51
|
Blackledge NP, Rose NR, Klose RJ. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 2015; 16:643-649. [PMID: 26420232 PMCID: PMC5469428 DOI: 10.1038/nrm4067] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycomb group proteins are transcriptional repressors that are essential for normal gene regulation during development. Recent studies suggest that Polycomb repressive complexes (PRCs) recognize and are recruited to their genomic target sites through a range of different mechanisms, which involve transcription factors, CpG island elements and non-coding RNAs. Together with the realization that the interplay between PRC1 and PRC2 is more intricate than was previously appreciated, this has increased our understanding of the vertebrate Polycomb system at the molecular level.
Collapse
Affiliation(s)
- Neil P. Blackledge
- Department of Biochemistry, South Parks Road, University of Oxford, OX1 3QU
| | - Nathan R. Rose
- Department of Biochemistry, South Parks Road, University of Oxford, OX1 3QU
| | - Robert J. Klose
- Department of Biochemistry, South Parks Road, University of Oxford, OX1 3QU
| |
Collapse
|
52
|
The quest for mammalian Polycomb response elements: are we there yet? Chromosoma 2015; 125:471-96. [PMID: 26453572 PMCID: PMC4901126 DOI: 10.1007/s00412-015-0539-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
Abstract
A long-standing mystery in the field of Polycomb and Trithorax regulation is how these proteins, which are highly conserved between flies and mammals, can regulate several hundred equally highly conserved target genes, but recognise these targets via cis-regulatory elements that appear to show no conservation in their DNA sequence. These elements, termed Polycomb/Trithorax response elements (PRE/TREs or PREs), are relatively well characterised in flies, but their mammalian counterparts have proved to be extremely difficult to identify. Recent progress in this endeavour has generated a wealth of data and raised several intriguing questions. Here, we ask why and to what extent mammalian PREs are so different to those of the fly. We review recent advances, evaluate current models and identify open questions in the quest for mammalian PREs.
Collapse
|
53
|
Hu Y, Morota G, Rosa GJM, Gianola D. Prediction of Plant Height in Arabidopsis thaliana Using DNA Methylation Data. Genetics 2015; 201:779-93. [PMID: 26253546 PMCID: PMC4596684 DOI: 10.1534/genetics.115.177204] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/02/2015] [Indexed: 12/18/2022] Open
Abstract
Prediction of complex traits using molecular genetic information is an active area in quantitative genetics research. In the postgenomic era, many types of -omic (e.g., transcriptomic, epigenomic, methylomic, and proteomic) data are becoming increasingly available. Therefore, evaluating the utility of this massive amount of information in prediction of complex traits is of interest. DNA methylation, the covalent change of a DNA molecule without affecting its underlying sequence, is one quantifiable form of epigenetic modification. We used methylation information for predicting plant height (PH) in Arabidopsis thaliana nonparametrically, using reproducing kernel Hilbert spaces (RKHS) regression. Also, we used different criteria for selecting smaller sets of probes, to assess how representative probes could be used in prediction instead of using all probes, which may lessen computational burden and lower experimental costs. Methylation information was used for describing epigenetic similarities between individuals through a kernel matrix, and the performance of predicting PH using this similarity matrix was reasonably good. The predictive correlation reached 0.53 and the same value was attained when only preselected probes were used for prediction. We created a kernel that mimics the genomic relationship matrix in genomic best linear unbiased prediction (G-BLUP) and estimated that, in this particular data set, epigenetic variation accounted for 65% of the phenotypic variance. Our results suggest that methylation information can be useful in whole-genome prediction of complex traits and that it may help to enhance understanding of complex traits when epigenetics is under examination.
Collapse
Affiliation(s)
- Yaodong Hu
- Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Gota Morota
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706 Department of Dairy Science, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
54
|
Epigenomics of Neural Cells: REST-Induced Down- and Upregulation of Gene Expression in a Two-Clone PC12 Cell Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:202914. [PMID: 26413508 PMCID: PMC4564578 DOI: 10.1155/2015/202914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/16/2015] [Indexed: 01/02/2023]
Abstract
Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation.
Collapse
|
55
|
Pemberton-Ross PJ, Pachkov M, van Nimwegen E. ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data. Methods 2015; 85:62-74. [PMID: 26164700 DOI: 10.1016/j.ymeth.2015.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
Analysis of gene expression data remains one of the most promising avenues toward reconstructing genome-wide gene regulatory networks. However, the large dimensionality of the problem prohibits the fitting of explicit dynamical models of gene regulatory networks, whereas machine learning methods for dimensionality reduction such as clustering or principal component analysis typically fail to provide mechanistic interpretations of the reduced descriptions. To address this, we recently developed a general methodology called motif activity response analysis (MARA) that, by modeling gene expression patterns in terms of the activities of concrete regulators, accomplishes dramatic dimensionality reduction while retaining mechanistic biological interpretations of its predictions (Balwierz, 2014). Here we extend MARA by presenting ARMADA, which models the activity dynamics of regulators across a time course, and infers the causal interactions between the regulators that drive the dynamics of their activities across time. We have implemented ARMADA as part of our ISMARA webserver, ismara.unibas.ch, allowing any researcher to automatically apply it to any gene expression time course. To illustrate the method, we apply ARMADA to a time course of human umbilical vein endothelial cells treated with TNF. Remarkably, ARMADA is able to reproduce the complex observed motif activity dynamics using a relatively small set of interactions between the key regulators in this system. In addition, we show that ARMADA successfully infers many of the key regulatory interactions known to drive this inflammatory response and discuss several novel interactions that ARMADA predicts. In combination with ISMARA, ARMADA provides a powerful approach to generating plausible hypotheses for the key interactions between regulators that control gene expression in any system for which time course measurements are available.
Collapse
Affiliation(s)
- Peter J Pemberton-Ross
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Mikhail Pachkov
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Erik van Nimwegen
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
56
|
Schwartz YB, Pirrotta V. Ruled by ubiquitylation: a new order for polycomb recruitment. Cell Rep 2015; 8:321-5. [PMID: 25061856 DOI: 10.1016/j.celrep.2014.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
Polycomb complexes are found in most cells, but they must be targeted to specific genes in specific cell types in order to regulate pluripotency and differentiation. The recruitment of Polycomb complexes to specific targets has been widely thought to occur in two steps: first, one complex, PRC2, produces histone H3 lysine 27 (H3K27) trimethylation at a specific gene, and then the PRC1 complex is recruited by its ability to bind to H3K27me3. Now, three new articles turn this model upside-down by showing that binding of a variant PRC1 complex and subsequent H2A ubiquitylation of surrounding chromatin is sufficient to trigger the recruitment of PRC2 and H3K27 trimethylation. These studies also show that ubiquitylated H2A is directly sensed by PRC2 and that ablation of PRC1-mediated H2A ubiquitylation impairs genome-wide PRC2 binding and disrupts mouse development.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Byggnad 6L, NUS, 901 87 Umeå, Sweden.
