51
|
Glomb K, Cabral J, Cattani A, Mazzoni A, Raj A, Franceschiello B. Computational Models in Electroencephalography. Brain Topogr 2021; 35:142-161. [PMID: 33779888 PMCID: PMC8813814 DOI: 10.1007/s10548-021-00828-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by “computational model” is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.
Collapse
Affiliation(s)
- Katharina Glomb
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
| | - Anna Cattani
- Department of Psychiatry, University of Wisconsin-Madison, Madison, USA.,Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ashish Raj
- School of Medicine, UCSF, San Francisco, USA
| | - Benedetta Franceschiello
- Department of Ophthalmology, Hopital Ophthalmic Jules Gonin, FAA, Lausanne, Switzerland.,CIBM Centre for Biomedical Imaging, EEG Section CHUV-UNIL, Lausanne, Switzerland.,Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
52
|
Hindriks R. Relation between the phase-lag index and lagged coherence for assessing interactions in EEG and MEG data. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
53
|
Usman SM, Khalid S, Bashir Z. Epileptic seizure prediction using scalp electroencephalogram signals. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
54
|
Griffiths JD, McIntosh AR, Lefebvre J. A Connectome-Based, Corticothalamic Model of State- and Stimulation-Dependent Modulation of Rhythmic Neural Activity and Connectivity. Front Comput Neurosci 2020; 14:575143. [PMID: 33408622 PMCID: PMC7779529 DOI: 10.3389/fncom.2020.575143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Rhythmic activity in the brain fluctuates with behaviour and cognitive state, through a combination of coexisting and interacting frequencies. At large spatial scales such as those studied in human M/EEG, measured oscillatory dynamics are believed to arise primarily from a combination of cortical (intracolumnar) and corticothalamic rhythmogenic mechanisms. Whilst considerable progress has been made in characterizing these two types of neural circuit separately, relatively little work has been done that attempts to unify them into a single consistent picture. This is the aim of the present paper. We present and examine a whole-brain, connectome-based neural mass model with detailed long-range cortico-cortical connectivity and strong, recurrent corticothalamic circuitry. This system reproduces a variety of known features of human M/EEG recordings, including spectral peaks at canonical frequencies, and functional connectivity structure that is shaped by the underlying anatomical connectivity. Importantly, our model is able to capture state- (e.g., idling/active) dependent fluctuations in oscillatory activity and the coexistence of multiple oscillatory phenomena, as well as frequency-specific modulation of functional connectivity. We find that increasing the level of sensory drive to the thalamus triggers a suppression of the dominant low frequency rhythms generated by corticothalamic loops, and subsequent disinhibition of higher frequency endogenous rhythmic behaviour of intracolumnar microcircuits. These combine to yield simultaneous decreases in lower frequency and increases in higher frequency components of the M/EEG power spectrum during states of high sensory or cognitive drive. Building on this, we also explored the effect of pulsatile brain stimulation on ongoing oscillatory activity, and evaluated the impact of coexistent frequencies and state-dependent fluctuations on the response of cortical networks. Our results provide new insight into the role played by cortical and corticothalamic circuits in shaping intrinsic brain rhythms, and suggest new directions for brain stimulation therapies aimed at state-and frequency-specific control of oscillatory brain activity.
Collapse
Affiliation(s)
- John D. Griffiths
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Anthony Randal McIntosh
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Jeremie Lefebvre
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
55
|
Noroozbabaee L, Steyn-Ross DA, Steyn-Ross ML, Sleigh JW. Analysis of the Hindriks and van Putten model for propofol anesthesia: Limitations and extensions. Neuroimage 2020; 227:117633. [PMID: 33316393 DOI: 10.1016/j.neuroimage.2020.117633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022] Open
Abstract
We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABAA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABAA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity. We demonstrate that this unphysiological behavior can be completely suppressed with appropriate tuning of the parameters controlling the sigmoidal functions that map soma voltage to firing rate for the excitatory and inhibitory neural populations, coupled with elimination of the putative population-dependent anesthetic efficacies introduced in the HvP model. The modifications reported here constrain the anesthetized brain activity into a biologically plausible range in which the cortex now has access to a moderate-firing state ("awake") and a low-firing ("anesthetized") state such that the brain can transition from "awake" to "anesthetized" states at a critical level of drug concentration. The modified HvP model predicts a drug-effect hysteresis in which the drug concentration required for induction is larger than that at emergence. In addition, the revised model shows a decrease in the intensity and frequency of alpha-band fluctuations, transitioning to delta-band dominance, with deepening anesthesia. These predicted drug concentration-dependent changes in EEG dynamics are consistent with clinical reports.
Collapse
Affiliation(s)
- Leyla Noroozbabaee
- School of Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - D A Steyn-Ross
- School of Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Moira L Steyn-Ross
- School of Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - J W Sleigh
- Waikato Clinical School, University of Auckland, Waikato Hospital, Hamilton 3204, New Zealand
| |
Collapse
|
56
|
Diffuse neural coupling mediates complex network dynamics through the formation of quasi-critical brain states. Nat Commun 2020; 11:6337. [PMID: 33303766 PMCID: PMC7729877 DOI: 10.1038/s41467-020-19716-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023] Open
Abstract
The biological mechanisms that allow the brain to balance flexibility and integration remain poorly understood. A potential solution may lie in a unique aspect of neurobiology, which is that numerous brain systems contain diffuse synaptic connectivity. Here, we demonstrate that increasing diffuse cortical coupling within a validated biophysical corticothalamic model traverses the system through a quasi-critical regime in which spatial heterogeneities in input noise support transient critical dynamics in distributed subregions. The presence of quasi-critical states coincides with known signatures of complex, adaptive brain network dynamics. Finally, we demonstrate the presence of similar dynamic signatures in empirical whole-brain human neuroimaging data. Together, our results establish that modulating the balance between local and diffuse synaptic coupling in a thalamocortical model subtends the emergence of quasi-critical brain states that act to flexibly transition the brain between unique modes of information processing.
Collapse
|
57
|
Mukta KN, Robinson PA, Pagès JC, Gabay NC, Gao X. Evoked response activity eigenmode analysis in a convoluted cortex via neural field theory. Phys Rev E 2020; 102:062303. [PMID: 33466049 DOI: 10.1103/physreve.102.062303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/15/2020] [Indexed: 11/07/2022]
Abstract
Neural field theory of the corticothalamic system is used to explore evoked response potentials (ERPs) caused by spatially localized impulse stimuli on the convoluted cortex and on a spherical cortex. Eigenfunctions are calculated analytically on the spherical cortex and numerically on the convoluted cortex via eigenfunction expansions. Eigenmodes on a convoluted cortex are similar to those of the spherical cortex, and a few such modes are found to be sufficient to reproduce the main ERP features. It is found that the ERP peak is stronger in spherical cortex than convoluted cortex, but in both cases the peak decreases monotonically with increasing distance from the stimulus point. In the convoluted case, cortical folding causes ERPs to differ between locations at the same distance from the stimulus point and spherical symmetries are only approximately preserved.
Collapse
Affiliation(s)
- K N Mukta
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - J C Pagès
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
- School of Physics, University of Zurich, Zürich, Canton of Zürich, Switzerland
| | - N C Gabay
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - Xiao Gao
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
58
|
Frassineti L, Parente A, Manfredi C. Multiparametric EEG analysis of brain network dynamics during neonatal seizures. J Neurosci Methods 2020; 348:109003. [PMID: 33249182 DOI: 10.1016/j.jneumeth.2020.109003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND One of the most challenging issues in paediatric neurology is the diagnosis of neonatal seizures, whose delayed treatment may affect the neurodevelopment of the newborn. Formulation of the correct diagnosis is conditioned by the high number of perceptually or automatically detected false positives. NEW METHOD New methodologies are proposed to assess neonatal seizures trend over time. Our approach is based on the analysis of standardized trends of two properties of the brain network: the Synchronizabilty (S) and the degree of phase synchronicity given by the Circular Omega Complexity (COC). Qualitative and quantitative methods based on network dynamics allow differentiating seizure events from interictal periods and seizure-free patients. RESULTS The methods were tested on a public dataset of labelled neonatal seizures. COC shows significant differences among seizure and non-seizure events (p-value <0.001, Cohen's d 0.86). Combining S and COC in standardized temporal instants provided a reliable description of the physiological behaviour of the brain's network during neonatal seizures. COMPARISON WITH EXISTING METHOD(S) Few of the existing network methods propose an operative way for carrying their analytical approach into the diagnostic process of neonatal seizures. Our methods offer a simple representation of brain network dynamics easily implementable and understandable also by less experienced staff. CONCLUSIONS Our findings confirm the usefulness of the evaluation of brain network dynamics over time for a better understanding and interpretation of the complex mechanisms behind neonatal seizures. The proposed methods could also reliably support existing seizure detectors as a post-processing step in doubtful cases.
