51
|
Sharma S, Ding F, Dokholyan NV. Probing protein aggregation using discrete molecular dynamics. FRONT BIOSCI-LANDMRK 2008; 13:4795-808. [PMID: 18508545 DOI: 10.2741/3039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the role of biomolecular dynamics in cellular processes leading to human diseases and the ability to rationally manipulate these processes is of fundamental importance in scientific research. The last decade has witnessed significant progress in probing biophysical behavior of proteins. However, we are still limited in understanding how changes in protein dynamics and inter-protein interactions occurring in short length- and time-scales lead to aberrations in their biological function. Bridging this gap in biology probed using computer simulations marks a challenging frontier in computational biology. Here we examine hypothesis-driven simplified protein models in conjunction with discrete molecular dynamics in the study of protein aggregation, implicated in series of neurodegenerative diseases, such as Alzheimer's and Huntington's diseases. Discrete molecular dynamics simulations of simplified protein models have emerged as a powerful methodology with its ability to bridge the gap in time and length scales from protein dynamics to aggregation, and provide an indispensable tool for probing protein aggregation.
Collapse
Affiliation(s)
- Shantanu Sharma
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
52
|
Chen Y, Ding F, Nie H, Serohijos AW, Sharma S, Wilcox KC, Yin S, Dokholyan NV. Protein folding: then and now. Arch Biochem Biophys 2008; 469:4-19. [PMID: 17585870 PMCID: PMC2173875 DOI: 10.1016/j.abb.2007.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/11/2007] [Accepted: 05/21/2007] [Indexed: 01/19/2023]
Abstract
Over the past three decades the protein folding field has undergone monumental changes. Originally a purely academic question, how a protein folds has now become vital in understanding diseases and our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review and contrast past and recent developments in the protein folding field. Specifically, we discuss the progress in our understanding of protein folding thermodynamics and kinetics, the properties of evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein folding lead to protein aggregation and human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolay V. Dokholyan
- † To whom correspondence should be addressed: Nikolay V. Dokholyan, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599. Fax: 919-966-2852.
| |
Collapse
|
53
|
Bellesia G, Shea JE. Self-assembly of β-sheet forming peptides into chiral fibrillar aggregates. J Chem Phys 2007; 126:245104. [PMID: 17614592 DOI: 10.1063/1.2739547] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The authors introduce a novel mid-resolution off-lattice coarse-grained model to investigate the self-assembly of beta-sheet forming peptides. The model retains most of the peptide backbone degrees of freedom as well as one interaction center describing the side chains. The peptide consists of a core of alternating hydrophobic and hydrophilic residues, capped by two oppositely charged residues. Nonbonded interactions are described by Lennard-Jones and Coulombic terms. The influence of different levels of "hydrophobic" and "steric" forces between the side chains of the peptides on the thermodynamics and kinetics of aggregation was investigated using Langevin dynamics. The model is simple enough to allow the simulation of systems consisting of hundreds of peptides, while remaining realistic enough to successfully lead to the formation of chiral, ordered beta tapes, ribbons, as well as higher order fibrillar aggregates.
Collapse
Affiliation(s)
- Giovanni Bellesia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | | |
Collapse
|
54
|
Vitalis A, Wang X, Pappu RV. Quantitative characterization of intrinsic disorder in polyglutamine: insights from analysis based on polymer theories. Biophys J 2007; 93:1923-37. [PMID: 17526581 PMCID: PMC1959550 DOI: 10.1529/biophysj.107.110080] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unfolded under physiological conditions. Here we ask if archetypal IDPs in aqueous milieus are best described as swollen disordered coils in a good solvent or collapsed disordered globules in a poor solvent. To answer this question, we analyzed data from molecular simulations for a 20-residue polyglutamine peptide and concluded, in accord with experimental results, that water is a poor solvent for this system. The relevance of monomeric polyglutamine is twofold: It is an archetypal IDP sequence and its aggregation is associated with nine neurodegenerative diseases. The main advance in this work lies in our ability to make accurate assessments of solvent quality from analysis of simulations for a single, rather than multiple chain lengths. We achieved this through the proper design of simulations and analysis of order parameters that are used to describe conformational equilibria in polymer physics theories. Despite the preference for collapsed structures, we find that polyglutamine is disordered because a heterogeneous ensemble of conformations of equivalent compactness is populated at equilibrium. It is surprising that water is a poor solvent for polar polyglutamine and the question is: why? Our preliminary analysis suggests that intrabackbone interactions provide at least part of the driving force for the collapse of polyglutamine in water. We also show that dynamics for conversion between distinct conformations resemble structural relaxation in disordered, glassy systems, i.e., the energy landscape for monomeric polyglutamine is rugged. We end by discussing generalizations of our methods to quantitative studies of conformational equilibria of other low-complexity IDP sequences.
