/TDA1 mediates the in vivo phosphorylation of hexokinase isoenzyme 2 at serine-15. FEBS Lett 2012; 586:455-8. [PMID: 22289182 DOI: 10.1016/j.febslet.2012.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/16/2022]
Abstract
Hxk2 is the predominant hexokinase of Saccharomyces cerevisiae during growth on glucose. In addition to its role in glycolysis, the enzyme is involved in glucose sensing and regulation of gene expression. Glucose limitation causes the phosphorylation of Hxk2 at serine-15 which affects the nucleo-cytoplasmic distribution and dimer stability of the enzyme. In order to identify the responsible kinase, we screened selected protein kinase single-gene deletion mutants by high resolution clear native PAGE. Deletion of YMR291W/TDA1 resulted in the absence of the Hxk2 phosphomonomer, indicating an indispensable role of the corresponding protein in Hxk2 phosphorylation.
Collapse
Affiliation(s)
- Karina Kettner
- Institut für Physiologische Chemie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
68
|
Kung LF, Pagant S, Futai E, D'Arcangelo JG, Buchanan R, Dittmar JC, Reid RJD, Rothstein R, Hamamoto S, Snapp EL, Schekman R, Miller EA. Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J 2011; 31:1014-27. [PMID: 22157747 DOI: 10.1038/emboj.2011.444] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/15/2011] [Indexed: 02/05/2023] Open
Abstract
Vesicle budding from the endoplasmic reticulum (ER) employs a cycle of GTP binding and hydrolysis to regulate assembly of the COPII coat. We have identified a novel mutation (sec24-m11) in the cargo-binding subunit, Sec24p, that specifically impacts the GTP-dependent generation of vesicles in vitro. Using a high-throughput approach, we defined genetic interactions between sec24-m11 and a variety of trafficking components of the early secretory pathway, including the candidate COPII regulators, Sed4p and Sec16p. We defined a fragment of Sec16p that markedly inhibits the Sec23p- and Sec31p-stimulated GTPase activity of Sar1p, and demonstrated that the Sec24p-m11 mutation diminished this inhibitory activity, likely by perturbing the interaction of Sec24p with Sec16p. The consequence of the heightened GTPase activity when Sec24p-m11 is present is the generation of smaller vesicles, leading to accumulation of ER membranes and more stable ER exit sites. We propose that association of Sec24p with Sec16p creates a novel regulatory complex that retards the GTPase activity of the COPII coat to prevent premature vesicle scission, pointing to a fundamental role for GTP hydrolysis in vesicle release rather than in coat assembly/disassembly.
Collapse
Affiliation(s)
- Leslie F Kung
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bosis E, Salomon D, Sessa G. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS One 2011; 6:e27698. [PMID: 22110728 PMCID: PMC3216995 DOI: 10.1371/journal.pone.0027698] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/23/2011] [Indexed: 12/19/2022] Open
Abstract
Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of Gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.
Collapse
Affiliation(s)
- Eran Bosis
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dor Salomon
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
70
|
León Ortiz AM, Reid RJD, Dittmar JC, Rothstein R, Nicolas A. Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions. DNA Repair (Amst) 2011; 10:506-17. [PMID: 21459050 PMCID: PMC3084345 DOI: 10.1016/j.dnarep.2011.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
Srs2 is a 3'-5' DNA helicase that regulates many aspects of DNA metabolism in Saccharomyces cerevisiae. It is best known for its ability to counteract homologous recombination by dismantling Rad51 filaments, but is also involved in checkpoint activation, adaptation and recovery, and in resolution of late recombination intermediates. To further address its biological roles and uncover new genetic interactions, we examined the consequences of overexpressing SRS2 as well as two helicase-dead mutants, srs2-K41A and srs2-K41R, in the collection of 4827 yeast haploid deletion mutants. We identified 274 genes affecting a large variety of cellular functions that are required for cell growth when SRS2 or its mutants are overexpressed. Further analysis of these interactions reveals that Srs2 acts independently of its helicase function at replication forks likely through its recruitment by the sumoylated PCNA replication clamp. This helicase-independent function is responsible for the negative interactions with DNA metabolism genes and for the toxicity of SRS2 overexpression in many of the diverse cellular pathways revealed in our screens.
Collapse
Affiliation(s)
- Ana María León Ortiz
- Recombinaison and Genome Instability, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Robert J. D. Reid
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - John C. Dittmar
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Rodney Rothstein
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Alain Nicolas
- Recombinaison and Genome Instability, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|