Collapse
Affiliation(s)
- Lorenzo Frassineti
- Department of Information Engineering, Universita' degli Studi di Firenze, Firenze, Italy; Department of Medical Biotechnologies, Universita' degli Studi di Siena, Siena, Italy.
| | - Angela Parente
- School of Engineering, Universita' degli Studi di Firenze, Firenze, Italy.
| | - Claudia Manfredi
- Department of Information Engineering, Universita' degli Studi di Firenze, Firenze, Italy.
| |
Collapse
|
59
|
Tewarie P, Hunt BAE, O'Neill GC, Byrne A, Aquino K, Bauer M, Mullinger KJ, Coombes S, Brookes MJ. Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity. Cereb Cortex 2020; 29:2668-2681. [PMID: 29897408 DOI: 10.1093/cercor/bhy136] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Event-related fluctuations of neural oscillatory amplitude are reported widely in the context of cognitive processing and are typically interpreted as a marker of brain "activity". However, the precise nature of these effects remains unclear; in particular, whether such fluctuations reflect local dynamics, integration between regions, or both, is unknown. Here, using magnetoencephalography, we show that movement induced oscillatory modulation is associated with transient connectivity between sensorimotor regions. Further, in resting-state data, we demonstrate a significant association between oscillatory modulation and dynamic connectivity. A confound with such empirical measurements is that increased amplitude necessarily means increased signal-to-noise ratio (SNR): this means that the question of whether amplitude and connectivity are genuinely coupled, or whether increased connectivity is observed purely due to increased SNR is unanswered. Here, we counter this problem by analogy with computational models which show that, in the presence of global network coupling and local multistability, the link between oscillatory modulation and long-range connectivity is a natural consequence of neural networks. Our results provide evidence for the notion that connectivity is mediated by neural oscillations, and suggest that time-frequency spectrograms are not merely a description of local synchrony but also reflect fluctuations in long-range connectivity.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Benjamin A E Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Aine Byrne
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Kevin Aquino
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Markus Bauer
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Stephen Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
60
|
Ferdousi M, Babaie-Janvier T, Robinson PA. Nonlinear wave-wave interactions in the brain. J Theor Biol 2020; 500:110308. [PMID: 32389568 DOI: 10.1016/j.jtbi.2020.110308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 11/24/2022]
Abstract
Neural field theory of the corticothalamic system is used to analyze nonlinear wave-wave interactions in steady state visual evoked potential responses. The nonlinear power spectrum is analytically calculated by convolving the linear power spectrum with itself and other factors. Periodic sine and square wave stimuli are used to generate steady state visual evoked potential responses and to study stimulus-driven nonlinear corticothalamic dynamic interactions. Moreover, we use dual sine drives to analyze the driven dynamics. Numerical analysis shows that the nonlinear power spectrum embodies key nonlinear features, including harmonic and subharmonic generation, entrainment of the alpha rhythm to periodic stimuli at the drive frequency, sum and difference frequencies due to wave-wave coalescence and decay. Further, the scaling properties of the key phenomena observed in nonlinear interactions are studied, verifying some of the theoretical predictions for these being generated by three-wave processes.
Collapse
Affiliation(s)
- M Ferdousi
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia.
| | - T Babaie-Janvier
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
61
|
Babaie-Janvier T, Robinson PA. Neural Field Theory of Evoked Response Potentials With Attentional Gain Dynamics. Front Hum Neurosci 2020; 14:293. [PMID: 32848668 PMCID: PMC7426978 DOI: 10.3389/fnhum.2020.00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022] Open
Abstract
A generalized neural field model of large-scale activity in the corticothalamic system is used to predict standard evoked potentials. This model embodies local feedbacks that modulate the gains of neural activity as part of the response to incoming stimuli and thus enables both activity changes and effective connectivity changes to be calculated as parts of a generalized evoked response, and their relative contributions to be determined. The results show that incorporation of gain modulations enables a compact and physically justifiable description of the differences in gain between background-EEG and standard-ERP conditions, with the latter able to be initiated from the background state, rather than requiring distinct parameters as in earlier work. In particular, top-down gains are found to be reduced during an ERP, consistent with recent theoretical suggestions that the role of internal models is diminished in favor of external inputs when the latter change suddenly. The static-gain and modulated-gain system transfer functions are analyzed via control theory in terms of system resonances that were recently shown to implement data filtering whose gain adjustments can be interpreted as attention. These filters are shown to govern early and late features in standard evoked responses and their gain parameters are shown to be dynamically adjusted in a way that implements a form of attention. The results show that dynamically modulated resonant filters responsible for the low-frequency oscillations in an evoked potential response have different parameters than those responsible for low-frequency resting EEG responses, while both responses share similar mid- and high-frequency resonant filters. These results provide a biophysical mechanism by which oscillatory activity in the theta, alpha, and beta frequency ranges of an evoked response are modulated as reflections of attention; notably theta is enhanced and alpha suppressed during the latter parts of the ERP. Furthermore, the model enables the part of the ERP response induced by gain modulations to be estimated and interpreted in terms of attention.
Collapse
Affiliation(s)
- Tara Babaie-Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
62
|
Liu X, Sanz-Leon P, Robinson PA. Gamma-band correlations in the primary visual cortex. Phys Rev E 2020; 101:042406. [PMID: 32422743 DOI: 10.1103/physreve.101.042406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2020] [Indexed: 11/07/2022]
Abstract
This paper generalizes and extends previous work on using neural field theory to quantitatively analyze the two-dimensional (2D) spatiotemporal correlation properties of gamma-band (30-70 Hz) oscillations evoked by stimuli arriving at the primary visual cortex, and modulated by patchy connectivities that depend on orientation preference (OP). Correlation functions are derived analytically for general stimulus and measurement conditions. The theoretical results reproduce a range of published experimental results. These include (i) the existence of two-point oscillatory temporal cross correlations with zero time lag between neurons with similar OP; (ii) the influence of spatial separation of neurons on the strength of the correlations; and (iii) the effects of differing stimulus orientations. They go beyond prior work by incorporating experimentally observed patchy projection patterns to predict the 2D correlation structure including both OP and ocular dominance effects, thereby relaxing assumptions of translational invariance implicit in prior one-dimensional analysis.
Collapse
Affiliation(s)
- X Liu
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| | - P Sanz-Leon
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
63
|
Hartoyo A, Cadusch PJ, Liley DTJ, Hicks DG. Inferring a simple mechanism for alpha-blocking by fitting a neural population model to EEG spectra. PLoS Comput Biol 2020; 16:e1007662. [PMID: 32352973 PMCID: PMC7217488 DOI: 10.1371/journal.pcbi.1007662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/12/2020] [Accepted: 04/07/2020] [Indexed: 11/18/2022] Open
Abstract
Alpha blocking, a phenomenon where the alpha rhythm is reduced by attention to a visual, auditory, tactile or cognitive stimulus, is one of the most prominent features of human electroencephalography (EEG) signals. Here we identify a simple physiological mechanism by which opening of the eyes causes attenuation of the alpha rhythm. We fit a neural population model to EEG spectra from 82 subjects, each showing a different degree of alpha blocking upon opening of their eyes. Though it has been notoriously difficult to estimate parameters by fitting such models, we show how, by regularizing the differences in parameter estimates between eyes-closed and eyes-open states, we can reduce the uncertainties in these differences without significantly compromising fit quality. From this emerges a parsimonious explanation for the spectral differences between states: Changes to just a single parameter, pei, corresponding to the strength of a tonic excitatory input to the inhibitory cortical population, are sufficient to explain the reduction in alpha rhythm upon opening of the eyes. We detect this by comparing the shift in each model parameter between eyes-closed and eyes-open states. Whereas changes in most parameters are weak or negligible and do not scale with the degree of alpha attenuation across subjects, the change in pei increases monotonically with the degree of alpha blocking observed. These results indicate that opening of the eyes reduces alpha activity by increasing external input to the inhibitory cortical population. One of the most striking features of the human electroencephalogram (EEG) is the presence of neural oscillations in the range of 8-13 Hz. It is well known that attenuation of these alpha oscillations, a process known as alpha blocking, arises from opening of the eyes, though the cause has remained obscure. In this study we infer the mechanism underlying alpha blocking by fitting a neural population model to EEG spectra from 82 different individuals. Although such models have long held the promise of being able to relate macroscopic recordings of brain activity to microscopic neural parameters, their utility has been limited by the difficulty of inferring these parameters from fits to data. Our approach involves fitting eyes-open and eyes-closed EEG spectra in a way that minimizes unnecessary differences in model parameters between the two states. Surprisingly, we find that changes in just one parameter, the level of external input to the inhibitory neurons in cortex, is sufficient to explain the attenuation of alpha oscillations. This indicates that opening of the eyes reduces alpha activity simply by increasing external inputs to the inhibitory neurons in the cortex.