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
57
|
Rockowitz S, Zheng D. Significant expansion of the REST/NRSF cistrome in human versus mouse embryonic stem cells: potential implications for neural development. Nucleic Acids Res 2015; 43:5730-43. [PMID: 25990720 PMCID: PMC4499139 DOI: 10.1093/nar/gkv514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/14/2022] Open
Abstract
Recent studies have employed cross-species comparisons of transcription factor binding, reporting significant regulatory network 'rewiring' between species. Here, we address how a transcriptional repressor targets and regulates neural genes differentially between human and mouse embryonic stem cells (ESCs). We find that the transcription factor, Repressor Element 1 Silencing Transcription factor (REST; also called neuron restrictive silencer factor) binds to a core group of ∼1200 syntenic genomic regions in both species, with these conserved sites highly enriched with co-factors, selective histone modifications and DNA hypomethylation. Genes with conserved REST binding are enriched with neural functions and more likely to be upregulated upon REST depletion. Interestingly, we identified twice as many REST peaks in human ESCs compared to mouse ESCs. Human REST cistrome expansion involves additional peaks in genes targeted by REST in both species and human-specific gene targets. Genes with expanded REST occupancy in humans are enriched for learning or memory functions. Analysis of neurological disorder associated genes reveals that Amyotrophic Lateral Sclerosis and oxidative stress genes are particularly enriched with human-specific REST binding. Overall, our results demonstrate that there is substantial rewiring of human and mouse REST cistromes, and that REST may have human-specific roles in brain development and functions.
Collapse
Affiliation(s)
- Shira Rockowitz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
58
|
The Transcription Repressor REST in Adult Neurons: Physiology, Pathology, and Diseases. eNeuro 2015; 2:eN-REV-0010-15. [PMID: 26465007 PMCID: PMC4596026 DOI: 10.1523/eneuro.0010-15.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
REST [RE1-silencing transcription factor (also called neuron-restrictive silencer factor)] is known to repress thousands of possible target genes, many of which are neuron specific. To date, REST repression has been investigated mostly in stem cells and differentiating neurons. Current evidence demonstrates its importance in adult neurons as well. Low levels of REST, which are acquired during differentiation, govern the expression of specific neuronal phenotypes. REST-dependent genes encode important targets, including transcription factors, transmitter release proteins, voltage-dependent and receptor channels, and signaling proteins. Additional neuronal properties depend on miRNAs expressed reciprocally to REST and on specific splicing factors. In adult neurons, REST levels are not always low. Increases occur during aging in healthy humans. Moreover, extensive evidence demonstrates that prolonged stimulation with various agents induces REST increases, which are associated with the repression of neuron-specific genes with appropriate, intermediate REST binding affinity. Whether neuronal increases in REST are protective or detrimental remains a subject of debate. Examples of CA1 hippocampal neuron protection upon depolarization, and of neurodegeneration upon glutamate treatment and hypoxia have been reported. REST participation in psychiatric and neurological diseases has been shown, especially in Alzheimer’s disease and Huntington’s disease, as well as epilepsy. Distinct, complex roles of the repressor in these different diseases have emerged. In conclusion, REST is certainly very important in a large number of conditions. We suggest that the conflicting results reported for the role of REST in physiology, pathology, and disease depend on its complex, direct, and indirect actions on many gene targets and on the diverse approaches used during the investigations.
Collapse
|
59
|
Mozzetta C, Pontis J, Ait-Si-Ali S. Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxid Redox Signal 2015; 22:1365-81. [PMID: 25365549 PMCID: PMC4432786 DOI: 10.1089/ars.2014.6116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Methylation of histone H3 on lysine 9 and 27 (H3K9 and H3K27) are two epigenetic modifications that have been linked to several crucial biological processes, among which are transcriptional silencing and cell differentiation. RECENT ADVANCES Deposition of these marks is catalyzed by H3K9 lysine methyltransferases (KMTs) and polycomb repressive complex 2, respectively. Increasing evidence is emerging in favor of a functional crosstalk between these two major KMT families. CRITICAL ISSUES Here, we review the current knowledge on the mechanisms of action and function of these enzymes, with particular emphasis on their interplay in the regulation of chromatin states and biological processes. We outline their crucial roles played in tissue homeostasis, by controlling the fate of embryonic and tissue-specific stem cells, highlighting how their deregulation is often linked to the emergence of a number of malignancies and neurological disorders. FUTURE DIRECTIONS Histone methyltransferases are starting to be tested as drug targets. A new generation of highly selective chemical inhibitors is starting to emerge. These hold great promise for a rapid translation of targeting epigenetic drugs into clinical practice for a number of aggressive cancers and neurological disorders.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot , Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
60
|
van Kruijsbergen I, Hontelez S, Veenstra GJC. Recruiting polycomb to chromatin. Int J Biochem Cell Biol 2015; 67:177-87. [PMID: 25982201 DOI: 10.1016/j.biocel.2015.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Polycomb group (PcG) proteins are key regulators in establishing a transcriptional repressive state. Polycomb Repressive Complex 2 (PRC2), one of the two major PcG protein complexes, is essential for proper differentiation and maintenance of cellular identity. Multiple factors are involved in recruiting PRC2 to its genomic targets. In this review, we will discuss the role of DNA sequence, transcription factors, pre-existing histone modifications, and RNA in guiding PRC2 towards specific genomic loci. The DNA sequence itself influences the DNA methylation state, which is an important determinant of PRC2 recruitment. Other histone modifications are also important for PRC2 binding as PRC2 can respond to different cellular states via crosstalk between histone modifications. Additionally, PRC2 might be able to sense the transcriptional status of genes by binding to nascent RNA, which could also guide the complex to chromatin. In this review, we will discuss how all these molecular aspects define a local chromatin state which controls accurate, cell-type-specific epigenetic silencing by PRC2. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Ila van Kruijsbergen
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Saartje Hontelez
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands.
| |
Collapse
|
61
|
Aine M, Sjödahl G, Eriksson P, Veerla S, Lindgren D, Ringnér M, Höglund M. Integrative epigenomic analysis of differential DNA methylation in urothelial carcinoma. Genome Med 2015; 7:23. [PMID: 25810763 PMCID: PMC4373102 DOI: 10.1186/s13073-015-0144-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Urothelial carcinoma of the bladder (UC) is a common malignancy. Although extensive transcriptome analysis has provided insights into the gene expression patterns of this tumor type, the mechanistic underpinnings of differential methylation remain poorly understood. Multi-level genomic data may be used to profile the regulatory potential and landscape of differential methylation in cancer and gain understanding of the processes underlying epigenetic and phenotypic characteristics of tumors. METHODS We perform genome-wide DNA methylation profiling of 98 gene-expression subtyped tumors to identify between-tumor differentially methylated regions (DMRs). We integrate multi-level publically available genomic data generated by the ENCODE consortium to characterize the regulatory potential of UC DMRs. RESULTS We identify 5,453 between-tumor DMRs and derive four DNA methylation subgroups of UC with distinct associations to clinicopathological features and gene expression subtypes. We characterize three distinct patterns of differential methylation and use ENCODE data to show that tumor subgroup-defining DMRs display differential chromatin state, and regulatory factor binding preferences. Finally, we characterize an epigenetic switch involving the HOXA-genes with associations to tumor differentiation states and patient prognosis. CONCLUSIONS Genome-wide DMR methylation patterns are reflected in the gene expression subtypes of UC. UC DMRs display three distinct methylation patterns, each associated with intrinsic features of the genome and differential regulatory factor binding preferences. Epigenetic inactivation of HOX-genes correlates with tumor differentiation states and may present an actionable epigenetic alteration in UC.