Collapse
Affiliation(s)
- Andreas Vitalis
- Department of Biomedical Engineering, Molecular Biophysics Program, and Center for Computational Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
55
|
Ayton GS, Noid WG, Voth GA. Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 2007; 17:192-8. [PMID: 17383173 DOI: 10.1016/j.sbi.2007.03.004] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 02/21/2007] [Accepted: 03/13/2007] [Indexed: 02/07/2023]
Abstract
Considerable progress has been recently achieved in the multiscale modeling of complex biological processes. Multiscale models have now investigated the structure and dynamics of lipid membranes, proteins, peptides and DNA over length and time scales ranging from the atomic to the macroscopic. Serial multiscale methods that parameterize low-resolution coarse-grained models with data from high-resolution models have studied long time or length scale phenomena that cannot be investigated with atomically detailed models. Parallel multiscale methods that directly couple high- and low-resolution models have efficiently explored slow structural transitions and the importance of long-wavelength fluctuations for biological molecules. The success of such models relies upon new theories and methods for constructing accurate multiscale bridges that transfer information between models with different resolutions.
Collapse
Affiliation(s)
- Gary S Ayton
- Center for Biological Modeling and Simulation, University of Utah, Salt Lake City, UT 84112-0850, USA
| | | | | |
Collapse
|
56
|
Sharma S, Ding F, Dokholyan NV. Multiscale modeling of nucleosome dynamics. Biophys J 2007; 92:1457-70. [PMID: 17142268 PMCID: PMC1796817 DOI: 10.1529/biophysj.106.094805] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 11/02/2006] [Indexed: 01/16/2023] Open
Abstract
Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed "cold sites", which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin structure, mediated by salt-bridge interactions with adjacent DNA.
Collapse
Affiliation(s)
- Shantanu Sharma
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
57
|
Yun S, Urbanc B, Cruz L, Bitan G, Teplow DB, Stanley HE. Role of electrostatic interactions in amyloid beta-protein (A beta) oligomer formation: a discrete molecular dynamics study. Biophys J 2007; 92:4064-77. [PMID: 17307823 PMCID: PMC1868995 DOI: 10.1529/biophysj.106.097766] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathological folding and oligomer formation of the amyloid beta-protein (A beta) are widely perceived as central to Alzheimer's disease. Experimental approaches to study A beta self-assembly provide limited information because most relevant aggregates are quasi-stable and inhomogeneous. We apply a discrete molecular dynamics approach combined with a four-bead protein model to study oligomer formation of A beta. We address the differences between the two most common A beta alloforms, A beta 40 and A beta 42, which oligomerize differently in vitro. Our previous study showed that, despite simplifications, our discrete molecular dynamics approach accounts for the experimentally observed differences between A beta 40 and A beta 42 and yields structural predictions amenable to in vitro testing. Here we study how the presence of electrostatic interactions (EIs) between pairs of charged amino acids affects A beta 40 and A beta 42 oligomer formation. Our results indicate that EIs promote formation of larger oligomers in both A beta 40 and A beta 42. Both A beta 40 and A beta 42 display a peak at trimers/tetramers, but A beta 42 displays additional peaks at nonamers and tetradecamers. EIs thus shift the oligomer size distributions to larger oligomers. Nonetheless, the A beta 40 size distribution remains unimodal, whereas the A beta 42 distribution is trimodal, as observed experimentally. We show that structural differences between A beta 40 and A beta 42 that already appear in the monomer folding, are not affected by EIs. A beta 42 folded structure is characterized by a turn in the C-terminus that is not present in A beta 40. We show that the same C-terminal region is also responsible for the strongest intermolecular contacts in A beta 42 pentamers and larger oligomers. Our results suggest that this C-terminal region plays a key role in the formation of A beta 42 oligomers and the relative importance of this region increases in the presence of EIs. These results suggest that inhibitors targeting the C-terminal region of A beta 42 oligomers may be able to prevent oligomer formation or structurally modify the assemblies to reduce their toxicity.