Collapse
Affiliation(s)
- Agus Hartoyo
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria, Australia
- * E-mail: (AH); (DGH)
| | - Peter J. Cadusch
- Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - David T. J. Liley
- Centre for Human Psychopharmacology, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien G. Hicks
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Bioinformatics Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail: (AH); (DGH)
| |
Collapse
|
64
|
Deeba F, Sanz-Leon P, Robinson PA. Effects of physiological parameter evolution on the dynamics of tonic-clonic seizures. PLoS One 2020; 15:e0230510. [PMID: 32240175 PMCID: PMC7117716 DOI: 10.1371/journal.pone.0230510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023] Open
Abstract
The temporal and spectral characteristics of tonic-clonic seizures are investigated using a neural field model of the corticothalamic system in the presence of a temporally varying connection strength between the cerebral cortex and thalamus. Increasing connection strength drives the system into ∼ 10 Hz seizure oscillations once a threshold is passed and a subcritical Hopf bifurcation occurs. In this study, the spectral and temporal characteristics of tonic-clonic seizures are explored as functions of the relevant properties of physiological connection strengths, such as maximum strength, time above threshold, and the ramp rate at which the strength increases or decreases. Analysis shows that the seizure onset time decreases with the maximum connection strength and time above threshold, but increases with the ramp rate. Seizure duration and offset time increase with maximum connection strength, time above threshold, and rate of change. Spectral analysis reveals that the power of nonlinear harmonics and the duration of the oscillations increase as the maximum connection strength and the time above threshold increase. A secondary limit cycle at ∼ 18 Hz, termed a saddle-cycle, is also seen during seizure onset and becomes more prominent and robust with increasing ramp rate. If the time above the threshold is too small, the system does not reach the 10 Hz limit cycle, and only exhibits 18 Hz saddle-cycle oscillations. It is also seen that the time to reach the saturated large amplitude limit-cycle seizure oscillation from both the instability threshold and from the end of the saddle-cycle oscillations is inversely proportional to the square root of the ramp rate.
Collapse
Affiliation(s)
- F. Deeba
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- * E-mail: ,
| | - P. Sanz-Leon
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - P. A. Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
65
|
Li Q, Song JL, Li SH, Westover MB, Zhang R. Effects of Cholinergic Neuromodulation on Thalamocortical Rhythms During NREM Sleep: A Model Study. Front Comput Neurosci 2020; 13:100. [PMID: 32038215 PMCID: PMC6990259 DOI: 10.3389/fncom.2019.00100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that cholinergic neurons shape the oscillatory activity of the thalamocortical (TC) network in behavioral and electrophysiological experiments. However, theoretical modeling demonstrating how cholinergic neuromodulation of thalamocortical rhythms during non-rapid eye movement (NREM) sleep might occur has been lacking. In this paper, we first develop a novel computational model (TC-ACH) by incorporating a cholinergic neuron population (CH) into the classical thalamo-cortical circuitry, where connections between populations are modeled in accordance with existing knowledge. The neurotransmitter acetylcholine (ACH) released by neurons in CH, which is able to change the discharge activity of thalamocortical neurons, is the primary focus of our work. Simulation results with our TC-ACH model reveal that the cholinergic projection activity is a key factor in modulating oscillation patterns in three ways: (1) transitions between different patterns of thalamocortical oscillations are dramatically modulated through diverse projection pathways; (2) the model expresses a stable spindle oscillation state with certain parameter settings for the cholinergic projection from CH to thalamus, and more spindles appear when the strength of cholinergic input from CH to thalamocortical neurons increases; (3) the duration of oscillation patterns during NREM sleep including K-complexes, spindles, and slow oscillations is longer when cholinergic input from CH to thalamocortical neurons becomes stronger. Our modeling results provide insights into the mechanisms by which the sleep state is controlled, and provide a theoretical basis for future experimental and clinical studies.
Collapse
Affiliation(s)
- Qiang Li
- Medical Big Data Research Center, Northwest University, Xi'an, China
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Jiang-Ling Song
- Medical Big Data Research Center, Northwest University, Xi'an, China
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Si-Hui Li
- Medical Big Data Research Center, Northwest University, Xi'an, China
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Rui Zhang
- Medical Big Data Research Center, Northwest University, Xi'an, China
| |
Collapse
|
66
|
Burrows DRW, Samarut É, Liu J, Baraban SC, Richardson MP, Meyer MP, Rosch RE. Imaging epilepsy in larval zebrafish. Eur J Paediatr Neurol 2020; 24:70-80. [PMID: 31982307 PMCID: PMC7035958 DOI: 10.1016/j.ejpn.2020.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
Our understanding of the genetic aetiology of paediatric epilepsies has grown substantially over the last decade. However, in order to translate improved diagnostics to personalised treatments, there is an urgent need to link molecular pathophysiology in epilepsy to whole-brain dynamics in seizures. Zebrafish have emerged as a promising new animal model for epileptic seizure disorders, with particular relevance for genetic and developmental epilepsies. As a novel model organism for epilepsy research they combine key advantages: the small size of larval zebrafish allows high throughput in vivo experiments; the availability of advanced genetic tools allows targeted modification to model specific human genetic disorders (including genetic epilepsies) in a vertebrate system; and optical access to the entire central nervous system has provided the basis for advanced microscopy technologies to image structure and function in the intact larval zebrafish brain. There is a growing body of literature describing and characterising features of epileptic seizures and epilepsy in larval zebrafish. Recently genetically encoded calcium indicators have been used to investigate the neurobiological basis of these seizures with light microscopy. This approach offers a unique window into the multiscale dynamics of epileptic seizures, capturing both whole-brain dynamics and single-cell behaviour concurrently. At the same time, linking observations made using calcium imaging in the larval zebrafish brain back to an understanding of epileptic seizures largely derived from cortical electrophysiological recordings in human patients and mammalian animal models is non-trivial. In this review we briefly illustrate the state of the art of epilepsy research in zebrafish with particular focus on calcium imaging of epileptic seizures in the larval zebrafish. We illustrate the utility of a dynamic systems perspective on the epileptic brain for providing a principled approach to linking observations across species and identifying those features of brain dynamics that are most relevant to epilepsy. In the following section we survey the literature for imaging features associated with epilepsy and epileptic seizures and link these to observations made from humans and other more traditional animal models. We conclude by identifying the key challenges still facing epilepsy research in the larval zebrafish and indicate strategies for future research to address these and integrate more directly with the themes and questions that emerge from investigating epilepsy in other model systems and human patients.
Collapse
Affiliation(s)
- D R W Burrows
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - É Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - J Liu
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - S C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M P Meyer
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R E Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
67
|
Yu Y, Wang X, Wang Q, Wang Q. A review of computational modeling and deep brain stimulation: applications to Parkinson's disease. APPLIED MATHEMATICS AND MECHANICS 2020; 41:1747-1768. [PMID: 33223591 PMCID: PMC7672165 DOI: 10.1007/s10483-020-2689-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/12/2020] [Indexed: 05/11/2023]
Abstract
Biophysical computational models are complementary to experiments and theories, providing powerful tools for the study of neurological diseases. The focus of this review is the dynamic modeling and control strategies of Parkinson's disease (PD). In previous studies, the development of parkinsonian network dynamics modeling has made great progress. Modeling mainly focuses on the cortex-thalamus-basal ganglia (CTBG) circuit and its sub-circuits, which helps to explore the dynamic behavior of the parkinsonian network, such as synchronization. Deep brain stimulation (DBS) is an effective strategy for the treatment of PD. At present, many studies are based on the side effects of the DBS. However, the translation from modeling results to clinical disease mitigation therapy still faces huge challenges. Here, we introduce the progress of DBS improvement. Its specific purpose is to develop novel DBS treatment methods, optimize the treatment effect of DBS for each patient, and focus on the study in closed-loop DBS. Our goal is to review the inspiration and insights gained by combining the system theory with these computational models to analyze neurodynamics and optimize DBS treatment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Xiaomin Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Qishao Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| |
Collapse
|
68
|
Liley DTJ, Muthukumaraswamy SD. Evidence that alpha blocking is due to increases in system-level oscillatory damping not neuronal population desynchronisation. Neuroimage 2019; 208:116408. [PMID: 31790751 DOI: 10.1016/j.neuroimage.2019.116408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
The attenuation of the alpha rhythm following eyes-opening (alpha blocking) is among the most robust features of the human electroencephalogram with the prevailing view being that it is caused by changes in neuronal population synchrony. To further study the basis for this phenomenon we use theoretically motivated fixed-order Auto-Regressive Moving-Average (ARMA) time series modelling to study the oscillatory dynamics of spontaneous alpha-band electroencephalographic activity in eyes-open and eyes-closed conditions and its modulation by the NMDA antagonist ketamine. We find that the reduction in alpha-band power between eyes-closed and eyes-open states is explicable in terms of an increase in the damping of stochastically perturbed alpha-band relaxation oscillatory activity. These changes in damping are putatively modified by the antagonism of NMDA-mediated glutamatergic neurotransmission but are not directly driven by changes in input to cortex nor by reductions in the phase synchronisation of populations of near identical oscillators. These results not only provide a direct challenge to the dominant view of the role that thalamus and neuronal population de-/synchronisation have in the genesis and modulation of alpha electro-/magnetoencephalographic activity but also suggest potentially important physiological determinants underlying its dynamical control and regulation.