Collapse
Affiliation(s)
- Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gottfrid Sjödahl
- Division of Urologic Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Srinivas Veerla
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Markus Ringnér
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
62
|
Reynolds JP, Miller-Delaney SFC, Jimenez-Mateos EM, Sano T, McKiernan RC, Simon RP, Henshall DC. Transcriptional Response of Polycomb Group Genes to Status Epilepticus in Mice is Modified by Prior Exposure to Epileptic Preconditioning. Front Neurol 2015; 6:46. [PMID: 25806020 PMCID: PMC4354380 DOI: 10.3389/fneur.2015.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/23/2015] [Indexed: 12/23/2022] Open
Abstract
Exposure of the brain to brief, non-harmful seizures can activate protective mechanisms that temporarily generate a damage-refractory state. This process, termed epileptic tolerance, is associated with large-scale down-regulation of gene expression. Polycomb group (PcG) proteins are master controllers of gene silencing during development that are re-activated by injury to the brain. Here, we explored the transcriptional response of genes associated with polycomb repressive complex (PRC) 1 (Ring1A, Ring1B, and Bmi1) and PRC2 (Ezh1, Ezh2, and Suz12), as well as additional transcriptional regulators Sirt1, Yy1, and Yy2, in a mouse model of status epilepticus (SE). Findings were contrasted to changes after SE in mice previously given brief seizures to evoke tolerance. Real-time quantitative PCR showed SE prompted an early (1 h) increase in expression of several genes in PRC1 and PRC2 in the hippocampus, followed by down-regulation of many of the same genes at later times points (4, 8, and 24 h). Spatio-temporal differences were found among PRC2 genes in epileptic tolerance, including increased expression of Ezh2, Suz12, and Yy2 relative to the normal injury response to SE. In contrast, PRC1 complex genes including Ring 1B and Bmi1 displayed differential down-regulation in epileptic tolerance. The present study characterizes PcG gene expression following SE and shows prior seizure exposure produces select changes to PRC1 and PRC2 composition that may influence differential gene expression in epileptic tolerance.
Collapse
Affiliation(s)
- James P Reynolds
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | | | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Takanori Sano
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland ; Department of Neurosurgery, Mie University School of Medicine , Tsu, Mie , Japan
| | - Ross C McKiernan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | | | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
63
|
Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 2014; 518:355-359. [PMID: 25533951 PMCID: PMC4336237 DOI: 10.1038/nature13990] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Abstract
Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.
Collapse
|
64
|
Wang B, Liu Y, Luo F, Xu Y, Qin Y, Lu X, Xu W, Shi L, Liu Q, Xiang Q. Epigenetic silencing of microRNA-218 via EZH2-mediated H3K27 trimethylation is involved in malignant transformation of HBE cells induced by cigarette smoke extract. Arch Toxicol 2014; 90:449-61. [PMID: 25526925 DOI: 10.1007/s00204-014-1435-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
Abstract
Abnormal expression of miRNAs has been implicated in the pathogenesis of human lung cancers, most of which are attributable to cigarette smoke. The mechanisms of action, however, remain obscure. Here, we report that there are decreased expression of miR-218 and increased expression of EZH2 and H3K27me3 during cigarette smoke extract (CSE)-induced transformation of human bronchial epithelial (HBE) cells. Depletion of EZH2 by siRNA or by the EZH2 inhibitor, 3-deazaneplanocin A, attenuated CSE-induced decreases of miR-218 levels and increases of H3K27me3, which epigenetically controls gene transcription, and BMI1, an oncogene. Furthermore, ChIP assays demonstrated that EZH2 and H3K27me3 are enriched at the miR-218-1 promoter in HBE cells exposed to CSE, indicating that EZH2 mediates epigenetic silencing of miR-218 via histone methylation. In addition, miR-218 directly targeted BMI1, through which miR-218 ablates cancer stem cells (CSCs) self-renewal in transformed HBE cells. In CSE-transformed HBE cells, the protein level of Oct-4 and mRNA levels of CD133 and CD44, indicators of the acquisition of CSC-like properties, were reduced by over-expression of miR-218, and over-expression of miR-218 decreased the malignancy of transformed HBE cells. Thus, we conclude that epigenetic silencing of miR-218 via EZH2-mediated H3K27 trimethylation is involved in the acquisition of CSC-like properties and malignant transformation of HBE cells induced by CSE and thereby contributes to the carcinogenesis of cigarette smoke.
Collapse
Affiliation(s)
- Bairu Wang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yu Qin
- Jiangsu Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenchao Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Quanyong Xiang
- Jiangsu Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
65
|
Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. CellNet: network biology applied to stem cell engineering. Cell 2014; 158:903-915. [PMID: 25126793 DOI: 10.1016/j.cell.2014.07.020] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/28/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
Abstract
Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering.
Collapse
Affiliation(s)
- Patrick Cahan
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Samantha A Morris
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Edroaldo Lummertz da Rocha
- Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Graduate Program in Materials Science and Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - James J Collins
- Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
66
|
Englert NA, Luo G, Goldstein JA, Surapureddi S. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9. J Biol Chem 2014; 290:2264-78. [PMID: 25391650 DOI: 10.1074/jbc.m114.579474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Mediator complex is vital for the transcriptional regulation of eukaryotic genes. Mediator binds to nuclear receptors at target response elements and recruits chromatin-modifying enzymes and RNA polymerase II. Here, we examine the involvement of Mediator subunit MED25 in the epigenetic regulation of human cytochrome P450 2C9 (CYP2C9). MED25 is recruited to the CYP2C9 promoter through association with liver-enriched HNF4α, and we show that MED25 influences the H3K27 status of the HNF4α binding region. This region was enriched for the activating marker H3K27ac and histone acetyltransferase CREBBP after MED25 overexpression but was trimethylated when MED25 expression was silenced. The epigenetic regulator Polycomb repressive complex (PRC2), which represses expression by methylating H3K27, plays an important role in target gene regulation. Silencing MED25 correlated with increased association of PRC2 not only with the promoter region chromatin but with HNF4α itself. We confirmed the involvement of MED25 for fully functional preinitiation complex recruitment and transcriptional output in vitro. Formaldehyde-assisted isolation of regulatory elements (FAIRE) revealed chromatin conformation changes that were reliant on MED25, indicating that MED25 induced a permissive chromatin state that reflected increases in CYP2C9 mRNA. For the first time, we showed evidence that a functionally relevant human gene is transcriptionally regulated by HNF4α via MED25 and PRC2. CYP2C9 is important for the metabolism of many exogenous chemicals including pharmaceutical drugs as well as endogenous substrates. Thus, MED25 is important for regulating the epigenetic landscape resulting in transcriptional activation of a highly inducible gene, CYP2C9.