Collapse
Affiliation(s)
- Sijung Yun
- Center for Polymer Studies, Department of Physics, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
58
|
Shakhnovich E. Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Chem Rev 2006; 106:1559-88. [PMID: 16683745 PMCID: PMC2735084 DOI: 10.1021/cr040425u] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
59
|
Thompson SM, Sinha S, Topp EM, Camarda KV. A molecular design approach to peptide drug stabilization. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600612213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
60
|
Nguyen HD, Hall CK. Spontaneous fibril formation by polyalanines; discontinuous molecular dynamics simulations. J Am Chem Soc 2006; 128:1890-901. [PMID: 16464090 PMCID: PMC3215763 DOI: 10.1021/ja0539140] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibrillary protein aggregates rich in beta-sheet structure have been implicated in the pathology of several neurodegenerative diseases. In this work, we investigate the formation of fibrils by performing discontinuous molecular dynamics simulations on systems containing 12 to 96 model Ac-KA(14)K-NH(2) peptides using our newly developed off-lattice, implicit-solvent, intermediate-resolution model, PRIME. We find that, at a low concentration, random-coil peptides assemble into alpha-helices at low temperatures. At intermediate concentrations, random-coil peptides assemble into alpha-helices at low temperatures and large beta-sheet structures at high temperatures. At high concentrations, the system forms beta-sheets over a wide range of temperatures. These assemble into fibrils above a critical temperature which decreases with concentration and exceeds the isolated peptide's folding temperature. At very high temperatures and all concentrations, the system is in a random-coil state. All of these results are in good qualitative agreement with those by Blondelle and co-workers on Ac-KA(14)K-NH(2) peptides. The fibrils observed in our simulations mimic the structural characteristics observed in experiments in terms of the number of sheets formed, the values of the intra- and intersheet separations, and the parallel peptide arrangement within each beta-sheet. Finally, we find that when the strength of the hydrophobic interaction between nonpolar side chains is high compared to the strength of hydrogen bonding, amorphous aggregates, rather than fibrillar aggregates, are formed.
Collapse
Affiliation(s)
- Hung D Nguyen
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | |
Collapse
|
61
|
Abstract
Assembly of normally soluble proteins into amyloid fibrils is a cause or associated symptom of numerous human disorders. Although some progress toward understanding the molecular-level details of fibril structure has been made through in vitro experiments, the insoluble nature of fibrils make them difficult to study experimentally. We describe two computational approaches used to investigate fibril formation and structure: intermediate-resolution discontinuous molecular dynamics simulations and atomistic molecular dynamics simulations. Each method has its strengths and weaknesses, but taken together the two approaches provide a useful molecular-level picture of fibril structure and formation.
Collapse
Affiliation(s)
- Carol K Hall
- Chemical Engineering Department, North Carolina State University, Raleigh, 27695, USA
| | | |
Collapse
|
62
|
Lei H, Wu C, Wang Z, Duan Y. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta2-microglobulin: implication for the protofibril structure. J Mol Biol 2005; 356:1049-63. [PMID: 16403526 DOI: 10.1016/j.jmb.2005.11.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/21/2005] [Accepted: 11/29/2005] [Indexed: 11/22/2022]
Abstract
Amyloid formation is associated with many neurodegenerative diseases. Recent findings suggest that early oligomeric aggregates could be major sources of toxicity. We present a computational investigation of the first step of amyloid initiation-dimer formation of a seven residue peptide (NHVTLSQ) from human beta2-microglobulin at pH 2.0, which renders +2.0 units charges to each peptide. A total of over 1.2 micros of simulations with explicit solvent and 1.0 micros of simulations with implicit solvent were conducted. Main-chain conformational restraint was applied to facilitate the formation of ordered dimers. An antiparallel beta-sheet with six main-chain hydrogen bonds was dominant in the implicit solvent simulations. In contrast, no stable dimers were observed in the two negative controls, the mouse heptapeptide (KHDSMAE, +3.0 units charges) and the scrambled human heptapeptide (QVLHTSN). Explicit solvent simulations presented a more complex scenario. The wild-type human heptapeptide formed predominantly antiparallel beta-sheets ( approximately 38%) although parallel ones ( approximately 12%) were also observed. Hydrophobic contacts preceded hydrogen bond saturation in the majority of the association events in the explicit solvent simulations, highlighting the important role of hydrophobic interaction in amyloid initiation. The fact that the mouse dimer dissociated immediately after the removal of conformational restraint suggests that the higher conformational entropy barrier, along with the stronger charge repulsion and weaker hydrophobic interaction, contributed to its inability to form amyloid fibril. The closeness of positive charge pairs in the dimers of the scrambled human heptapeptide may prohibit further beta-sheet extension and fibril growth. Combining the results from simulations and free energy analyses, we propose that the building block for this amyloid fibril is an antiparallel dimer with a two-residue register shift and six main-chain hydrogen bonds. A double-layer protofibril structure is also proposed in which two antiparallel beta-sheets face each other and are held together by hydrophobic staples and hydrogen bonds of the polar side-chains.