Collapse
Affiliation(s)
- David T J Liley
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| | | |
Collapse
|
69
|
Babaie-Janvier T, Robinson PA. Neural Field Theory of Corticothalamic Attention With Control System Analysis. Front Neurosci 2019; 13:1240. [PMID: 31849576 PMCID: PMC6892952 DOI: 10.3389/fnins.2019.01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
Neural field theory is used to analyze attention by extending an existing model of the large-scale activity in the corticothalamic system to incorporate local feedbacks that modulate the gains of neural connectivity as part of the response to incoming stimuli. Treatment of both activity changes and connectivity changes as part of a generalized response enables generalized linear transfer functions of the combined response to be derived. These are then analyzed and interpreted via control theory in terms of stimulus-driven changes in system resonances that were recently shown to implement data filtering and prediction of the inputs. Using simple visual stimuli as a test case, it is shown that the gain response can implement attention by evaluating two main features of the stimuli: the magnitude and the rate of change, by increasing the weight placed on the rate of change in response to sudden changes, while reducing the contribution of stimuli value in tandem. These changes of filter parameters are shown to improve the prediction of the upcoming stimuli based on its recent time course. This outcome is analogous to controller-parameter tuning for performance enhancement in engineering control theory.
Collapse
Affiliation(s)
- Tara Babaie-Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
70
|
Regulation and control roles of the basal ganglia in the development of absence epileptiform activities. Cogn Neurodyn 2019; 14:137-154. [PMID: 32015772 DOI: 10.1007/s11571-019-09559-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/02/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022] Open
Abstract
Absence epileptiform activities are traditionally considered to be primarily induced by abnormal interactions between the cortical and thalamic neurons, which form the thalamocortical circuit in the brain. The basal ganglia, as an organizational unit in the brain, has close input and output relationships with the thalamocortical circuit. Although several studies report that the basal ganglia may participate in controlling and regulating absence epileptiform activities, to date, there have been no studies regarding whether the basal ganglia directly cause absence epileptiform activities. In this paper, we built a basal ganglia-corticothalamic network model to determine the role of basal ganglia in this disease. We determined that absence epileptiform activities might be directly induced by abnormal coupling strengths on certain pivotal pathways in the basal ganglia. These epileptiform activities can be well controlled by the coupling strengths of three major pathways that project from the thalamocortical network to the basal ganglia. The results implied that the substantia nigra pars compacta (SNc) can be considered to be the effective treatment target area for inhibiting epileptiform activities, which supports the observations of previous studies. Particularly, as a major contribution of this paper, we determined that the final presentation position of the epileptic slow spike waves is not limited to the cerebral cortex; these waves may additionally appear in the thalamus, striatal medium spiny neurons, striatal fast spiking interneuron, the SNc, subthalamic nucleus, substantia nigra pars reticulata and globus pallidus pars externa. In addition, consistent with several previous studies, the delay in the network was observed to be a critical factor for inducing transitions between different types of absence epileptiform activities. Our new model not only explains the onset and control mechanism but also provides a unified framework to study similar problems in neuron systems.
Collapse
|
71
|
Deeba F, Sanz-Leon P, Robinson PA. Unified dynamics of interictal events and absence seizures. Phys Rev E 2019; 100:022407. [PMID: 31574631 DOI: 10.1103/physreve.100.022407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 01/09/2023]
Abstract
The dynamics of interictal events between absence seizures and their relationship to seizures themselves are investigated by employing a neural field model of the corticothalamic system. Interictal events are modeled as being due to transient parameter excursions beyond the seizure threshold, in the present case by sufficiently temporally varying the connection strength between the cerebral cortex and the thalamus. Increasing connection strength drives the system into ∼3-Hz seizure oscillations via a supercritical Hopf bifurcation once the linear instability threshold is passed. Depending on the time course of the excursion above threshold, different interictal activity event dynamics are seen in the time series of corticothalamic fields. These resemble experimental interictal time series observed via electroencephalography. It is found that the morphology of these events depends on the magnitude and duration of the excursion above threshold. For a large-amplitude excursion of short duration, events resemble interictal spikes, where one large spike is seen, followed by small damped oscillations. For a short excursion with long duration, events like observed interictal periodic sharp waves are seen. When both amplitude and duration above threshold are large, seizure oscillations are seen. Using these outcomes, proximity to seizure can be estimated and tracked.
Collapse
Affiliation(s)
- F Deeba
- Department of Physics, Dhaka University of Engineering and Technology, Gazipur 1700, Bangladesh; School of Physics, University of Sydney, New South Wales 2006, Australia; and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P Sanz-Leon
- School of Physics, University of Sydney, New South Wales 2006, Australia, and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia, and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
72
|
Ma Z. Reachability Analysis of Neural Masses and Seizure Control Based on Combination Convolutional Neural Network. Int J Neural Syst 2019; 30:1950023. [DOI: 10.1142/s0129065719500230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epileptic seizures arise from synchronous firing of multiple spatially separated neural masses; therefore, many synchrony measures are used for seizure detection and characterization. However, synchrony measures reflect only the overall interaction strength among populations of neurons but cannot reveal the coupling strengths among individual populations, which is more important for seizure control. The concepts of reachability and reachable cluster were proposed to denote the coupling strengths of a set of neural masses. Here, we describe a seizure control method based on coupling strengths using combination convolutional neural network (CCNN) modeling. The neurophysiologically based neural mass model (NMM), which can bridge signal processing and neurophysiology, was used to simulate the proposed controller. Although the adjacency matrix and reachability matrix could not be identified perfectly, the vast majority of adjacency values were identified, reaching 95.64% using the CCNN with an optimal threshold. For cases of discrete and continuous coupling strengths, the proposed controller maintained the average reachable cluster strengths at about 0.1, indicating effective seizure control.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Information Engineering, Binzhou University, Binzhou 256600, P. R. China
| |
Collapse
|
73
|
Yang DP, Robinson PA. Unified analysis of global and focal aspects of absence epilepsy via neural field theory of the corticothalamic system. Phys Rev E 2019; 100:032405. [PMID: 31639915 DOI: 10.1103/physreve.100.032405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Absence epilepsy is characterized by a sudden paroxysmal loss of consciousness accompanied by oscillatory activity propagating over many brain areas. Although primary generalized absence seizures are supported by the global corticothalamic system, converging experimental evidence supports a focal theory of absence epilepsy. Here a physiology-based corticothalamic model is investigated with spatial heterogeneity due to focal epilepsy to unify global and focal aspects of absence epilepsy. Numeric and analytic calculations are employed to investigate the emergent spatiotemporal dynamics as well as their underlying dynamical mechanisms. They can be categorized into three scenarios: suppressed epilepsy, focal seizures, or generalized seizures, as summarized from a phase diagram vs focal width and characteristic axon range. The corresponding temporal frequencies and spatial extents of cortical waves in generalized seizures and focal seizures agree well with experimental observations of global and focal aspects of absence epilepsy, respectively. The emergence of the spatiotemporal dynamics corresponding to focal seizures provides a biophysical explanation of the temporally higher frequency but spatially more localized cortical waves observed in genetic rat models that display characteristics of human absence epilepsy. Predictions are also presented for further experimental test.
Collapse
Affiliation(s)
- Dong-Ping Yang
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
74
|
Castaño-Candamil S, Meinel A, Tangermann M. Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods. Front Neuroinform 2019; 13:55. [PMID: 31427941 PMCID: PMC6688515 DOI: 10.3389/fninf.2019.00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022] Open
Abstract
Many cognitive, sensory and motor processes have correlates in oscillatory neural source activity, which is embedded as a subspace in the recorded brain signals. Decoding such processes from noisy magnetoencephalogram/electroencephalogram (M/EEG) signals usually requires data-driven analysis methods. The objective evaluation of such decoding algorithms on experimental raw signals, however, is a challenge: the amount of available M/EEG data typically is limited, labels can be unreliable, and raw signals often are contaminated with artifacts. To overcome some of these problems, simulation frameworks have been introduced which support the development of data-driven decoding algorithms and their benchmarking. For generating artificial brain signals, however, most of the existing frameworks make strong and partially unrealistic assumptions about brain activity. This limits the generalization of results observed in the simulation to real-world scenarios. In the present contribution, we show how to overcome several shortcomings of existing simulation frameworks. We propose a versatile alternative, which allows for an objective evaluation and benchmarking of novel decoding algorithms using real neural signals. It allows to generate comparatively large datasets with labels being deterministically recoverable from the arbitrary M/EEG recordings. A novel idea to generate these labels is central to this framework: we determine a subspace of the true M/EEG recordings and utilize it to derive novel labels. These labels contain realistic information about the oscillatory activity of some underlying neural sources. For two categories of subspace-defining methods, we showcase how such labels can be obtained-either by an exclusively data-driven approach (independent component analysis-ICA), or by a method exploiting additional anatomical constraints (minimum norm estimates-MNE). We term our framework post-hoc labeling of M/EEG recordings. To support the adoption of the framework by practitioners, we have exemplified its use by benchmarking three standard decoding methods-i.e., common spatial patterns (CSP), source power-comodulation (SPoC), and convolutional neural networks (ConvNets)-wrt. Varied dataset sizes, label noise, and label variability. Source code and data are made available to the reader for facilitating the application of our post-hoc labeling framework.