Collapse
Affiliation(s)
- Neal A Englert
- From the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - George Luo
- From the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Joyce A Goldstein
- From the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Sailesh Surapureddi
- From the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
67
|
McGann JC, Oyer JA, Garg S, Yao H, Liu J, Feng X, Liao L, Yates JR, Mandel G. Polycomb- and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype. eLife 2014; 3:e04235. [PMID: 25250711 PMCID: PMC4371837 DOI: 10.7554/elife.04235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022] Open
Abstract
The bivalent hypothesis posits that genes encoding developmental regulators required
for early lineage decisions are poised in stem/progenitor cells by the balance
between a repressor histone modification (H3K27me3), mediated by the Polycomb
Repressor Complex 2 (PRC2), and an activator modification (H3K4me3). In this study,
we test whether this mechanism applies equally to genes that are not required until
terminal differentiation. We focus on the RE1 Silencing Transcription Factor (REST)
because it is expressed highly in stem cells and is an established global repressor
of terminal neuronal genes. Elucidation of the REST complex, and comparison of
chromatin marks and gene expression levels in control and REST-deficient stem cells,
shows that REST target genes are poised by a mechanism independent of Polycomb, even
at promoters which bear the H3K27me3 mark. Specifically, genes under REST control are
actively repressed in stem cells by a balance of the H3K4me3 mark and a repressor
complex that relies on histone deacetylase activity. Thus, chromatin distinctions
between pro-neural and terminal neuronal genes are established at the embryonic stem
cell stage by two parallel, but distinct, repressor pathways. DOI:http://dx.doi.org/10.7554/eLife.04235.001 When an embryo is developing, genes are switched on or off at different times, for
many different reasons. Many of these genes are switched off, or repressed, by making
the DNA inaccessible to the various proteins and molecules that control gene
activity. This is achieved by altering the way that the DNA is packaged into a
compacted structure called chromatin. A host of proteins modify the structure of
chromatin: it can be made more tightly packaged, which keeps genes switched off; or
it can be made more loosely packaged, which allows the genes within to be accessed
and switched on. The stem cells in an embryo are able to give rise to many different types of
specialized cell. Genes that determine which cell type a stem cell will eventually
become are often kept in a so-called ‘poised’ state, and have chromatin modifications
that encourage genes to be switch on, as well as modifications that switch genes off.
Current thinking is that this poised state allows these genes to be switched on or
off rapidly in response to the signals that the cell receives during development. The only known protein complex that causes the chromatin to become more compacted in
this poised state is the Polycomb complex. This complex binds to specific regions of
DNA and is thought to allow stem cells to remain able to become different cell types
by repressing the genes required for adopting a specialized cell fate. However, it is
unclear if this poised state also regulates those genes that control the final stages
of a cell becoming a specific cell type. McGann et al. investigated genes that are involved in the final stages of a nerve
cell's development. These genes are regulated by another protein called REST, which
acts to repress the genes in non-neuronal cells. McGann et al. found that the genes
that are regulated by REST in embryonic stem cells from mice also have their
chromatin modified in two contrasting ways. Some of the modifications are linked to
switching genes on, while others are linked to keeping genes switched off. Thus these
genes are also in a poised state. However, for these genes, this state is acquired
without the activity of the Polycomb complex. The results of McGann et al. show that two similar, but distinct, mechanisms keep the
genes required for the early and the late stages of nerve cell development in a
poised state. If this poised state aids the development of other cell types (for
example muscle or fat cells), uncovering how it is achieved could improve our ability
to direct stem cells to develop into specific cell types and tissues. DOI:http://dx.doi.org/10.7554/eLife.04235.002
Collapse
Affiliation(s)
- James C McGann
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jon A Oyer
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Saurabh Garg
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Huilan Yao
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jun Liu
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Xin Feng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Lujian Liao
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - John R Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - Gail Mandel
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
68
|
Transcription factor binding predicts histone modifications in human cell lines. Proc Natl Acad Sci U S A 2014; 111:13367-72. [PMID: 25187560 DOI: 10.1073/pnas.1412081111] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression in higher organisms is thought to be regulated by a complex network of transcription factor binding and chromatin modifications, yet the relative importance of these two factors remains a matter of debate. Here, we show that a computational approach allows surprisingly accurate prediction of histone modifications solely from knowledge of transcription factor binding both at promoters and at potential distal regulatory elements. This accuracy significantly and substantially exceeds what could be achieved by using DNA sequence as an input feature. Remarkably, we show that transcription factor binding enables strikingly accurate predictions across different cell lines. Analysis of the relative importance of specific transcription factors as predictors of specific histone marks recapitulated known interactions between transcription factors and histone modifiers. Our results demonstrate that reported associations between histone marks and gene expression may be indirect effects caused by interactions between transcription factors and histone-modifying complexes.
Collapse
|
69
|
Short sequences can efficiently recruit histone H3 lysine 27 trimethylation in the absence of enhancer activity and DNA methylation. Proc Natl Acad Sci U S A 2014; 111:E3415-21. [PMID: 25092339 DOI: 10.1073/pnas.1400672111] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Trimethylation of histone H3 at lysine 27 (H3K27me3) is a chromatin mark associated with Polycomb-mediated gene repression. Despite its critical role in development, it remains largely unclear how this mark is targeted to defined loci in mammalian cells. Here, we use iterative genome editing to identify small DNA sequences capable of autonomously recruiting Polycomb. We inserted 28 DNA elements at a defined chromosomal position in mouse embryonic stem cells and assessed their ability to promote H3K27me3 deposition. Combined with deletion analysis, we identified DNA elements as short as 220 nucleotides that correctly recapitulate endogenous H3K27me3 patterns. Functional Polycomb recruiter sequences are invariably CpG-rich but require protection against DNA methylation. Alternatively, their activity can be blocked by placement of an active promoter-enhancer pair in cis. Taken together, these data support the model whereby PRC2 recruitment at specific targets in mammals is positively regulated by local CpG density yet obstructed by transcriptional activity or DNA methylation.