Collapse
Affiliation(s)
- Hongxing Lei
- UC Davis Genome Center and Department of Applied Science, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
63
|
Ding F, LaRocque JJ, Dokholyan NV. Direct Observation of Protein Folding, Aggregation, and a Prion-like Conformational Conversion. J Biol Chem 2005; 280:40235-40. [PMID: 16204250 DOI: 10.1074/jbc.m506372200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein conformational transition from alpha-helices to beta-sheets precedes aggregation of proteins implicated in many diseases, including Alzheimer and prion diseases. Direct characterization of such transitions is often hindered by the complicated nature of the interaction network among amino acids. A recently engineered small protein-like peptide with a simple amino acid composition features a temperature-driven alpha-helix to beta-sheet conformational change. Here we studied the conformational transition of this peptide by molecular dynamics simulations. We observed a critical temperature, below which the peptide folds into an alpha-helical coiled-coil state and above which the peptide misfolds into beta-rich structures with a high propensity to aggregate. The structures adopted by this peptide during low temperature simulations have a backbone root mean square deviation less than 2 A from the crystal structure. At high temperatures, this peptide adopts an amyloid-like structure, which is mainly composed of coiled anti-parallel beta-sheets with the cross-beta-signature of amyloid fibrils. Most strikingly, we observed conformational conversions in which an alpha-helix is converted into a beta-strand by proximate stable beta-sheets with exposed hydrophobic surfaces and unsaturated hydrogen bonds. Our study suggested a possible generic molecular mechanism of the template-mediated aggregation process, originally proposed by Prusiner (Prusiner, S. B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13363-13383) to account for prion infectivity.
Collapse
Affiliation(s)
- Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
64
|
Ding F, Dokholyan NV. Simple but predictive protein models. Trends Biotechnol 2005; 23:450-5. [PMID: 16038997 DOI: 10.1016/j.tibtech.2005.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/12/2005] [Accepted: 07/11/2005] [Indexed: 11/23/2022]
Abstract
The traditional approach to computational biophysics studies of molecular systems is brute force molecular dynamics simulations under the conditions of interest. The disadvantages of this approach are that the time and length scales that are accessible to computer simulations often do not reach biologically relevant scales. An alternative approach, which we call intuitive modeling, is hypothesis-driven and based on tailoring simplified protein models to the systems of interest. Using intuitive modeling, the length and time scales that can be achieved using simplified protein models exceed those of traditional molecular-dynamic simulations. Here, we describe several recent studies that signify the predictive power of simplified protein models within the intuitive-modeling approach.
Collapse
Affiliation(s)
- Feng Ding
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
65
|
Oakley MT, Garibaldi JM, Hirst JD. Lattice models of peptide aggregation: Evaluation of conformational search algorithms. J Comput Chem 2005; 26:1638-46. [PMID: 16170797 DOI: 10.1002/jcc.20306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a series of conformational search calculations on the aggregation of short peptide fragments that form fibrils similar to those seen in many protein mis-folding diseases. The proteins were represented by a face-centered cubic lattice model with the conformational energies calculated using the Miyazawa-Jernigan potential. The searches were performed using algorithms based on the Metropolis Monte Carlo method, including simulated annealing and replica exchange. We also present the results of searches using the tabu search method, an algorithm that has been used for many optimization problems, but has rarely been used in protein conformational searches. The replica exchange algorithm consistently found more stable structures then the other algorithms, and was particularly effective for the octamers and larger systems.
Collapse
Affiliation(s)
- Mark T Oakley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | |
Collapse
|