Collapse
Affiliation(s)
- Sebastián Castaño-Candamil
- Brain State Decoding Lab, Department of Computer Science and BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Andreas Meinel
- Brain State Decoding Lab, Department of Computer Science and BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Michael Tangermann
- Brain State Decoding Lab, Department of Computer Science and BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
- Autonomous Intelligent Systems, Department of Computer Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
75
|
Tuncel Y, Başaklar T, Ider YZ. A model based investigation of the period doubling behavior in human steady-state visual evoked potentials. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab2d0b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
76
|
Ge Y, Cao Y, Yi G, Han C, Qin Y, Wang J, Che Y. Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy. Sci Rep 2019; 9:9093. [PMID: 31235838 PMCID: PMC6591255 DOI: 10.1038/s41598-019-45639-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/07/2019] [Indexed: 01/24/2023] Open
Abstract
In this paper, we investigate the abatement of spike-and-wave discharges in a thalamocortical model using a closed-loop brain stimulation method. We first explore the complex states and various transitions in the thalamocortical computational model of absence epilepsy by using bifurcation analysis. We demonstrate that the Hopf and double cycle bifurcations are the key dynamical mechanisms of the experimental observed bidirectional communications during absence seizures through top-down cortical excitation and thalamic feedforward inhibition. Then, we formulate the abatement of epileptic seizures to a closed-loop tracking control problem. Finally, we propose a neural network based sliding mode feedback control system to drive the dynamics of pathological cortical area to track the desired normal background activities. The control system is robust to uncertainties and disturbances, and its stability is guaranteed by Lyapunov stability theorem. Our results suggest that the seizure abatement can be modeled as a tracking control problem and solved by a robust closed-loop control method, which provides a promising brain stimulation strategy.
Collapse
Affiliation(s)
- Yafang Ge
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuzhen Cao
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Chunxiao Han
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, 300222, P. R. China.
| | - Yingmei Qin
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, 300222, P. R. China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yanqiu Che
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, 17033, USA. .,Center for Neural Engineering, Penn State, University Park, PA, 16802, USA.
| |
Collapse
|
77
|
MacLaurin JN, Robinson PA. Determination of effective brain connectivity from activity correlations. Phys Rev E 2019; 99:042404. [PMID: 31108587 DOI: 10.1103/physreve.99.042404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/07/2022]
Abstract
Effective connectivity embodied in transfer functions is derived from symmetric-network activity correlations under task-free conditions via a recent causal spectral factorization method. This generalizes previous covariance-based analyses to include frequency dependencies and time delays. Results are verified against analytic solutions of equations that have reproduced many aspects of experimental brain dynamics and against cases of more complex connectivity. Robustness to noise is also demonstrated.
Collapse
Affiliation(s)
- J N MacLaurin
- School of Physics, University of Sydney, New South Wales 2006, Australia, and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia, and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
78
|
Mukta KN, Gao X, Robinson PA. Neural field theory of evoked response potentials in a spherical brain geometry. Phys Rev E 2019; 99:062304. [PMID: 31330724 DOI: 10.1103/physreve.99.062304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/07/2022]
Abstract
Evoked response potentials (ERPs) are calculated in spherical and planar geometries using neural field theory of the corticothalamic system. The ERP is modeled as an impulse response and the resulting modal effects of spherical corticothalamic dynamics are explored, showing that results for spherical and planar geometries converge in the limit of large brain size. Cortical modal effects can lead to a double-peak structure in the ERP time series. It is found that the main difference between infinite planar geometry and spherical geometry is that the ERP peak is sharper and stronger in the spherical geometry. It is also found that the magnitude of the response decreases with increasing spatial width of the stimulus at the cortex. The peak is slightly delayed at large angles from the stimulus point, corresponding to group velocities of 6-10 m s^{-1}. Strong modal effects are found in the spherical geometry, with the lowest few modes sufficing to describe the main features of ERPs, except very near to spatially narrow stimuli.
Collapse
Affiliation(s)
- K N Mukta
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - Xiao Gao
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
79
|
Robinson PA. Neural field theory of effects of brain modifications and lesions on functional connectivity: Acute effects, short-term homeostasis, and long-term plasticity. Phys Rev E 2019; 99:042407. [PMID: 31108595 DOI: 10.1103/physreve.99.042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/07/2022]
Abstract
Neural field theory is used to predict the functional connectivity effects of lesions or other modifications to effective connectivity. Widespread initial changes are predicted after localized or diffuse changes to white or gray matter, consistent with observations, and enabling lesion severity indexes to be defined. It is shown how short-term homeostasis and longer-term plasticity can reduce perturbations while maintaining brain criticality under conditions where some connections remain fixed because of damage in the lesion core. The extent to which such effects can compensate for initial connectivity changes is then explored, showing that the strongest corrective changes are concentrated toward the edges of the perturbation if it is localized and its core is fixed. The results are applicable to inferring underlying connectivity changes and to interpreting and monitoring functional connectivity modifications after lesions, injury, surgery, drugs, or brain stimulation.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
80
|
Hartoyo A, Cadusch PJ, Liley DTJ, Hicks DG. Parameter estimation and identifiability in a neural population model for electro-cortical activity. PLoS Comput Biol 2019; 15:e1006694. [PMID: 31145724 PMCID: PMC6542506 DOI: 10.1371/journal.pcbi.1006694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/12/2019] [Indexed: 11/18/2022] Open
Abstract
Electroencephalography (EEG) provides a non-invasive measure of brain electrical activity. Neural population models, where large numbers of interacting neurons are considered collectively as a macroscopic system, have long been used to understand features in EEG signals. By tuning dozens of input parameters describing the excitatory and inhibitory neuron populations, these models can reproduce prominent features of the EEG such as the alpha-rhythm. However, the inverse problem, of directly estimating the parameters from fits to EEG data, remains unsolved. Solving this multi-parameter non-linear fitting problem will potentially provide a real-time method for characterizing average neuronal properties in human subjects. Here we perform unbiased fits of a 22-parameter neural population model to EEG data from 82 individuals, using both particle swarm optimization and Markov chain Monte Carlo sampling. We estimate how much is learned about individual parameters by computing Kullback-Leibler divergences between posterior and prior distributions for each parameter. Results indicate that only a single parameter, that determining the dynamics of inhibitory synaptic activity, is directly identifiable, while other parameters have large, though correlated, uncertainties. We show that the eigenvalues of the Fisher information matrix are roughly uniformly spaced over a log scale, indicating that the model is sloppy, like many of the regulatory network models in systems biology. These eigenvalues indicate that the system can be modeled with a low effective dimensionality, with inhibitory synaptic activity being prominent in driving system behavior.
Collapse
Affiliation(s)
- Agus Hartoyo
- Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter J. Cadusch
- Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - David T. J. Liley
- Centre for Human Psychopharmacology, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Damien G. Hicks
- Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Bioinformatics Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| |
Collapse
|
81
|
Sohanian Haghighi H, Markazi AHD. Dynamic origin of spike and wave discharges in the brain. Neuroimage 2019; 197:69-79. [PMID: 31022569 DOI: 10.1016/j.neuroimage.2019.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Spike and wave discharges are the main electrographic characteristic of a number of epileptic brain disorders including childhood absence epilepsy and photosensitive epilepsy. The basic dynamic mechanism that underlies the occurrence of these abnormal electrical patterns in the brain is not well understood. The current paper aims to provide a dynamic explanation for features and generation mechanism of spike and wave discharges in the brain. The main proposition of this study is that epileptic seizures could be interpreted as a resonance phenomenon rather than a limit cycle behavior. To shows this, a revised version of Jansen-Rit neural mass model is employed. The system can switch between monostable and bistable regimes, which are considered in this paper as wake and sleep states of the brain, respectively. In particular, it is shown that, in monostable region, the model can depict the alpha rhythm and alpha rhythm suppression due to mental activity. Frequency responses of the model near the bistable regime demonstrate that high amplitude harmonic excitation may lead to spike and wave like oscillations. Based on the computational results and the concept of stochastic resonance, a model for absence epilepsy is presented which can simulate spontaneous transitions between ictal and interictal states. Finally, it is shown that spike and wave discharges during epileptic seizures can be explained as a resonance phenomenon in a nonlinear system.