Collapse
|
70
|
Rockowitz S, Lien WH, Pedrosa E, Wei G, Lin M, Zhao K, Lachman HM, Fuchs E, Zheng D. Comparison of REST cistromes across human cell types reveals common and context-specific functions. PLoS Comput Biol 2014; 10:e1003671. [PMID: 24922058 PMCID: PMC4055426 DOI: 10.1371/journal.pcbi.1003671] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/01/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that the transcriptional functions of REST are much broader than repressing neuronal genes in non-neuronal systems. Whether REST occupies similar chromatin regions in different cell types and how it interacts with other transcriptional regulators to execute its functions in a context-dependent manner has not been adequately investigated. We have applied ChIP-seq analysis to identify the REST cistrome in human CD4+ T cells and compared it with published data from 15 other cell types. We found that REST cistromes were distinct among cell types, with REST binding to several tumor suppressors specifically in cancer cells, whereas 7% of the REST peaks in non-neuronal cells were ubiquitously called and <25% were identified for ≥ 5 cell types. Nevertheless, using a quantitative metric directly comparing raw ChIP-seq signals, we found the majority (∼80%) was shared by ≥ 2 cell types. Integration with RNA-seq data showed that REST binding was generally correlated with low gene expression. Close examination revealed that multiple contexts were correlated with reduced expression of REST targets, e.g., the presence of a cognate RE1 motif and cellular specificity of REST binding. These contexts were shown to play a role in differential corepressor recruitment. Furthermore, transcriptional outcome was highly influenced by REST cofactors, e.g., SIN3 and EZH2 co-occupancy marked higher and lower expression of REST targets, respectively. Unexpectedly, the REST cistrome in differentiated neurons exhibited unique features not observed in non-neuronal cells, e.g., the lack of RE1 motifs and an association with active gene expression. Finally, our analysis demonstrated how REST could differentially regulate a transcription network constituted of miRNAs, REST complex and neuronal factors. Overall, our findings of contexts playing critical roles in REST occupancy and regulatory outcome provide insights into the molecular interactions underlying REST's diverse functions, and point to novel roles of REST in differentiated neurons.
Collapse
Affiliation(s)
- Shira Rockowitz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Wen-Hui Lien
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, New York, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gang Wei
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, New York, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
71
|
Steffen PA, Ringrose L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 2014; 15:340-56. [PMID: 24755934 DOI: 10.1038/nrm3789] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In any biological system with memory, the state of the system depends on its history. Epigenetic memory maintains gene expression states through cell generations without a change in DNA sequence and in the absence of initiating signals. It is immensely powerful in biological systems - it adds long-term stability to gene expression states and increases the robustness of gene regulatory networks. The Polycomb group (PcG) and Trithorax group (TrxG) proteins can confer long-term, mitotically heritable memory by sustaining silent and active gene expression states, respectively. Several recent studies have advanced our understanding of the molecular mechanisms of this epigenetic memory during DNA replication and mitosis.
Collapse
Affiliation(s)
- Philipp A Steffen
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Leonie Ringrose
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
72
|
Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, Ito S, Cooper S, Kondo K, Koseki Y, Ishikura T, Long HK, Sheahan TW, Brockdorff N, Kessler BM, Koseki H, Klose RJ. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 2014; 157:1445-1459. [PMID: 24856970 PMCID: PMC4048464 DOI: 10.1016/j.cell.2014.05.004] [Citation(s) in RCA: 569] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/10/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.
Collapse
Affiliation(s)
- Neil P Blackledge
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anca M Farcas
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Takashi Kondo
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hamish W King
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Joanna F McGouran
- Ubiquitin Proteolysis Group, Central Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
| | - Lars L P Hanssen
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sarah Cooper
- Laboratory of Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Kaori Kondo
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yoko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyuki Ishikura
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hannah K Long
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Thomas W Sheahan
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Neil Brockdorff
- Laboratory of Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Benedikt M Kessler
- Ubiquitin Proteolysis Group, Central Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Robert J Klose
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
73
|
Ijaz T, Pazdrak K, Kalita M, Konig R, Choudhary S, Tian B, Boldogh I, Brasier AR. Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma. World Allergy Organ J 2014; 7:13. [PMID: 24982697 PMCID: PMC4068075 DOI: 10.1186/1939-4551-7-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/16/2014] [Indexed: 11/10/2022] Open
Abstract
A pathological hallmark of asthma is chronic injury and repair, producing dysfunction of the epithelial barrier function. In this setting, increased oxidative stress, growth factor- and cytokine stimulation, together with extracellular matrix contact produces transcriptional reprogramming of the epithelial cell. This process results in epithelial-mesenchymal transition (EMT), a cellular state associated with loss of epithelial polarity, expression of mesenchymal markers, enhanced mobility and extracellular matrix remodeling. As a result, the cellular biology of the EMT state produces characteristic changes seen in severe, refractory asthma: myofibroblast expansion, epithelial trans-differentiation and subepithelial fibrosis. EMT also induces profound changes in epithelial responsiveness that affects innate immune signaling that may have impact on the adaptive immune response and effectiveness of glucocorticoid therapy in severe asthma. We discuss how this complex phenotype is beginning to be understood using systems biology-level approaches through perturbations coupled with high throughput profiling and computational modeling. Understanding the distinct changes induced by EMT at the systems level may provide translational strategies to reverse the altered signaling and physiology of refractory asthma.
Collapse
Affiliation(s)
- Talha Ijaz
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Konrad Pazdrak
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Mridul Kalita
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Rolf Konig
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Sanjeev Choudhary
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Bing Tian
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Istvan Boldogh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Allan R Brasier
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| |
Collapse
|
74
|
Balwierz PJ, Pachkov M, Arnold P, Gruber AJ, Zavolan M, van Nimwegen E. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res 2014; 24:869-84. [PMID: 24515121 PMCID: PMC4009616 DOI: 10.1101/gr.169508.113] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accurate reconstruction of the regulatory networks that control gene expression is one of the key current challenges in molecular biology. Although gene expression and chromatin state dynamics are ultimately encoded by constellations of binding sites recognized by regulators such as transcriptions factors (TFs) and microRNAs (miRNAs), our understanding of this regulatory code and its context-dependent read-out remains very limited. Given that there are thousands of potential regulators in mammals, it is not practical to use direct experimentation to identify which of these play a key role for a particular system of interest. We developed a methodology that models gene expression or chromatin modifications in terms of genome-wide predictions of regulatory sites and completely automated it into a web-based tool called ISMARA (Integrated System for Motif Activity Response Analysis). Given only gene expression or chromatin state data across a set of samples as input, ISMARA identifies the key TFs and miRNAs driving expression/chromatin changes and makes detailed predictions regarding their regulatory roles. These include predicted activities of the regulators across the samples, their genome-wide targets, enriched gene categories among the targets, and direct interactions between the regulators. Applying ISMARA to data sets from well-studied systems, we show that it consistently identifies known key regulators ab initio. We also present a number of novel predictions including regulatory interactions in innate immunity, a master regulator of mucociliary differentiation, TFs consistently disregulated in cancer, and TFs that mediate specific chromatin modifications.