Collapse
Affiliation(s)
| | - Amir H D Markazi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16844, Iran.
| |
Collapse
|
82
|
Başaklar T, Tuncel Y, Ider YZ. Effects of high stimulus presentation rate on EEG template characteristics and performance of c-VEP based BCIs. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab0cee] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
83
|
Abstract
Brain connectivity and structure-function relationships are analyzed from a physical perspective in place of common graph-theoretic and statistical approaches that overwhelmingly ignore the brain's physical structure and geometry. Field theory is used to define connectivity tensors in terms of bare and dressed propagators, and discretized representations are implemented that respect the physical nature and dimensionality of the quantities involved, retain the correct continuum limit, and enable diagrammatic analysis. Eigenfunction analysis is used to simultaneously characterize and probe patterns of brain connectivity and activity, in place of statistical or phenomenological patterns. Physically based measures that characterize the connectivity are then developed in coordinate and spectral domains; some of which generalize or rectify graph-theoretic measures to implement correct dimensionality and continuum limits, and some replace graph-theoretic quantities. Traditional graph-based measures are shown to be highly prone to artifacts introduced by discretization and threshold, often because essential physical constraints have not been imposed, dimensionality has not been included, and/or distinctions between scalar, vector, and tensor quantities have not been considered. The results can replace them in ways that converge correctly and measure properties of brain structure, rather than of its discretization, and thus potentially enable physical interpretation of the many phenomenological results in the literature. Geometric effects are shown to dominate in determining many brain properties and care must be taken not to interpret geometric differences as differences in intrinsic neural connectivity. The results demonstrate the need to use systematic physical methods to analyze the brain and the potential of such methods to obtain new insights from data, make new predictions for experimental test, and go beyond phenomenological classification to dynamics and mechanisms.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
84
|
Outgrowing seizures in Childhood Absence Epilepsy: time delays and bistability. J Comput Neurosci 2019; 46:197-209. [PMID: 30737596 DOI: 10.1007/s10827-019-00711-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/14/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
We formulate a conductance-based model for a 3-neuron motif associated with Childhood Absence Epilepsy (CAE). The motif consists of neurons from the thalamic relay (TC) and reticular nuclei (RT) and the cortex (CT). We focus on a genetic defect common to the mouse homolog of CAE which is associated with loss of GABAA receptors on the TC neuron, and the fact that myelination of axons as children age can increase the conduction velocity between neurons. We show the combination of low GABAA mediated inhibition of TC neurons and the long corticothalamic loop delay gives rise to a variety of complex dynamics in the motif, including bistability. This bistability disappears as the corticothalamic conduction delay shortens even though GABAA activity remains impaired. Thus the combination of deficient GABAA activity and changing axonal myelination in the corticothalamic loop may be sufficient to account for the clinical course of CAE.
Collapse
|
85
|
Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia. Neuroinformatics 2019. [PMID: 29516302 DOI: 10.1007/s12021-018-9369-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mathematical modeling is a powerful tool that enables researchers to describe the experimentally observed dynamics of complex systems. Starting with a robust model including model parameters, it is necessary to choose an appropriate set of model parameters to reproduce experimental data. However, estimating an optimal solution of the inverse problem, i.e., finding a set of model parameters that yields the best possible fit to the experimental data, is a very challenging problem. In the present work, we use different optimization algorithms based on a frequentist approach, as well as Monte Carlo Markov Chain methods based on Bayesian inference techniques to solve the considered inverse problems. We first probe two case studies with synthetic data and study models described by a stochastic non-delayed linear second-order differential equation and a stochastic linear delay differential equation. In a third case study, a thalamo-cortical neural mass model is fitted to the EEG spectral power measured during general anesthesia induced by anesthetics propofol and desflurane. We show that the proposed neural mass model fits very well to the observed EEG power spectra, particularly to the power spectral peaks within δ - (0 - 4 Hz) and α - (8 - 13 Hz) frequency ranges. Furthermore, for each case study, we perform a practical identifiability analysis by estimating the confidence regions of the parameter estimates and interpret the corresponding correlation and sensitivity matrices. Our results indicate that estimating the model parameters from analytically computed spectral power, we are able to accurately estimate the unknown parameters while avoiding the computational costs due to numerical integration of the model equations.
Collapse
|
86
|
Sinha N, Wang Y, Dauwels J, Kaiser M, Thesen T, Forsyth R, Taylor PN. Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy. NEUROIMAGE-CLINICAL 2019; 21:101655. [PMID: 30685702 PMCID: PMC6356007 DOI: 10.1016/j.nicl.2019.101655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
Patients with idiopathic generalised epilepsy (IGE) typically have normal conventional magnetic resonance imaging (MRI), hence diagnosis based on MRI is challenging. Anatomical abnormalities underlying brain dysfunctions in IGE are unclear and their relation to the pathomechanisms of epileptogenesis is poorly understood. In this study, we applied connectometry, an advanced quantitative neuroimaging technique for investigating localised changes in white-matter tissues in vivo. Analysing white matter structures of 32 subjects we incorporated our in vivo findings in a computational model of seizure dynamics to suggest a plausible mechanism of epileptogenesis. Patients with IGE have significant bilateral alterations in major white-matter fascicles. In the cingulum, fornix, and superior longitudinal fasciculus, tract integrity is compromised, whereas in specific parts of tracts between thalamus and the precentral gyrus, tract integrity is enhanced in patients. Combining these alterations in a logistic regression model, we computed the decision boundary that discriminated patients and controls. The computational model, informed with the findings on the tract abnormalities, specifically highlighted the importance of enhanced cortico-reticular connections along with impaired cortico-cortical connections in inducing pathological seizure-like dynamics. We emphasise taking directionality of brain connectivity into consideration towards understanding the pathological mechanisms; this is possible by combining neuroimaging and computational modelling. Our imaging evidence of structural alterations suggest the loss of cortico-cortical and enhancement of cortico-thalamic fibre integrity in IGE. We further suggest that impaired connectivity from cortical regions to the thalamic reticular nucleus offers a therapeutic target for selectively modifying the brain circuit for reversing the mechanisms leading to epileptogenesis. Significant focal alterations along major white-matter fascicles in IGE patients are characterised. Increased white matter integrity found in thalamo-cortical connections. Decreased white matter integrity found in cortico-cortical connections. Disease mechanism is investigated by combining the neuroimaging findings with a dynamical model of seizure activity. Model implicates cortical projections to the thalamic reticular nucleus in IGE.
Collapse
Affiliation(s)
- Nishant Sinha
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
| | - Yujiang Wang
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neurology, University College London, UK
| | - Justin Dauwels
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Marcus Kaiser
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Thesen
- Department of Neurology, School of Medicine, New York University, NY, USA; Department of Physiology and Neuroscience, St. Georges University, Grenada, West Indies
| | - Rob Forsyth
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Neal Taylor
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neurology, University College London, UK.
| |
Collapse
|
87
|
Ferdousi M, Babaie Janvier T, Robinson P. Nonlinear harmonic generation in the corticothalamic system. J Theor Biol 2019; 460:184-194. [DOI: 10.1016/j.jtbi.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022]
|
88
|
Müller EJ, Robinson PA. Suppression of Parkinsonian Beta Oscillations by Deep Brain Stimulation: Determination of Effective Protocols. Front Comput Neurosci 2018; 12:98. [PMID: 30618692 PMCID: PMC6297248 DOI: 10.3389/fncom.2018.00098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/26/2018] [Indexed: 01/05/2023] Open
Abstract
A neural field model of the corticothalamic-basal ganglia system is developed that describes enhanced beta activity within subthalamic and pallidal circuits in Parkinson's disease (PD) via system resonances. A model of deep brain stimulation (DBS) of typical clinical targets, the subthalamic nucleus (STN) and globus pallidus internus (GPi), is added and studied for several distinct stimulation protocols that are used for treatment of the motor symptoms of PD and that reduce pathological beta band activity (13-30 Hz) in the corticothalamic-basal ganglia network. The resulting impact of DBS on enhanced beta activity in the STN and GPi, as well as cortico-subthalamic and cortico-pallidal coherence, are studied. Both STN-DBS and GPi-DBS are found to be effective for suppressing peak STN and GPi power in the beta band, with GPi-DBS being slightly more effective in both the STN and the GPi for all stimulus protocols tested. The largest decrease in cortico-STN coherence is observed during STN-DBS, whereas GPi-DBS is most effective for reducing cortico-GPi coherence. A reduction of the pathologically large STN connection strengths that define the parkinsonian state results in enhanced 6 Hz activity and could thus represent a compensatory mechanism that has the side effect of driving parkinsonian tremor-like oscillations. This model provides a method for systematically testing effective DBS protocols that agrees with experimental and clinical findings. Furthermore, the model suggests GPi-DBS and STN-DBS have distinct impacts on elevated synchronization between the basal ganglia and motor cortex in PD.