Collapse
Affiliation(s)
- Piotr J Balwierz
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
75
|
Vigano MA, Ivanek R, Balwierz P, Berninger P, van Nimwegen E, Karjalainen K, Rolink A. An epigenetic profile of early T-cell development from multipotent progenitors to committed T-cell descendants. Eur J Immunol 2014; 44:1181-93. [PMID: 24374622 DOI: 10.1002/eji.201344022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/04/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023]
Abstract
Cellular differentiation of the T-cell branch of the immune system begins with the HSC, which undergoes a series of stages characterized by progressive restriction in multipotency and acquisition of specific lineage identity At the molecular level, the restriction of cell potential, commitment, and differentiation to a specific lineage is achieved through the coordinated control of gene expression and epigenetic mechanisms. Here, we analyzed and compared the gene expression profiles and the genome-wide histone modification marks H3K4me3 (H3 lysine 4 trimethylation) and H3K27me3 (H3 lysine 27 trimethylation) in (i) in vitro propagated HSCs, (ii) in vitro generated and propagated pro-T cells derived from these stem cells, and (iii) double-positive thymocytes derived from these pro-T cells after injection into Rag-deficient mice. The combined analyses of the different datasets in this unique experimental system highlighted the importance of both transcriptional and epigenetic repression in shaping the early phases of T-cell development.
Collapse
Affiliation(s)
- Maria Alessandra Vigano
- Developmental and Molecular Immunology Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
76
|
Luisier R, Unterberger EB, Goodman JI, Schwarz M, Moggs J, Terranova R, van Nimwegen E. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Res 2014; 42:4180-95. [PMID: 24464994 PMCID: PMC3985636 DOI: 10.1093/nar/gkt1415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, 4057 Basel, Switzerland, Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, 72074 Tübingen, Germany, Department of Pharmacology and Toxicology, Michigan State University, MI 48824, USA and Biozentrum, University of Basel and Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
77
|
Pinello L, Xu J, Orkin SH, Yuan GC. Analysis of chromatin-state plasticity identifies cell-type-specific regulators of H3K27me3 patterns. Proc Natl Acad Sci U S A 2014; 111:E344-53. [PMID: 24395799 PMCID: PMC3903219 DOI: 10.1073/pnas.1322570111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin states are highly cell-type-specific, but the underlying mechanisms for the establishment and maintenance of their genome-wide patterns remain poorly understood. Here we present a computational approach for investigation of chromatin-state plasticity. We applied this approach to investigate an ENCODE ChIP-seq dataset profiling the genome-wide distributions of the H3K27me3 mark in 19 human cell lines. We found that the high plasticity regions (HPRs) can be divided into two functionally and mechanistically distinct subsets, which correspond to CpG island (CGI) proximal or distal regions, respectively. Although the CGI proximal HPRs are typically associated with continuous variation across different cell-types, the distal HPRs are associated with binary-like variations. We developed a computational approach to predict putative cell-type-specific modulators of H3K27me3 patterns and validated the predictions by comparing with public ChIP-seq data. Furthermore, we applied this approach to investigate mechanisms for poised enhancer establishment in primary human erythroid precursors. Importantly, we predicted and experimentally validated that the principal hematopoietic regulator T-cell acute lymphocytic leukemia-1 (TAL1) is involved in regulating H3K27me3 variations in collaboration with the transcription factor growth factor independent 1B (GFI1B), providing fresh insights into the context-specific role of TAL1 in erythropoiesis. Our approach is generally applicable to investigate the regulatory mechanisms of epigenetic pathways in establishing cellular identity.
Collapse
Affiliation(s)
- Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215
| | - Jian Xu
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and
| | - Stuart H. Orkin
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215
| |
Collapse
|
78
|
Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C, Margueron R, Ait-Si-Ali S. The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell 2014; 53:277-89. [PMID: 24389103 DOI: 10.1016/j.molcel.2013.12.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/12/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022]
Abstract
G9a/GLP and Polycomb Repressive Complex 2 (PRC2) are two major epigenetic silencing machineries, which in particular methylate histone H3 on lysines 9 and 27 (H3K9 and H3K27), respectively. Although evidence of a crosstalk between H3K9 and H3K27 methylations has started to emerge, their actual interplay remains elusive. Here, we show that PRC2 and G9a/GLP interact physically and functionally. Moreover, combining different genome-wide approaches, we demonstrate that Ezh2 and G9a/GLP share an important number of common genomic targets, encoding developmental and neuronal regulators. Furthermore, we show that G9a enzymatic activity modulates PRC2 genomic recruitment to a subset of its target genes. Taken together, our findings demonstrate an unanticipated interplay between two main histone lysine methylation mechanisms, which cooperate to maintain silencing of a subset of developmental genes.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France.
| | - Julien Pontis
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France
| | - Lauriane Fritsch
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France
| | - Philippe Robin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France
| | - Manuela Portoso
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; UMR3215 CNRS, 26 rue d'Ulm, 75005 Paris, France; U934 INSERM, 26 rue d'Ulm, 75005 Paris, France
| | - Caroline Proux
- Institut Pasteur, PF2 Plate-forme Transcriptome et Epigénome, 28 rue du Dr Roux, Paris, 75015 France
| | - Raphaël Margueron
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; UMR3215 CNRS, 26 rue d'Ulm, 75005 Paris, France; U934 INSERM, 26 rue d'Ulm, 75005 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France.
| |
Collapse
|
79
|
Feldmann A, Ivanek R, Murr R, Gaidatzis D, Burger L, Schübeler D. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet 2013; 9:e1003994. [PMID: 24367273 PMCID: PMC3868540 DOI: 10.1371/journal.pgen.1003994] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Distal regulatory elements, including enhancers, play a critical role in regulating gene activity. Transcription factor binding to these elements correlates with Low Methylated Regions (LMRs) in a process that is poorly understood. Here we ask whether and how actual occupancy of DNA-binding factors is linked to DNA methylation at the level of individual molecules. Using CTCF as an example, we observe that frequency of binding correlates with the likelihood of a demethylated state and sites of low occupancy display heterogeneous DNA methylation within the CTCF motif. In line with a dynamic model of binding and DNA methylation turnover, we find that 5-hydroxymethylcytosine (5hmC), formed as an intermediate state of active demethylation, is enriched at LMRs in stem and somatic cells. Moreover, a significant fraction of changes in 5hmC during differentiation occurs at these regions, suggesting that transcription factor activity could be a key driver for active demethylation. Since deletion of CTCF is lethal for embryonic stem cells, we used genetic deletion of REST as another DNA-binding factor implicated in LMR formation to test this hypothesis. The absence of REST leads to a decrease of hydroxymethylation and a concomitant increase of DNA methylation at its binding sites. These data support a model where DNA-binding factors can mediate turnover of DNA methylation as an integral part of maintenance and reprogramming of regulatory regions. Cell identity is determined by differential gene expression, which in turn is controlled by the combined activity of proximal and distal regulatory elements such as enhancers. DNA within active enhancer elements is marked by a hypomethylated state as a result of transcription factor (TF) binding. Here, using CTCF as an example for a DNA-binding factor, we explore the relationship between binding and DNA methylation at the level of single molecules by enriching for CTCF occupied DNA. To our surprise, methylation at molecules which are bound by CTCF does not differ from the average methylation levels at the binding sites defined by whole-genome bisulfite sequencing. We find that binding strength inversely correlates with DNA methylation within the CTCF motif with heterogenic methylation levels at low occupancy sites, suggesting that CTCF can bind to molecules with different methylation states. Moreover, we observed enrichment of 5-hydroxymethylcytosines at constitutive and cell-type specific TF binding sites indicative of an active demethylation process. To test the requirement of TF binding for the observed hydroxymethylation, and as CTCF deletion is incompatible with the survival of embryonic stem cells, we made use of cells in which REST – a factor which was previously shown to be involved in LMR formation - was genetically deleted. This deletion leads to loss of hydroxymethylation at its binding sites, suggesting that binding is necessary for turnover. Our data support a model in which TF occupancy mediates a continuous turnover of DNA methylation during maintenance and formation of active regulatory regions.
Collapse
Affiliation(s)
- Angelika Feldmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Robert Ivanek
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Rabih Murr
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
80
|
van Heeringen SJ, Akkers RC, van Kruijsbergen I, Arif MA, Hanssen LLP, Sharifi N, Veenstra GJC. Principles of nucleation of H3K27 methylation during embryonic development. Genome Res 2013; 24:401-10. [PMID: 24336765 PMCID: PMC3941105 DOI: 10.1101/gr.159608.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 lysine 27 trimethylation (H3K27me3). However, the developmental origins of this regulation are unknown. Here we show that H3K27me3 enrichment increases from blastula stages onward in embryos of the Western clawed frog (Xenopus tropicalis) within constrained domains strictly defined by sequence. Strikingly, although PRC2 also binds widely to active enhancers, H3K27me3 is only deposited at a small subset of these sites. Using a Support Vector Machine algorithm, these sequences can be predicted accurately on the basis of DNA sequence alone, with a sequence signature conserved between humans, frogs, and fish. These regions correspond to the subset of blastula-stage DNA methylation-free domains that are depleted for activating promoter motifs, and enriched for motifs of developmental factors. These results imply a genetic-default model in which a preexisting absence of DNA methylation is the major determinant of H3K27 methylation when not opposed by transcriptional activation. The sequence and motif signatures reveal the hierarchical and genetically inheritable features of epigenetic cross-talk that impose constraints on Polycomb regulation and guide H3K27 methylation during the exit of pluripotency.
Collapse
Affiliation(s)
- Simon J van Heeringen
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
81
|
Logan PC, Mitchell MD, Lobie PE. DNA methyltransferases and TETs in the regulation of differentiation and invasiveness of extra-villous trophoblasts. Front Genet 2013; 4:265. [PMID: 24363660 PMCID: PMC3849743 DOI: 10.3389/fgene.2013.00265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/15/2013] [Indexed: 01/21/2023] Open
Abstract
Specialized cell types of trophoblast cells form the placenta in which each cell type has particular properties of proliferation and invasion. The placenta sustains the growth of the fetus throughout pregnancy and any aberrant trophoblast differentiation or invasion potentially affects the future health of the child and adult. Recently, the field of epigenetics has been applied to understand differentiation of trophoblast lineages and embryonic stem cells (ESC), from fertilization of the oocyte onward. Each trophoblast cell-type has a distinctive epigenetic profile and we will concentrate on the epigenetic mechanism of DNA methyltransferases and TETs that regulate DNA methylation. Environmental factors affecting the mother potentially regulate the DNA methyltransferases in trophoblasts, and so do steroid hormones, cell cycle regulators, such as p53, and cytokines, especially interlukin-1β. There are interesting questions of why trophoblast genomes are globally hypomethylated yet specific genes can be suppressed by hypermethylation (in general, tumor suppressor genes, such as E-cadherin) and how invasive cell-types are liable to have condensed chromatin, as in metastatic cancer cells. Future work will attempt to understand the interactive nature of all epigenetic mechanisms together and their effect on the complex biological system of trophoblast differentiation and invasion in normal as well as pathological conditions.
Collapse
Affiliation(s)
- Philip C Logan
- The Liggins Institute, The University of Auckland Auckland, New Zealand
| | - Murray D Mitchell
- University of Queensland Centre for Clinical Research, University of Queensland Brisbane, QLD, Australia
| | - Peter E Lobie
- Cancer Science Institute of Singapore, National University of Singapore Singapore, Singapore
| |
Collapse
|
82
|
Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 20:1147-55. [PMID: 24096405 DOI: 10.1038/nsmb.2669] [Citation(s) in RCA: 677] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity.
Collapse
|
83
|
Gruber AJ, Zavolan M. Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 2013; 5:671-83. [DOI: 10.2217/epi.13.65] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mammalian gene expression is controlled at multiple levels by a variety of regulators, including chromatin modifiers, transcription factors and miRNAs. The latter are small, ncRNAs that inhibit the expression of target mRNAs by reducing both their stability and translation rate. In this review, we summarize the recent work towards characterizing miRNA targets that are themselves involved in the regulation of gene expression at the epigenetic level. Epigenetic regulators are strongly enriched among the predicted targets of miRNAs, which may contribute to the documented importance of miRNAs for pluripotency, organism development and somatic cell reprogramming.
Collapse
Affiliation(s)
- Andreas J Gruber
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Mihaela Zavolan
- Swiss Institute of Bioinformatics, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| |
Collapse
|
84
|
Dambacher S, de Almeida GP, Schotta G. Dynamic changes of the epigenetic landscape during cellular differentiation. Epigenomics 2013; 5:701-13. [DOI: 10.2217/epi.13.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Epigenetic mechanisms are crucial to stabilize cell type-specific gene-expression programs. However, during differentiation, these programs need to be modified – a complex process that requires dynamic but tightly controlled rearrangements in the epigenetic landscape. During recent years, the major epigenetic machineries for gene activation and repression have been extensively characterized. Snapshots of the epigenetic landscape in pluripotent versus differentiated cells have further revealed how chromatin can change during cellular differentiation. Although transcription factors are the key drivers of developmental transitions, it became clear that their function is greatly influenced by the chromatin environment. Better insight into the tight interplay between transcription factor networks and the epigenetic landscape is therefore necessary to improve our understanding of cellular differentiation mechanisms. These systems can then be challenged and modified for the development of regenerative therapies.