Collapse
Affiliation(s)
- Eli J Müller
- School of Physics, The University of Sydney, Sydney, NSW, Australia.,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, Australia.,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
89
|
Pang J, Robinson P. Neural mechanisms of the EEG alpha-BOLD anticorrelation. Neuroimage 2018; 181:461-470. [DOI: 10.1016/j.neuroimage.2018.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
|
90
|
O'Neill GC, Tewarie P, Vidaurre D, Liuzzi L, Woolrich MW, Brookes MJ. Dynamics of large-scale electrophysiological networks: A technical review. Neuroimage 2018; 180:559-576. [PMID: 28988134 DOI: 10.1016/j.neuroimage.2017.10.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
For several years it has been argued that neural synchronisation is crucial for cognition. The idea that synchronised temporal patterns between different neural groups carries information above and beyond the isolated activity of these groups has inspired a shift in focus in the field of functional neuroimaging. Specifically, investigation into the activation elicited within certain regions by some stimulus or task has, in part, given way to analysis of patterns of co-activation or functional connectivity between distal regions. Recently, the functional connectivity community has been looking beyond the assumptions of stationarity that earlier work was based on, and has introduced methods to incorporate temporal dynamics into the analysis of connectivity. In particular, non-invasive electrophysiological data (magnetoencephalography/electroencephalography (MEG/EEG)), which provides direct measurement of whole-brain activity and rich temporal information, offers an exceptional window into such (potentially fast) brain dynamics. In this review, we discuss challenges, solutions, and a collection of analysis tools that have been developed in recent years to facilitate the investigation of dynamic functional connectivity using these imaging modalities. Further, we discuss the applications of these approaches in the study of cognition and neuropsychiatric disorders. Finally, we review some existing developments that, by using realistic computational models, pursue a deeper understanding of the underlying causes of non-stationary connectivity.
Collapse
Affiliation(s)
- George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lucrezia Liuzzi
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
91
|
Assadzadeh S, Robinson PA. Necessity of the sleep-wake cycle for synaptic homeostasis: system-level analysis of plasticity in the corticothalamic system. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171952. [PMID: 30473798 PMCID: PMC6227995 DOI: 10.1098/rsos.171952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Neural field theory is used to study the system-level effects of plasticity in the corticothalamic system, where arousal states are represented parametrically by the connection strengths of the system, among other physiologically based parameters. It is found that the plasticity dynamics have no fixed points or closed cycles in the parameter space of the connection strengths, but parameter subregions exist where flows have opposite signs. Remarkably, these subregions coincide with previously identified regions that correspond to wake and slow-wave sleep, thus demonstrating state dependence of the sign of synaptic modification. We then show that a closed cycle in the parameter space is possible when the plasticity dynamics are driven by the ascending arousal system, which cycles the brain between sleep and wake to complete a closed loop that includes arcs through the opposite-flow subregions. Thus, it is concluded that both wake and sleep are necessary, and together are able to stabilize connection weights in the brain over the daily cycle, thereby providing quantitative realization of the synaptic homeostasis hypothesis.
Collapse
Affiliation(s)
- S. Assadzadeh
- School of Physics, The University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia
| | - P. A. Robinson
- School of Physics, The University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
92
|
Zobaer MS, Robinson PA, Kerr CC. Physiology-based ERPs in normal and abnormal states. BIOLOGICAL CYBERNETICS 2018; 112:465-482. [PMID: 30019237 DOI: 10.1007/s00422-018-0766-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Evoked response potentials (ERPs) and other transients are modeled as impulse responses using physiology-based neural field theory (NFT) of the corticothalamic system of neural activity in the human brain that incorporates synaptic and dendritic dynamics, firing response, axonal propagation, and corticocortical and corticothalamic pathways. The properties of model-predicted ERPs are explored throughout the stability zone of the corticothalamic system, and predicted time series and wavelet spectra are also analyzed. This provides a unified treatment of predicted ERPs for both normal and abnormal states within the brain's stability zone, including likely parameters to represent abnormal states of reduced arousal.
Collapse
Affiliation(s)
- M S Zobaer
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia.
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh.
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia
| | - C C Kerr
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| |
Collapse
|
93
|
Roy N, Sanz-Leon P, Robinson PA. Spectrum of connectivity fluctuations including the effect of activity-dependent feedback. Phys Rev E 2018; 98:022319. [PMID: 30253627 DOI: 10.1103/physreve.98.022319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Indexed: 11/07/2022]
Abstract
The spatiotemporal spectrum of feedback-driven fluctuations of brain connectivity is investigated using nonlinear neural field theory of the corticothalamic system. Weakly nonlinear dynamics of neural feedbacks are expanded in terms of first order perturbations of neural activity relative to a fixed point. Susceptibilities are used to quantify the change in connectivity per unit change in presynaptic or postsynaptic activity caused by nonlinear feedbacks such as facilitation, depression, sensitization, potentiation, and the effects of discrete eigenmode structure are included for a spherical brain geometry. Spectral signatures such as resonances are identified that allow the presence of particular presynaptic and postsynaptic feedback effects to be inferred. These include additional resonances at high frequencies and shifts of existing spectral peaks, mostly visible in the lowest spatial modes of the response.
Collapse
Affiliation(s)
- N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P Sanz-Leon
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
94
|
Babaie Janvier T, Robinson PA. Neural Field Theory of Corticothalamic Prediction With Control Systems Analysis. Front Hum Neurosci 2018; 12:334. [PMID: 30250428 PMCID: PMC6139319 DOI: 10.3389/fnhum.2018.00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Neural field theory is used to model and analyze realistic corticothalamic responses to simple visual stimuli. This yields system transfer functions that embody key features in common with those of engineering control systems, which enables interpretation of brain dynamics in terms of data filters. In particular, these features assist in finding internal signals that represent input stimuli and their changes, which are exactly the types of quantities used in control systems to enable prediction of future input signals, and adjustment of gains which is argued to be the analog of attention in control theory. Corticothalamic dynamics are shown to be analogous to the classical proportional-integral-derivative (PID) filters that are widely used in engineering.
Collapse
Affiliation(s)
- Tahereh Babaie Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
95
|
Schmidt H, Avitabile D, Montbrió E, Roxin A. Network mechanisms underlying the role of oscillations in cognitive tasks. PLoS Comput Biol 2018; 14:e1006430. [PMID: 30188889 PMCID: PMC6143269 DOI: 10.1371/journal.pcbi.1006430] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/18/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Oscillatory activity robustly correlates with task demands during many cognitive tasks. However, not only are the network mechanisms underlying the generation of these rhythms poorly understood, but it is also still unknown to what extent they may play a functional role, as opposed to being a mere epiphenomenon. Here we study the mechanisms underlying the influence of oscillatory drive on network dynamics related to cognitive processing in simple working memory (WM), and memory recall tasks. Specifically, we investigate how the frequency of oscillatory input interacts with the intrinsic dynamics in networks of recurrently coupled spiking neurons to cause changes of state: the neuronal correlates of the corresponding cognitive process. We find that slow oscillations, in the delta and theta band, are effective in activating network states associated with memory recall. On the other hand, faster oscillations, in the beta range, can serve to clear memory states by resonantly driving transient bouts of spike synchrony which destabilize the activity. We leverage a recently derived set of exact mean-field equations for networks of quadratic integrate-and-fire neurons to systematically study the bifurcation structure in the periodically forced spiking network. Interestingly, we find that the oscillatory signals which are most effective in allowing flexible switching between network states are not smooth, pure sinusoids, but rather burst-like, with a sharp onset. We show that such periodic bursts themselves readily arise spontaneously in networks of excitatory and inhibitory neurons, and that the burst frequency can be tuned via changes in tonic drive. Finally, we show that oscillations in the gamma range can actually stabilize WM states which otherwise would not persist.