Collapse
Affiliation(s)
- Silvia Dambacher
- Ludwig Maximilians University & Munich Center for Integrated Protein Science (CiPSM), Adolf-Butenandt-Institute, Schillerstrasse 44, 80336 Munich, Germany
| | - Gustavo Pereira de Almeida
- Ludwig Maximilians University & Munich Center for Integrated Protein Science (CiPSM), Adolf-Butenandt-Institute, Schillerstrasse 44, 80336 Munich, Germany
| | - Gunnar Schotta
- Ludwig Maximilians University & Munich Center for Integrated Protein Science (CiPSM), Adolf-Butenandt-Institute, Schillerstrasse 44, 80336 Munich, Germany
| |
Collapse
|
85
|
Gruber AR, Martin G, Keller W, Zavolan M. Means to an end: mechanisms of alternative polyadenylation of messenger RNA precursors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:183-96. [PMID: 24243805 PMCID: PMC4282565 DOI: 10.1002/wrna.1206] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/24/2022]
Abstract
Expression of mature messenger RNAs (mRNAs) requires appropriate transcription initiation and termination, as well as pre-mRNA processing by capping, splicing, cleavage, and polyadenylation. A core 3'-end processing complex carries out the cleavage and polyadenylation reactions, but many proteins have been implicated in the selection of polyadenylation sites among the multiple alternatives that eukaryotic genes typically have. In recent years, high-throughput approaches to map both the 3'-end processing sites as well as the binding sites of proteins that are involved in the selection of cleavage sites and in the processing reactions have been developed. Here, we review these approaches as well as the insights into the mechanisms of polyadenylation that emerged from genome-wide studies of polyadenylation across a range of cell types and states.
Collapse
Affiliation(s)
- Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
86
|
Schwartz YB, Pirrotta V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet 2013; 14:853-64. [PMID: 24217316 DOI: 10.1038/nrg3603] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic repressors that are essential for the transcriptional control of cell differentiation and development. PcG-mediated repression is associated with specific post-translational histone modifications and is thought to involve both biochemical and physical modulation of chromatin structure. Recent advances show that PcG complexes comprise a multiplicity of variants and are far more biochemically diverse than previously thought. The importance of these new PcG complexes for normal development and disease, their targeting mechanisms and their shifting roles in the course of differentiation are now the subject of investigation and the focus of this Review.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Byggnad 6L, Norrlands University Hospital, 901 87 Umeå, Sweden
| | | |
Collapse
|
87
|
Schorderet P, Lonfat N, Darbellay F, Tschopp P, Gitto S, Soshnikova N, Duboule D. A genetic approach to the recruitment of PRC2 at the HoxD locus. PLoS Genet 2013; 9:e1003951. [PMID: 24244202 PMCID: PMC3820793 DOI: 10.1371/journal.pgen.1003951] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/27/2013] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins are essential for the repression of key factors during early development. In Drosophila, the polycomb repressive complexes (PRC) associate with defined polycomb response DNA elements (PREs). In mammals, however, the mechanisms underlying polycomb recruitment at targeted loci are poorly understood. We have used an in vivo approach to identify DNA sequences of importance for the proper recruitment of polycomb proteins at the HoxD locus. We report that various genomic re-arrangements of the gene cluster do not strongly affect PRC2 recruitment and that relatively small polycomb interacting sequences appear necessary and sufficient to confer polycomb recognition and targeting to ectopic loci. In addition, a high GC content, while not sufficient to recruit PRC2, may help its local spreading. We discuss the importance of PRC2 recruitment over Hox gene clusters in embryonic stem cells, for their subsequent coordinated transcriptional activation during development. Hox genes are essential for the proper organization of structures along the developing vertebrate body axis. These genes must be activated at a precise time and their premature transcription is deleterious to the organism. Early on, Hox gene clusters are covered by Polycomb Repressive protein Complexes (PRCs), which help keep these genes silent. However, the mechanism(s) that selectively recruit PRCs to these particular genomic loci remains elusive. We have used a collection of mutant mice carrying a set of deletions inside and outside the HoxD cluster to try and detect the presence of any DNA sequence of particular importance in this mechanism. We conclude that a range of low affinity sequences synergize to recruit PRCs over the gene cluster, which makes this process very robust and resistant to genetic perturbations.
Collapse
Affiliation(s)
- Patrick Schorderet
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Lonfat
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fabrice Darbellay
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Patrick Tschopp
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Sandra Gitto
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Natalia Soshnikova
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Denis Duboule
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
- * E-mail: ,
| |
Collapse
|
88
|
McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, Lewellen N, Myrthil M, Gilad Y, Pritchard JK. Identification of genetic variants that affect histone modifications in human cells. Science 2013; 342:747-9. [PMID: 24136359 DOI: 10.1126/science.1242429] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Histone modifications are important markers of function and chromatin state, yet the DNA sequence elements that direct them to specific genomic locations are poorly understood. Here, we identify hundreds of quantitative trait loci, genome-wide, that affect histone modification or RNA polymerase II (Pol II) occupancy in Yoruba lymphoblastoid cell lines (LCLs). In many cases, the same variant is associated with quantitative changes in multiple histone marks and Pol II, as well as in deoxyribonuclease I sensitivity and nucleosome positioning. Transcription factor binding site polymorphisms are correlated overall with differences in local histone modification, and we identify specific transcription factors whose binding leads to histone modification in LCLs. Furthermore, variants that affect chromatin at distal regulatory sites frequently also direct changes in chromatin and gene expression at associated promoters.
Collapse
Affiliation(s)
- Graham McVicker
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Klose RJ, Cooper S, Farcas AM, Blackledge NP, Brockdorff N. Chromatin sampling--an emerging perspective on targeting polycomb repressor proteins. PLoS Genet 2013; 9:e1003717. [PMID: 23990804 PMCID: PMC3749931 DOI: 10.1371/journal.pgen.1003717] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Robert J. Klose
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Cooper
- Laboratory of Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Anca M. Farcas
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Neil P. Blackledge
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Neil Brockdorff
- Laboratory of Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
90
|
Abstract
Histone modifications and chromatin-associated protein complexes are crucially involved in the control of gene expression, supervising cell fate decisions and differentiation. Many promoters in embryonic stem (ES) cells harbor a distinctive histone modification signature that combines the activating histone H3 Lys 4 trimethylation (H3K4me3) mark and the repressive H3K27me3 mark. These bivalent domains are considered to poise expression of developmental genes, allowing timely activation while maintaining repression in the absence of differentiation signals. Recent advances shed light on the establishment and function of bivalent domains; however, their role in development remains controversial, not least because suitable genetic models to probe their function in developing organisms are missing. Here, we explore avenues to and from bivalency and propose that bivalent domains and associated chromatin-modifying complexes safeguard proper and robust differentiation.
Collapse
Affiliation(s)
- Philipp Voigt
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
91
|
Abstract
The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.
Collapse
|
92
|
Bayarsaihan D. What role does TFII-I have to play in epigenetic modulation during embryogenesis? Epigenomics 2013; 5:9-11. [DOI: 10.2217/epi.12.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dashzeveg Bayarsaihan
- Center for Regenerative Medicine & Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 262 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
93
|
|
94
|
|