Collapse
Affiliation(s)
- Helmut Schmidt
- Centre de Recerca Matemàtica, Campus de Bellaterra Edifici C, 08193 Bellaterra, Barcelona, Spain.,Barcelona Graduate School of Mathematics, Campus de Bellaterra Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Daniele Avitabile
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2QL, United Kingdom.,Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, 2004 route des Lucioles - Boîte Postale 93 06902 Sophia Antipolis, Cedex, France
| | - Ernest Montbrió
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, C. Ramon Trias Fargas 25 - 27, 08005 Barcelona, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica, Campus de Bellaterra Edifici C, 08193 Bellaterra, Barcelona, Spain.,Barcelona Graduate School of Mathematics, Campus de Bellaterra Edifici C, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
96
|
Sanz-Leon P, Robinson PA, Knock SA, Drysdale PM, Abeysuriya RG, Fung FK, Rennie CJ, Zhao X. NFTsim: Theory and Simulation of Multiscale Neural Field Dynamics. PLoS Comput Biol 2018; 14:e1006387. [PMID: 30133448 PMCID: PMC6122812 DOI: 10.1371/journal.pcbi.1006387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/04/2018] [Accepted: 07/22/2018] [Indexed: 01/02/2023] Open
Abstract
A user ready, portable, documented software package, NFTsim, is presented to facilitate numerical simulations of a wide range of brain systems using continuum neural field modeling. NFTsim enables users to simulate key aspects of brain activity at multiple scales. At the microscopic scale, it incorporates characteristics of local interactions between cells, neurotransmitter effects, synaptodendritic delays and feedbacks. At the mesoscopic scale, it incorporates information about medium to large scale axonal ranges of fibers, which are essential to model dissipative wave transmission and to produce synchronous oscillations and associated cross-correlation patterns as observed in local field potential recordings of active tissue. At the scale of the whole brain, NFTsim allows for the inclusion of long range pathways, such as thalamocortical projections, when generating macroscopic activity fields. The multiscale nature of the neural activity produced by NFTsim has the potential to enable the modeling of resulting quantities measurable via various neuroimaging techniques. In this work, we give a comprehensive description of the design and implementation of the software. Due to its modularity and flexibility, NFTsim enables the systematic study of an unlimited number of neural systems with multiple neural populations under a unified framework and allows for direct comparison with analytic and experimental predictions. The code is written in C++ and bundled with Matlab routines for a rapid quantitative analysis and visualization of the outputs. The output of NFTsim is stored in plain text file enabling users to select from a broad range of tools for offline analysis. This software enables a wide and convenient use of powerful physiologically-based neural field approaches to brain modeling. NFTsim is distributed under the Apache 2.0 license.
Collapse
Affiliation(s)
- Paula Sanz-Leon
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | - Peter A. Robinson
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | - Stuart A. Knock
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | | | - Romesh G. Abeysuriya
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Felix K. Fung
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
- Downstate Medical Center, State University of New York, Brooklyn, New York, United States of America
| | | | - Xuelong Zhao
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| |
Collapse
|
97
|
Deeba F, Sanz-Leon P, Robinson PA. Dependence of absence seizure dynamics on physiological parameter evolution. J Theor Biol 2018; 454:11-21. [PMID: 29807025 DOI: 10.1016/j.jtbi.2018.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/30/2022]
Abstract
A neural field model of the corticothalamic system is applied to investigate the temporal and spectral characteristics of absence seizures in the presence of a temporally varying connection strength between the cerebral cortex and thalamus. Increasing connection strength drives the system into an absence seizure-like state once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting model seizures are explored as functions of maximum connection strength, time above threshold, and the rate at which the connection strength increases (ramp rate). Our results enable spectral and temporal characteristics of seizures to be related to changes in the underlying physiological evolution of connections via nonlinear dynamics and neural field theory. Spectral analysis reveals that the power of the harmonics and the duration of the oscillations increase as the maximum connection strength and the time above threshold increase. It is also found that the time to reach the stable limit-cycle seizure oscillation from the instability threshold decreases with the square root of the ramp rate.
Collapse
Affiliation(s)
- F Deeba
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia.
| | - Paula Sanz-Leon
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
98
|
Müller EJ, Robinson PA. Quantitative theory of deep brain stimulation of the subthalamic nucleus for the suppression of pathological rhythms in Parkinson's disease. PLoS Comput Biol 2018; 14:e1006217. [PMID: 29813060 PMCID: PMC5993558 DOI: 10.1371/journal.pcbi.1006217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/08/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is modeled to explore the mechanisms of this effective, but poorly understood, treatment for motor symptoms of drug-refractory Parkinson's disease and dystonia. First, a neural field model of the corticothalamic-basal ganglia (CTBG) system is developed that reproduces key clinical features of Parkinson's disease, including its characteristic 4-8 Hz and 13-30 Hz electrophysiological signatures. Deep brain stimulation of the STN is then modeled and shown to suppress the pathological 13-30 Hz (beta) activity for physiologically realistic and optimized stimulus parameters. This supports the idea that suppression of abnormally coherent activity in the CTBG system is a major factor in DBS therapy for Parkinson's disease, by permitting normal dynamics to resume. At high stimulus intensities, nonlinear effects in the target population mediate wave-wave interactions between resonant beta activity and the stimulus pulse train, leading to complex spectral structure that shows remarkable similarity to that seen in steady-state evoked potential experiments.
Collapse
Affiliation(s)
- Eli J. Müller
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A. Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
99
|
Boussen S, Spiegler A, Benar C, Carrère M, Bartolomei F, Metellus P, Voituriez R, Velly L, Bruder N, Trébuchon A. Time rescaling reproduces EEG behavior during transition from propofol anesthesia-induced unconsciousness to consciousness. Sci Rep 2018; 8:6015. [PMID: 29662089 PMCID: PMC5902625 DOI: 10.1038/s41598-018-24405-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023] Open
Abstract
General anesthesia (GA) is a reversible manipulation of consciousness whose mechanism is mysterious at the level of neural networks leaving space for several competing hypotheses. We recorded electrocorticography (ECoG) signals in patients who underwent intracranial monitoring during awake surgery for the treatment of cerebral tumors in functional areas of the brain. Therefore, we recorded the transition from unconsciousness to consciousness directly on the brain surface. Using frequency resolved interferometry; we studied the intermediate ECoG frequencies (4-40 Hz). In the theoretical study, we used a computational Jansen and Rit neuron model to simulate recovery of consciousness (ROC). During ROC, we found that f increased by a factor equal to 1.62 ± 0.09, and δf varied by the same factor (1.61 ± 0.09) suggesting the existence of a scaling factor. We accelerated the time course of an unconscious EEG trace by an approximate factor 1.6 and we showed that the resulting EEG trace match the conscious state. Using the theoretical model, we successfully reproduced this behavior. We show that the recovery of consciousness corresponds to a transition in the frequency (f, δf) space, which is exactly reproduced by a simple time rescaling. These findings may perhaps be applied to other altered consciousness states.
Collapse
Affiliation(s)
- S Boussen
- Department of Anesthesiology and Intensive Care, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Marseille, France.
- Aix Marseille Université, IFSTTAR, LBA UMR_T 24, 13916, Marseille, France.
| | - A Spiegler
- Institut de Neurosciences des Systèmes - Inserm UMR1106 - Aix-Marseille Université - Faculté de Médecine, 27, Boulevard Jean Moulin, 13005, Marseille, France
| | - C Benar
- Institut de Neurosciences des Systèmes - Inserm UMR1106 - Aix-Marseille Université - Faculté de Médecine, 27, Boulevard Jean Moulin, 13005, Marseille, France
| | - M Carrère
- Institut de Neurosciences des Systèmes - Inserm UMR1106 - Aix-Marseille Université - Faculté de Médecine, 27, Boulevard Jean Moulin, 13005, Marseille, France
| | - F Bartolomei
- Institut de Neurosciences des Systèmes - Inserm UMR1106 - Aix-Marseille Université - Faculté de Médecine, 27, Boulevard Jean Moulin, 13005, Marseille, France
- Clinical Electrophysiology Department, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Marseille, France
| | - P Metellus
- Neurosurgery Department, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Marseille, France
| | - R Voituriez
- Laboratoire Jean Perrin-UMR 8237 CNRS Université Pierre et Marie Curie, 75005, Paris, France
| | - L Velly
- Department of Anesthesiology and Intensive Care, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Marseille, France
- Institut des Neurciences de la Timone, CNRS UMR1106 - Aix-Marseille Université - Faculté de Médecine, 27, Boulevard Jean Moulin, 13005, Marseille, France
| | - N Bruder
- Department of Anesthesiology and Intensive Care, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Marseille, France
| | - A Trébuchon
- Institut de Neurosciences des Systèmes - Inserm UMR1106 - Aix-Marseille Université - Faculté de Médecine, 27, Boulevard Jean Moulin, 13005, Marseille, France
- Clinical Electrophysiology Department, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, 264 rue Saint-Pierre, 13005, Marseille, France
| |
Collapse
|
100
|
Mulugeta L, Drach A, Erdemir A, Hunt CA, Horner M, Ku JP, Myers JG, Vadigepalli R, Lytton WW. Credibility, Replicability, and Reproducibility in Simulation for Biomedicine and Clinical Applications in Neuroscience. Front Neuroinform 2018; 12:18. [PMID: 29713272 PMCID: PMC5911506 DOI: 10.3389/fninf.2018.00018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022] Open
Abstract
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations.
Collapse
Affiliation(s)
| | - Andrew Drach
- The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ahmet Erdemir
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - C A Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | | | - Joy P Ku
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Jerry G Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - William W Lytton
- Department of Neurology, SUNY Downstate Medical Center, The State University of New York, New York, NY, United States.,Department of Physiology and Pharmacology, SUNY Downstate Medical Center, The State University of New York, New York, NY, United States.,Department of Neurology, Kings County Hospital Center, New York, NY, United States
| |
Collapse
|